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S1.		Solutions	to	the	reaction-diffusion	equations	in	one	phase	
 
In	all	the	one-phase	solutions,	we	adopt	the	convention	that	positive	flux	points	in	the	
direction	of	increasing	z,	where	z	measures	distance	from	the	interface.	
 
S1.1.		One	compound	in	one	phase	
	
Because	we	work	with	only	one	compound	in	one	phase,	here	we	drop	the	“1,”	“2,”	“A,”	and	
“W”	subscripts.			
	
Let	the	thin	film	have	thickness	L.		Solute	molecules	are	present	with	concentration	C(z),	
where	z	is	the	distance	from	the	interface.		At	all	z	>	L,	the	phase	is	assumed	to	be	turbulent	
and	well	mixed;	the	eddy	diffusivity	is	effectively	infinite;	𝐶(𝑧) = 	𝐶'.		At	all	z	<	L,	the	film	is	
assumed	to	be	stagnant;	solute	transport	occurs	only	by	molecular	diffusion;	the	eddy	
diffusivity	equals	the	molecular	diffusivity,	D.	
	
The	concentration	of	the	solute	obeys	the	steady-state	diffusion	equation		
 

𝑑)𝐶
𝑑𝑧) = 0, 𝑧	 ∈ (0, 𝐿) 

 
with	the	boundary	conditions	𝐶(𝑧 = 0) = 	𝐶., 𝐶(𝑧	 ≥ 𝐿) = 𝐶'.		The	solution	to	the	
diffusion	equation	is		

𝐶(𝑧) = 𝐶. +
(𝐶' − 𝐶.)𝑧

𝐿  

And	the	flux	at	any	𝑧 ∈ (0, 𝐿)	is		

𝐹(𝑧) = −𝐷
𝑑𝐶
𝑑𝑧 = −

(𝐶' − 𝐶.)	𝐷
𝐿  
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S1.2.		Two	reacting	compounds	in	one	phase	prior	to	the	imposition	of	boundary	conditions	
 
Hoover	and	Berkshire	[1969]	treated	this	case,	but	with	the	assumption	that	the	two	
species	have	the	same	molecular	diffusivity.		This	assumption	is	permissible	because	
diffusivities	for	small	compounds	lie	in	a	rather	narrow	range.		Nevertheless,	for	more	
generality,	I	assume	arbitrary	diffusivities.		With	two	compounds,	the	subscripts	“1”	and	“2”	
are	necessary.		
	
The	case	of	two	interacting	compounds	obeys	the	coupled	steady-state	reaction-diffusion	
equations:	
 

𝐷4
𝑑)𝐶4
𝑑𝑧) + 𝑘)4𝐶) −	𝑘4)𝐶4 = 0 

 

𝐷)
𝑑)𝐶)
𝑑𝑧) − 𝑘)4𝐶) +	𝑘4)𝐶4 = 0 

 
C1(z)	and	C2(z)	are	the	concentrations	of	compounds	1	and	2	at	position	z;	D1	and	D2	are	
their	diffusivities;	k12	and	k21	are	reaction	rates	for	the	two	reactions	
 

[1] → [2], 𝑘4) 
 

[2] → [1], 𝑘)4 
	
The	reaction-diffusion	equations	are	to	be	solved	over	the	domain	𝑧 ∈ (0, 𝐿).	
	
The	chemical	equilibrium	constant	is	

𝐾 =
𝑘4)
𝑘)4

 

 
Write	

𝑄 =
𝐷4
𝐷)

 

 
as	the	ratio	of	the	two	diffusivities.		The	following	two	quantities	have	units	of	distance:	
 

𝑑4 = =
𝐷4
𝑘4)

>
4/)

, 𝑑) = =
𝐷)
𝑘)4

>
4/)

 

 
They	establish	the	length	scale	over	which	species	1	or	2	diffuse	before	reacting.		The	
combined	distance	
 

𝑑 = (𝑑4@) + 𝑑)@))@4/) 
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appears	in	the	solution	to	the	reaction-diffusion	equations.		Obviously,	d	is	always	smaller	
than	the	lesser	of	d1	and	d2,	but	never	more	than	by	a	factor	of	about	0.7.		When	d1	and	d2	
differ	by	an	order	of	magnitude	or	more,	then	d	is	very	close	to	the	lesser	of	d1	and	d2.		
Therefore,	d	acts	as	a	reaction	distance	for	both	compounds	in	the	film.			
	
The	general	solution,	obtained	for	example	using	Laplace	transforms,	is	given	by	
 

𝐶4(𝑧) = 𝛽 +
𝛾𝑧
𝑑 + 𝛿 cosh H

𝑧
𝑑I + 𝜀 sinh H

𝑧
𝑑I 

 

𝐶)(𝑧) = 𝐾𝛽 +
𝐾𝛾𝑧
𝑑 − 𝑄𝛿 cosh H

𝑧
𝑑I − 𝑄𝜀 sinh H

𝑧
𝑑I 

 
At	this	stage,	b,	g,	d,	and	e	are	arbitrary	coefficients	whose	values	become	fixed	when	we	
impose	boundary	conditions.		The	terms	linear	in	z	have	been	normalized	by	a	factor	𝑑@4	so	
that	b,	g,	d,	and	e	all	have	units	of	concentration.		The	fluxes	of	compounds	1	and	2	are	
 

𝐹4(𝑧) = 	−𝐷4
𝜕𝐶4
𝜕𝑧 = −

𝐷4
𝑑 N𝛾 + 𝛿 sinh H

𝑧
𝑑I + 𝜀 cosh H

𝑧
𝑑IO 

𝐹)(𝑧) = −
𝐷)
𝑑 N𝐾𝛾 − 𝑄𝛿 sinh H

𝑧
𝑑I − 𝑄𝜀 cosh H

𝑧
𝑑IO 

 
The	net	flux	at	any	z	is	independent	of	z	as	expected:	

𝐹P = 𝐹4(𝑧) + 𝐹)(𝑧) = −(𝐷4 + 𝐷)𝐾)	
𝛾
𝑑 = −(1 + 𝐾𝑄)

𝛾𝐷4
𝑑  

 
The	individual	fluxes	through	z	=	0	are	
 

𝐹4(0) = 	−
𝐷4
𝑑
(𝛾 + 𝜀) 

𝐹)(0) = 	−
𝐷)
𝑑
(𝐾𝛾 − 𝑄𝜀) 

 
 
S1.3.		Two	compounds	in	one	phase;	case	N	boundary	conditions	(compound	[2]	does	not	pass	
through	the	interface)	
 
The	far-field	concentrations,	or	concentrations	at	a	large	distance	from	the	boundary,	are	
assumed	to	be	the	constants	𝐶4'	and	𝐶)'.		Boundary	conditions	on	the	diffusion	equations	
are	
 

𝐶4(0) = 𝐶4.,
𝑑𝐶)
𝑑𝑧 QRS.

= 0, 				𝐶4(𝐿) = 𝐶4', 𝐶)(𝐿) = 𝐶)' 

 
A	zero-slope,	zero-flux	reflecting	boundary	condition	is	applied	on	C2	at	z	=	0	since	[2]	
molecules	are	unable	to	cross	the	boundary.		In	this	case,	the	four	boundary	conditions	lead	
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to	the	following	expressions	for	the	coefficients.		We	add	the	subscript	N	(no-pass)	to	
distinguish	these	values	from	those	of	case	P	(pass)	for	which	[2]	can	pass	through	the	
interface.		L	=	L/d	is	a	reduced	film	thickness.				

𝛿T = −(𝐶4' − 𝐶4.)	=1 +
𝑄Λ

𝐾 tanhΛ>
@4

 

 

𝜀T =
−𝛿T
tanhΛ 

 
𝛽T = 𝐶4. − 𝛿T 

 

𝛾T =
𝑄𝜀T
𝐾  

 
The	general	solutions	have	the	appearance	of	asymptotic	divergence:		For	z	>>	d,	the	cosh	
and	sinh	functions	are	exponentially	large	in	z.		However,	it	turns	out	that	the	relationship	
𝛿T = −	𝜀T 	tanhΛ	is	fine-tuned	to	prevent	any	“catastrophes.”		We	can	combine	the	terms	
in	cosh	and	sinh	to	produce	these	expressions:	
 

𝐶4(𝑧) = 𝛽T + 𝛾T𝜆 + 𝛿T𝑔(𝜆, Λ) 
 

𝐶)(𝑧) = 𝐾𝛽T + 𝐾𝛾T𝜆 − 𝑄𝛿T𝑔(𝜆, Λ) 
 
where	

𝑔(𝜆, Λ) = cosh 𝜆 −	
sinh 𝜆
tanhΛ =

sinh(Λ − 𝜆)
sinhΛ =

𝑒@[ − 𝑒@()\@[)

1 − 𝑒@)\  

 
and	where	l	represents	the	reduced	distance	𝜆 = 𝑧 𝑑⁄ 	and	where	Λ = 𝐿 𝑑.⁄ 		The	range	of	l	
is	𝜆 ∈ [0, Λ].		Figure	S1	displays	the	g	function	for	different	values	of	L.		In	contrast	to	the	
single-compound	result,	the	C1	and	C2	functions	can	be	curved,	with	all	curvature	entering	
through	the	g	function.		For	any	L	less	than	about	1,	we	have	𝑔 ≅ 1 − 𝜆/Λ	and	negligible	
curvature.		Of	the	several	equivalent	expressions	given	above	for	𝑔(𝜆, Λ),	the	one	involving	
exponential	functions	has	the	best	numerical	stability.			
 
The	fluxes	through	z	=	0	are:	
 

𝐹4 = −
𝐷4(𝑄 + 𝐾)

(𝐿𝑄 + 𝐾𝑑 tanhΛ)
(𝐶4' − 𝐶4.), 𝐹) = 0 
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Figure	S1.		Plots	of	the	𝑔(𝜆, Λ)	functions	for	various	values	of	L.	
 
 
 
 
S1.4.		Two	compounds	in	one	phase;	case	P	boundary	conditions		(compound	[2]	passes	
through	the	interface).	
 
The	far-field	concentrations,	or	concentrations	at	a	large	distance	from	the	boundary,	are	
assumed	to	be	the	constants	𝐶4'	and	𝐶)'.			Boundary	conditions	on	the	diffusion	equations	
are	
 

𝐶4(0) = 	𝐶4., 𝐶)(0) = 	𝐶)., 𝐶4(𝐿) = 𝐶4', 𝐶)(𝐿) = 	𝐶)' 
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Species	1	and	2	are	assumed	to	be	in	chemical	equilibrium	at	all	z	>	L:			
 

𝐶)' = 𝐾𝐶4' 
 
The	coefficients	b,	g,	d,	and	e	are	selected	to	satisfy	the	four	boundary	conditions,	and	we	
use	the	subscript	P	to	distinguish	from	Case	N:	
 

𝛽` =
𝑄𝐶4. + 𝐶).
𝑄 + 𝐾  

 

𝛿` =
𝐾𝐶4. − 𝐶).
𝑄 + 𝐾  

 

𝜀` =
−𝛿`

tanh(Λ) 

 

𝛾` =
1
Λ
[𝐶4' − 𝐶4. +	𝛿`] 

 
The	same	relationship	between	d	and	e	is	obtained,	meaning	that	asymptotic	divergence	is	
avoided	and	that	the	sinh	and	cosh	terms	can	again	be	grouped	into	the	g	function:		
 

𝐶4(𝑧) = 	𝛽` + 𝛾`𝜆 + 𝛿`𝑔(𝜆, Λ) 
 

𝐶)(𝑧) = 𝐾𝛽` + 𝐾𝛾`𝜆 − 𝑄𝛿`𝑔(𝜆, Λ) 
 
The	fluxes	through	z	=	0,	in	all	Case-P	situations,	are		
 

𝐹4(0) = −
𝐷4
𝑑
(𝛾` + 𝜀`) = −

𝐷4
𝐿
[(𝐶4' − 𝐶4.) + 𝑍𝛿`] 

𝐹)(0) = −
𝐷)
𝑑
(𝐾𝛾` − 𝑄𝜀`) = −

𝐷)
𝐿 bc𝐾

(𝐶4' − 𝐶4.)d + 𝑌𝛿`f 
 
where	
 

𝑍 = 1 −
Λ

tanhΛ , 𝑌 = 𝐾 +
𝑄Λ

tanhΛ 
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S2.		Two-phase	solutions	
 
To	construct	two-phase	solutions,	we	have	to	patch	together	two	of	the	one-phase	
solutions	given	above	in	Sections	S1.1	through	S1.4.		There	are	now	two	z-coordinates:		zA	
and	zW,	each	measuring	distance	into	the	phase	away	from	the	interface	and	pointing	in	
opposite	directions.		Subscripts	“A”	and	“W,”	representing	air-	and	water-phase	properties,	
must	now	appear	on	all	variables.		Since	zW	and	zA	point	in	opposite	directions,	the	sign	
convention	for	the	flux	must	be	redefined:	
		

𝐹g(𝑛𝑒𝑤	𝑐𝑜𝑛𝑣𝑒𝑛𝑡𝑖𝑜𝑛) = −𝐹g	(𝑜𝑙𝑑	𝑐𝑜𝑛𝑣𝑒𝑛𝑡𝑖𝑜𝑛)	
𝐹p	(𝑛𝑒𝑤	𝑐𝑜𝑛𝑣𝑒𝑛𝑡𝑖𝑜𝑛) = 	𝐹p(𝑜𝑙𝑑	𝑐𝑜𝑛𝑣𝑒𝑛𝑡𝑖𝑜𝑛)	

	
Now,	positive	flux	flows	from	the	water	to	the	air	phase.	
 
When	two	phases	are	patched	together	at	steady	state,	the	fluxes	at	the	interface	must	
match.		This	leads	to	a	reduction	in	the	number	of	independent	variables.		For	example,	
when	we	create	model	A4	from	two	of	the	case-P	solutions,	all	results	are	initially	given	in	
terms	of	the	eight	concentrations:		𝐶4'g, 𝐶4'p, 𝐶)'g, 𝐶)'p, 𝐶4.g, 𝐶4.p, 𝐶).g, 𝐶).p.		Only	four	
of	these	are	independent,	because	of	the	four	conditions	listed	at	the	bottom	of	Table	2	in	
the	main	document.		Matching	fluxes	adds	two	more	constraints:	
 

𝐹4g(0) = 𝐹4p(0), 𝐹)g(0) = 	𝐹)p(0)	 
 
and	we	are	left	with	only	two	independent	concentration	variables.		As	independent	
concentration	variables,	we	will	take	the	two	far-field	concentrations	of	compound	1,	
𝐶4'g	and	𝐶4'p.		The	same	is	true	for	models	A1,	A2,	and	A3;	we	are	always	left	with	two	
independent	concentration	variables	which	we	choose	to	be	𝐶4'g	and	𝐶4'p.	
 
To	facilitate	comparison	between	models,	it	is	useful	to	introduce	the	following	z-notation.   
 

𝜁p =
𝐷)p
𝐿p

, 𝜁g =
𝐷)g
𝐿g

, 𝑄p𝜁p =
𝐷4p
𝐿p

, 𝑄g𝜁g =
𝐷4g
𝐿g

	 

S2.1.		Model	A1.	
 
Model	A1	was	originally	developed	by	Whitman	(1923).		Figure	S2	displays	a	schematic	of	
the	solution.	
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Figure	S2.		Schematic	of	the	concentration	profiles	predicted	by	model	A1.	
 
 
 
To	form	model	A1,	patch	together	two	of	the	one-compound-one-phase	solutions	given	in	
Section	S1.1.		This	value	of	C0W	leads	to	flux	matching:	
 

𝐶.g =
𝐶'p𝑘p + 𝐶'g𝑘g

𝐻𝑘p + 𝑘g
 

 
where		

𝑘g =
𝐷g
𝐿g

, 𝑘p =
𝐷p
𝐿p
, 𝐶.p = 𝐻	𝐶.g 
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The	expression	for	the	flux	is	

𝐹 =
𝑘g𝑘p

(𝐻𝑘p + 𝑘g)
(𝐻𝐶'g − 𝐶'p) 

 
The	concentration	profiles	are	linear	in	zA	and	zW	and	are	given	by	the	straight-line	
equations	in	Section	S1.1.		The	flux	vanishes	when	𝐻	𝐶'g = 𝐶'p.		Then	the	concentrations	
in	the	two	phases	are	completely	uniform	and	in	equilibrium.		To	facilitate	comparison	
between	models,	we	take		
 

𝑚 =
𝐶'p
𝐻𝐶'g

 

and	rewrite	the	flux	expression	as	
 

𝐹 = 𝑓p4𝐶'g(1 − 𝑚), where		𝑓p4 =
𝑘g𝐻𝑘p
𝑘g + 𝐻𝑘p

 

 
fA1	is	one	possible	definition	of	the	mass	transfer	coefficient.		The	subscript	“A1”	indicates	
that	this	expression	applies	to	model	A1.		The	parameter	m	tunes	the	flow	between	the	two	
phases.		When	m	<	1,	the	atmospheric	concentration	is	in	deficit,	and	net	flow	is	from	water	
to	air.		When	m	>	1,	the	water	concentration	is	in	deficit,	and	net	flow	is	from	air	to	water.		
When	m	=	1,	the	concentrations	in	the	two	phases	are	in	physical	equilibrium.		Observe	that	
f	depends	only	on	system	variables.	
 
Air-side	control	occurs	when	the	term	𝑘g ≫ 𝐻	𝑘p.		Then	fA1	=	H	kA.		Water-side	control	
occurs	when	the	term	𝑘g ≪ 𝐻	𝑘p.		Then	fA1	=	kW.	
 
 
S2.2		Model	A1E	
 
The	main	document	describes	how	model	A1E	is	developed	from	model	A1,	with	the	result	
that	
	

𝑓p4{ =
𝜁{g𝜁{p

(𝐻{𝜁{p + 𝜁{g)
𝐻4(1 + 𝐾p)	

	
or	

1
𝑓p4{

=
1

(𝑄p + 𝐾p)𝐻4𝜁p
+

1
(𝑄g + 𝐾g)𝜁g

	

	
A	more	natural	definition	of	the	mass-transfer	coefficient	would	define	it	relative	to	
𝐶4'g + 𝐶)'g ,	but	the	above	form	is	appropriate	for	comparison	with	the	other	models.	
 
The	following	hold	for	model	A1E	in	cases	of	either	water-	or	air-side	control:	
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𝑓p4{ → 𝜁p𝐻4(𝑄p + 𝐾p)							(air) 
𝑓p4{ → 𝜁g(𝑄g + 𝐾g)							(water) 

 
S2.3.		Model	A2.	
 
To	form	model	A2	patch	together	a	one-compound	solution	for	the	air	phase	and	a	case-N-
two-compound	solution	for	the	water	phase,	selecting	the	value	of	C10W	that	leads	to	flux	
matching.		The	development	parallels	that	of	model	A1,	except	that	kW	is	redefined:	
 

𝑘g = 𝐸g =
𝐷4g
𝐿g

> = 𝐸g𝑄g𝜁g 

 

𝑘p = =
𝐷4p
𝐿p
> = 𝑄p𝜁p 

 

𝐸g = 	
Λg(𝑄g + 𝐾g)

Λg𝑄g + 𝐾g tanhΛg
 

 
The	flux-matching	condition	and	the	expression	for	the	flux	read	the	same	as	for	model	A1	
but	with	redefined	kA	and	kW:	
 

𝐶4.g =
𝐶4'p𝑘p + 𝐶4'g𝑘g

𝐻𝑘p + 𝑘g
 

 
and	the	flux	becomes	

𝐹 = 𝑓p)𝐶4'g(1 − 𝑚) 
 
with	

𝑓p) =
𝑘g𝐻4𝑘p
𝑘g + 𝐻4𝑘p

		 

 
1
𝑓p)

=
1

𝐻4𝑄p𝜁p
+

1
𝐸g𝑄g𝜁g

 

 
For	any	positive	x,	tanh	x	<	x.		It	follows	that	EW	>	1.		For	this	reason,	EW	is	sometimes	called	
the	enhancement	factor;	it	enhances	the	value	of	kW.			
	
 
S2.4.		Model	A3.	
 
The	derivation	for	Model	A3	parallels	that	of	A2,	except	that	we	now	have	two	
enhancement	factors:	
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𝑘g = 𝐸g =
𝐷4g
𝐿g

> = 	𝐸g𝑄g𝜁g	

	

𝑘p = 𝐸p =
𝐷4p
𝐿p
> = 	𝐸p𝑄p𝜁p	

	
	

𝐸g = 	
Λg(𝑄g + 𝐾g)

Λg𝑄g + 𝐾g tanhΛg
	

	
	

𝐸p = 	
Λp(𝑄p + 𝐾p)

Λp𝑄p + 𝐾p tanhΛp
	

	
	

𝐹 = 𝑓p}𝐶4'g(1 − 𝑚)	
	
	

𝑓p} =
𝑘g𝐻4𝑘p
𝑘g + 𝐻4𝑘p

		

	
or	

1
𝑓p}

=
1

𝐻4𝐸p𝑄p𝜁p
+

1
𝐸g𝑄g𝜁g

	

 
 
S2.5.		Rank-2	matrix	identities	
	
As	will	be	seen	in	Section	2.6,	the	exact	computational	algorithm	for	model	A4	involves	
rank-2	matrices.		In	this	section,	I	lay	out	a	number	of	helpful	matrix	identities.		They	are	
given	here	without	proof,	but	at	rank-2,	they	can	all	be	easily	verified	by	direct	
computation.		The	names	of	all	matrices	and	vectors	appear	in	boldface.	
	
Adjugate	of	a	2x2	matrix	
	

adj N
𝑎44 𝑎4)
𝑎)4 𝑎))O = N

𝑎)) −𝑎4)
−𝑎)4 𝑎44 O	

	
Inverse	of	a	2x2	matrix	
	

𝐀@4 =
1

det	(𝐀) 	adj	(𝐀)	

	
Derivative	of	an	inverse	matrix	
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𝜕𝐌@4

𝜕𝑥 = −𝐌@4 ∙
𝜕𝐌
𝜕𝑥 ∙ 𝐌

@4 

 
Many	of	the	matrices	used	in	model	A4	are	outer	products	of	a	column	and	a	row.		All	of	the	
following	identities	apply	to	such	matrices.		Let	C1,	C2,	etc.,	represent	arbitrary	2x1	columns	
and	R1,	R2,	etc.,	represent	arbitrary	1x2	rows.		⊗	signifies	the	matrix	outer	product.	
	
The	determinant	of	an	arbitrary	outer	product.	
 

det(𝐂4 ⊗ 𝐑4) = 0 
 
The	determinant	of	a	sum	of	two	outer	products.		(This	is	a	special	case	of	the	matrix	
determinant	lemma,	cf.	Wikipedia.)	
 

det(𝐂4 ⊗ 𝐑4 + 𝐂) ⊗ 𝐑))	 
 

= 𝐑4 ∙ adj(𝐂) ⊗ 𝐑)) ∙ 𝐂4 
 

= 𝐑) ∙ adj(𝐂4 ⊗ 𝐑4) ∙ 𝐂) 
 
The	following	relationships	hold	for	an	arbitrary	row	R1	and	an	arbitrary	column	C1:	
 

𝐑4 ∙ adj(𝐂4 ⊗ 𝐑4) = 0 
 

adj(𝐂4 ⊗ 𝐑4) ∙ 𝐂4 = 0 
 
The	above	forms	simplify	further:	
	

𝐑4 ∙ adj(𝐂4 ⊗ 𝐑)) ∙ 𝐂) = 	 (𝐑4 × 𝐑)) ∙ (𝐂) × 𝐂4)	
	
Before	writing	the	previous	expression,	it	was	important	to	distinguish	between	row	and	
column	vectors.		But	now	I	introduce	cross	products	of	two	rows	or	of	two	columns.		In	this	
context,	rows	and	columns	are	treated	as	simple	2-vectors	in	the	plane,	and	×	represents	
their	cross	product.		Since	they	are	interpreted	as	2-vectors,	their	cross	products	are	all	
normal	to	the	plane,	and	the	dot	products	are	simple	products	of	the	magnitudes.			
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S2.6.		Model	A4.		Computational	algorithm.	
 
We	now	patch	together	two	case-P	solutions.		The	result	is	much	more	algebraically	
complex	than	the	previous	models.		Table	S1	contains	a	self-contained,	exact	algorithm	for	
calculating	the	fluxes.		Remember	that	the	input	variables	must	satisfy	the	following	
constraints:	

𝐾p =
𝑘4)p
𝑘)4p

, 𝐾g =
𝑘4)g
𝑘)4g

	

	
𝐻)𝐾g = 	𝐻4𝐾p	

	
The	computation	proceeds	using	rank-2	matrices.		Table	S2	defines	an	extended	list	of	
variables,	with	units,	useful	for	(1)	calculating	concentration	profiles,	(2)	calculating	
individual	fluxes	of	the	two	compounds,	or	(3)	understanding	the	derivation	of	model	A4.		
Following	the	tables,	I	sketch	out	the	derivation.			
	
Two	separate	expressions	appear	for	fA4:	
 

𝑓p� = 𝜁g(𝑄g + 𝐾g +𝐖 ∙ 𝛕.) 
 

𝑓p� = −𝜁p𝐀 ∙ 𝛕. 
 
They	are	exactly	equal,	and	either	may	be	used	to	calculate	the	flux.			
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Table	S1.		Algorithm	to	calculate	fA4.	
1.		Inputs	to	the	model	are	these	system	variables:	

𝐷4p, 𝐷)p, 𝐷4g, 𝐷)g, 𝑘4)p, 𝑘)4p, 𝑘4)g, 𝑘)4g, 𝐻4, 𝐻), 𝐿p, 𝐿g 	
See	the	main	text	for	definitions,	etc.	
2.		Calculate	all	the	following	scalars:	
	

𝐾p =
𝑘4)p
𝑘)4p

, 	𝐾g =
𝑘4)g
𝑘)4g

, 𝑄p =
𝐷4p
𝐷)p

, 𝑄g =
𝐷4g
𝐷)g

	

𝐽p = (𝑄p + 𝐾p)@4, 			𝐽g = (𝑄g + 𝐾g)@4, 𝜁p =
𝐷)p
𝐿p

, 𝜁g =
𝐷)g
𝐿g

	

𝑑4p = =
𝐷4p
𝑘4)p

>
4/)

, 𝑑4g = =
𝐷4g
𝑘4)g

>
4/)

, 𝑑)p = =
𝐷)p
𝑘)4p

>
4/)

, 𝑑)g = =
𝐷)g
𝑘)4g

>
4/)

	

𝑑p = (𝑑4p@) + 𝑑)p@))@4/), 		𝑑g = (𝑑4g@) + 𝑑)g@) )@4/) 	

Λp =
𝐿p
𝑑p
	,					Λg =

𝐿g
𝑑g

	, 𝑥p =
Λp

tanhΛp
	,			𝑥g =

Λg
tanhΛg

	

	
3.		Calculate	these	rows	and	columns:	

𝐖 = [𝑄g, 1],			𝐀 = [𝐻4𝑄p, 𝐻)], 			𝐕p = 	 �
𝑄p
𝐾p
� , 𝐕g = �𝑄g𝐾g

� , 𝐒 = N−11 O 

 
𝚯g = [𝐾g,−1], 				𝚯p = 	𝐻)𝚯g	 

 
4.		Calculate	these	two	square	matrices:	
 

𝐌p = 𝜁p𝐽p[−𝐕p ⊗ 𝐀 + 𝑥p𝑄p	𝐒 ⊗ 𝚯p] 
 

𝐌g = 𝜁g𝐽g[−𝐕g ⊗𝐖+ 𝑥g𝑄g	𝐒⊗ 𝚯g] 
 
5.		Take	the	matrix	sum:	

𝐌 = 𝐌p +𝐌g 
 
6.		Invert	M	to	form	M–1	

	
7.		Calculate	the	column	vector	𝛕..		Of	several	expressions,	this	one	is	preferred:	
	

𝛕. = 	 𝜁g	𝐌@4 	 ∙ 𝐕g	
	
8.		Calculate	fA4	by	either	of	these	two	equivalent	formulas.			
	

𝑓p� = 𝜁g(𝑄g + 𝐾g +𝐖 ∙ 𝛕.)	
	

𝑓p� = −𝜁p𝐀 ∙ 𝛕.	
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Table	S2.		A	more	complete	list	of	variables.	 Units	

SYSTEM	VARIABLES	(inputs	to	algorithm)	
𝐷4p, 𝐷)p, 𝐷4g, 𝐷)g 	 cm)	s@4	

𝑘4)p, 𝑘)4p, 𝑘4)g, 𝑘)4g 	 s@4	

𝐻4,𝐻) 	 Dimensionless	

𝐿p, 𝐿g 	 cm	
CONCENTRATION	VARIABLES	

𝐶4'g, 𝐶4'p, 𝐶)'g, 𝐶)'p, 𝐶4.g, 𝐶4.p, 𝐶).g, 𝐶).p 	 mol	cm@}	
SCALARS	

	

𝑄p =
𝐷4p
𝐷)p

, 𝑄g =
𝐷4g
𝐷)g

	

	

Dimensionless	

	

𝐾p =
𝑘4)p
𝑘)4p

, 𝐾g =
𝑘4)g
𝑘)4g

	

	

Dimensionless	

	

𝜁p =
𝐷)p
𝐿p

, 𝜁g =
𝐷)g
𝐿g

, 𝑄p𝜁p =
𝐷4p
𝐿p

, 𝑄g𝜁g =
𝐷4g
𝐿g

		

	

cm	s@4	

	

𝑑4p = =
𝐷4p
𝑘4)p

>
4/)

		 𝑑4g = =
𝐷4g
𝑘4)g

>
4/)

	

	

𝑑)p = =
𝐷)p
𝑘)4p

>
4/)

		𝑑)g = =
𝐷)g
𝑘)4g

>
4/)

	

	
𝑑p = (𝑑4p@) + 𝑑)p@))@4/) 		𝑑g = (𝑑4g@) + 𝑑)g@) )@4/) 	

	

cm	

	

Λp =
𝐿p
𝑑p
	, Λg =

𝐿g
𝑑g

		 , 𝑍p = 1 −
Λp

tanhΛp
, 𝑍g = 1 −

Λg
tanhΛg

	

			

𝑌p = 𝐾p +
𝑄pΛp
tanhΛp

, 𝑌g = 𝐾g +
𝑄gΛg
tanhΛg

	

	

Dimensionless	
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Table	S2,	cont’d.		A	more	complete	list	of	variables.	 Units	
MORE	SCALARS	

	
𝐽p = (𝑄p + 𝐾p)@4, 			𝐽g = (𝑄g + 𝐾g)@4	

	

Dimensionless	

	
𝛿`p = 𝐽p(𝐾p𝐶4.p − 𝐶).p), 𝛿`g = 𝐽g(𝐾g𝐶4.g − 𝐶).g)	

	
𝛿`p = −𝐽p𝐶4'g	𝚯p ∙ 𝐓, 𝛿`g = −𝐽g𝐶4'g	𝚯g ∙ 𝐓	

	

mol	cm@}	

	

𝑥p =
Λp

tanhΛp
	,			𝑥g =

Λg
tanhΛg

	

	

Dimensionless	

	

𝑚 =
𝐶4'p

𝐻4𝐶4'g
	

	

Dimensionless	

First	component	of	T:	
𝑇4 = 𝐑 ∙ 𝐓	

	

Dimensionless	

	
Fluxes	of	individual	compounds:	

𝐹4p = −𝜁p𝑄p𝐶4'g	[𝐻4(𝑚 + 𝑇4) − 𝐽p𝑍p𝚯p ∙ 𝐓]	
𝐹)p = −𝜁p𝐶4'g[𝐾p(𝑚 + 𝑇4) − 𝑌p𝐽p𝚯p ∙ 𝐓]	
𝐹4g = 𝜁g𝑄g𝐶4'g(1 + 𝑇4 − 𝐽g𝑍g𝚯g ∙ 𝐓)	
𝐹)g = 𝜁g𝐶4'g[𝐾g(1 + 𝑇4) − 𝑌g𝐽g𝚯g ∙ 𝐓]	

	
Combined	fluxes:	

𝐹P = 𝐹4p + 𝐹)p = 𝐹4g + 𝐹)g	
𝐹P = 𝐶4'g(1 − 𝑚)𝑓p�	

	

mol	cm@)	s@4	

	
𝑓p� = 𝜁g(𝑄g + 𝐾g +𝐖 ∙ 𝛕.)	

	
𝑓p� = −𝜁p𝐀 ∙ 𝛕.	

	

cm	s@4	
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Table	S2,	cont’d.		A	more	complete	list	of	variables.	 Units	
ROW	VECTORS	

	
𝚯g = [𝐾g,−1], 				𝚯p = [𝐾p𝐻4, −𝐻)] = 	𝐻)𝚯g,	

	
𝐖 = [𝑄g, 1],			𝐀 = [𝐻4𝑄p, 𝐻)], 𝐑 = [1, 0]	

	

Dimensionless	

COLUMN	VECTORS	
	

𝐓 = 𝐌@4 ∙ 𝐕 ∙ N𝑚𝐻41 O	
	

𝛕. = 𝐌@4 ∙ 𝐕 ∙ 𝐕� = 	 𝜁g	𝐌@4 ∙ 𝐕g	
	

𝐕p = 	 �
𝑄p
𝐾p
�,			𝐕� = � 1𝐾g

� , 		𝐕� = N𝐻41 O 	= 𝐕� + 𝐻4𝐕� 	

	

𝐕� = N01O , 𝐕� = N10O,				𝐕g = �𝑄g𝐾g
� , 𝐒 = N−11 O	

	

Dimensionless	

SQUARE	MATRICES	
	

𝐌p = 𝜁p𝐽p[−𝐕p ⊗ 𝐀 + 𝑥p𝑄p	𝐒 ⊗ 𝚯p]	
	

𝐌g = 𝜁g𝐽g[−𝐕g ⊗𝐖+ 𝑥g𝑄g	𝐒⊗ 𝚯g]	
	

𝐌 = 𝐌p +𝐌g	
	

𝐕 = �𝑄p𝜁p 𝑄g𝜁g
𝐾p𝜁p 𝐾g𝜁g

�	

	

cm	s@4	

	
𝐌@4	
	

s	cm@4	

	
𝜕𝐌p

𝜕𝜁p
= 𝐽p[−𝐕p ⊗ 𝐀 + 𝑥p𝑄p	𝐒 ⊗ 𝚯p],

𝜕𝐌p

𝜕𝜁g
= 0	

	
	

𝜕𝐌g

𝜕𝜁p
= 0,

𝜕𝐌g

𝜕𝜁g
= 𝐽g[−𝐕g ⊗𝐖+ 𝑥g𝑄g	𝐒⊗ 𝚯g]	

	

dimensionless	
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S2.7.		Model	A4.		Derivation.	
 
The	starting	point	is	these	expressions	for	the	fluxes	through	the	boundary,	bundled	into	
column	vectors:	
	

�𝐹4𝐹)
�
p
= �−𝑄p𝜁p

[(𝐶4'p − 𝐶4.p) + 𝑍p𝛿`p]
−𝜁p[𝐾p(𝐶4'p − 𝐶4.p) + 𝑌p𝛿`p]

�	

	

�𝐹4𝐹)
�
g
= �𝜁g𝑄g

[(𝐶4'g − 𝐶4.g) + 𝑍g𝛿`g]
𝜁g[𝐾g(𝐶4'g − 𝐶4.g) + 𝑌g𝛿`g]

�	

	
	
The	boundary	conditions	at	LA	and	LW	are:	
	

�𝐶4'g𝐶)'g
� = 𝐶4'g �

1
𝐾g

�,				�𝐶4'p𝐶)'p
� = 𝐶4'p �

1
𝐾p
� 

 
The	expressions	above	remove	𝐶)'g	and	𝐶)'p	as	independent	variables,	leaving	for	the	
moment,	six	independent	concentration	variables.		If	we	assume	a	fast	equilibrium	for	
molecules	crossing	the	interface,	then	the	following	relation	holds:	
 

�𝐶4.p𝐶).p
� = �𝐻4𝐶4.g𝐻)𝐶).g

� 

	
This	removes	𝐶4.p	and	𝐶).p	as	independent	concentration	variables,	now	leaving	four	
independent	concentration	variables.		When	we	enforce	flux-matching	(this	time	for	both	
compounds	independently),	we	also	remove	𝐶4.g	and	𝐶).g .		The	only	remaining	
independent	concentration	variables	are	𝐶4'g	and	𝐶4'p.			
 
To	enforce	flux	matching,	we	treat	𝐶4'g	and	𝐶4'p	as	givens,	and	adjust	𝐶4.g	and	𝐶).g	to	
balance	the	flux	of	both	compounds.		The	flux-matching	condition	is	
 

�𝐹4𝐹)
�
g
= �𝐹4𝐹)

�
p

 

 
The	matrices	defined	in	Table	S2	permit	us	to	encode	the	flux-matching	condition	in	this	
way:	
	

−𝐕 ∙ �𝐶4'p𝐶4'g
� = 𝐌 ∙ �𝐶4.g𝐶).g

�	

	
We	also	introduce	the	notation	
 

𝑚 =
𝐶4'p

𝐻4𝐶4'g
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and	use	it	to	remove	𝐶4'p	in	favor	of	𝐶4'g	as	throughout.		Flux	matching	imposes	this	
expression	for	the	interfacial	concentrations:			
 

�𝐶4.g𝐶).g
� = −𝐌@4 ∙ 𝐕 ∙ �𝐶4'p𝐶4'g

� = −𝐶4'g	𝐓 

 
for	T	as	given	in	Table	S2.		The	expressions	in	the	table	for	fluxes	and	for	𝛿`g	and	𝛿`p	
follow.	
	
The	next	step	is	to	show	that	the	term	(1	–	m)	factors	out	of	the	flux	expressions.		We	define	
a	column	vector	𝛕	such	that		
 

𝐓 = −𝑚	𝐕� + 𝛕 
 
(This	expression	was	motivated	by	the	empirical	observation	during	numerical	calculations	
that	𝐓 ≈ −𝑚𝐕� 	in	many	cases	and	that	VB	is	orthogonal	to	QA	and	QW.)		All	expressions	are	
implicitly	linear	in	m.		Redefine	t	to	show	the	m-dependence	explicitly:		
 

𝛕 = 𝛕. + 𝑚𝛕4 
 
t,	t0,	and	t1	are	to	be	determined.		We	also	make	use	of	this	equation	which	is	easily	
verifiable:		

𝐌 ∙ 𝐕� = −	𝐕 ∙ 𝐕�  
 
Two	different	identities	can	now	be	written	for	𝐌 ∙ 𝐓:	
 

𝐌 ∙ 𝐓 = 𝐕 ∙ 𝐕� + 𝑚𝐻4𝐕 ∙ 𝐕�  
 

𝐌 ∙ 𝐓 = 𝐌 ∙ 𝛕. + 𝑚𝐌 ∙ 𝛕4 + 𝑚𝐕 ∙ 𝐕�  
 
Both	are	valid	at	arbitrary	m,	so	the	constant	terms	and	the	terms	in	m	are	both	
independently	equal.		The	following	expressions	all	follow.	
 

𝐌 ∙ 𝛕. = 𝐕 ∙ 𝐕� 
 

𝐌 ∙ 𝛕4 = 𝐻4𝐕 ∙ 𝐕� − 𝐕 ∙ 𝐕� = −𝐕 ∙ 𝐕� 
 

𝛕. = 𝐌@4 ∙ 𝐕 ∙ 𝐕� = 	 𝜁g𝐌@4 ∙ 𝑉g, 𝛕4 = −𝛕., 𝛕 = (1 − 𝑚)𝛕. 
 

	𝚯g ∙ 𝐓 = (1 − 𝑚)	𝚯g ∙ 𝛕𝟎, 𝚯p ∙ 𝐓 = (1 − 𝑚)𝐻)	𝚯g ∙ 𝛕𝟎, 		𝑇4 = −𝑚 + (1 −𝑚)𝜏.4 
 
When	these	expressions	are	inserted	into	the	flux	equations,	the	term	(1	–	m)	factors	out.   
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In	most	instances,	we	are	only	interested	in	the	total	flux,	F1	+	F2	=	Ft,	and	the	equations	for	
the	sum	Ft	turn	out	to	be	simpler	than	those	for	either	F1	or	F2.		We	obtain	the	expressions	
 

𝐹Pg = 𝐶4'g(1 − 𝑚)𝑓Pg,			𝐹Pp = 𝐶4'g(1 − 𝑚)𝑓Pp 
 

𝑓Pg = 𝜁g(𝑄g + 𝐾g +𝐖 ∙ 𝛕.), 𝑓Pp = −𝜁p	𝐀 ∙ 𝛕. 
 
Now	either	ftW	or	ftA	can	also	be	written	fA4.	
 
S2.8.		Model	A4.		Air-	or	water-side	control.	
 
Model	A4	also	becomes	air-	or	water-side	dominant	when	crossing	one	barrier	or	the	other	
is	the	rate-limiting	step.		I	use	the	following	two	derivatives		
	

𝑅p =
𝜕 ln 𝑓p�
𝜕 ln 𝜁p

= −
𝜁g
𝑓p�

(𝐖 ∙ 𝐌@4 ∙ 𝐌p ∙ 𝛕.) = 1 +
𝜁p
𝑓p�

(𝐀 ∙ 𝐌@4 ∙ 𝐌p ∙ 𝛕.)	

	

𝑅g =
𝜕 ln 𝑓p�
𝜕 ln 𝜁g

= 1 +
𝜁g
𝑓p�

(𝐖 ∙ 𝛕. −𝐖 ∙ 𝐌@4 ∙ 𝐌g ∙ 𝛕.) = 1 +
𝜁p
𝑓p�

(𝐀 ∙ 𝐌@4 ∙ 𝐌g ∙ 𝛕.)	

	
to	indicate	the	extent	of	air	or	water	dominance.		(The	two	different	versions	of	fA4	provide	
two	versions	each	of	RA	and	RW.)		Write	fA4	as	an	explicit	function	of	zA	and	zW.		Then	
 

𝑓p� = 𝑓(𝜁p, 𝜁g) = 𝜆@4𝑓(𝜆𝜁p, 𝜆𝜁g) 
 
Where	l	is	an	arbitrary	scale	factor.		We	know	this	because	fA4	has	units	length/time	and	
that	zA	and	zW	are	the	only	variables	from	which	units	of	length/time	can	enter	the	final	
result.		We	can	always	think	of	l	as	representing	a	change	of	units,	in	which	case	the	above	
expression	becomes	obvious.		It	is	not	hard	to	show	that	any	function	with	this	property	
obeys	
	

𝑅p + 𝑅g = 1	
	
RA	and	RW	are	the	slopes	of	fA4	vs.	zA	and	zW	on	a	log-log	plot.		Therefore,	RA	near	1	implies	
RW	near	0	and	air-side	control,	and	vice	versa.		When	neither	is	near	1,	the	system	exhibits	
no	clear	dominance	of	one	side	over	the	other.	
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S3.		Numerical	properties	of	model	A4.	
 
I	have	performed	Monte	Carlo	calculations	to	study	model	A4.		All	results	given	below	were	
obtained	using	system	variables	distributed	according	to	Table	S3.			
 
 
Table	S3.		Distribution	of	variables	employed	for	studying	numerical	properties	of	model	
A4.		H1	through	k21A	were	selected	from	the	indicated	log-normal	distributions.		KW,	k12A,	
and	H2	were	then	assigned	as	shown.		

Variable	 µ	 s	
H1	 0.0	 2.0	

𝐷4g/(cm)	s@4)	 0.0	 2.0	
𝐷)g/(cm)	s@4)	 0.0	 2.0	
𝐷4p/(cm)	s@4)	 0.0	 2.0	
𝐷)p/(cm)	s@4)	 0.0	 2.0	
𝑘4)g/𝑠@4	 0.0	 2.0	
𝑘)4g/𝑠@4	 0.0	 2.0	

KA	 0.0	 2.0	
LW/cm	 0.0	 2.0	
LA/cm	 0.0	 2.0	
𝑘)4p/s@4	 0.0	 2.0	
KW	 𝑘4)g

𝑘)4g
	

𝑘4)p/s@4	 𝐾p	𝑘)4p	
H2	
	

𝐻4𝐾p
𝐾g

	

 
S3.1.		Numerical	stability	of	model	A4.	
 
The	equations	given	in	tables	S1	and	S2	are	exact	for	model	A4.		However,	in	practice	I	have	
found	that	numerical	calculations	can	be	subject	to	roundoff	errors	that	commonly	
accumulate	in	the	sum	of	two	quantities	of	nearly	equal	magnitude	but	opposite	sign.		This	
usually	happens	here	in	one	of	two	ways:		
 
(1)		det(M)	is	near	zero.		(One	way	this	happens	is	when	M,	written	exactly	as	the	sum	of	
four	outer	products,	is	dominated	by	only	one	of	the	four.		As	pointed	out	in	Section	S2.5,	
the	determinant	of	an	outer	product	is	zero.)	
 
(2)		W	or	A	are	occasionally	nearly	orthogonal	to	T	or	to	t0,	so	the	dot	products	such	as	𝐖 ∙
𝐓, 𝐀 ∙ 𝐓, 𝐖 ∙ 𝛕𝟎, and	𝐀 ∙ 𝛕𝟎	are	near	zero.	
 
To	understand	the	severity	of	this	problem,	I	coded	the	calculations	to	estimate	significant	
figures	at	each	step	in	the	calculation.		All	computations	were	performed	in	double-
precision	arithmetic,	which	allows	for	a	nominal	15-digit	accuracy.		So,	at	the	beginning	of	
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the	calculation,	all	variables	were	assumed	to	have	15	significant	figures,	and	then	the	
standard	rules	for	significant	figure	estimation	were	followed.		Fortunately,	the	algorithm	
provides	two	separate	equations	for	fA4.		The	code	calculates	both	and	returns	the	one	with	
the	better	accuracy.		As	shown	in	Figure	S3,	there	can	be	considerable	loss	of	accuracy	in	
the	calculation	of	fA4,	but	at	least	one	of	the	calculations	always	has	10-figure	accuracy	or	
better.	
 

 
Figure	S3.		Accuracy	of	the	calculation	of	fA4.		fA4	can	be	calculated	via	two	separate	
expressions.		Blue	and	red	bars	respectively	represent	the	probability	that	the	less	accurate	
and	more	accurate	calculation	has	a	given	number	of	significant	figures.	
 
 
S3.2.		Model	A4	simplifications	
	
The	A4	algorithm	is	very	complicated,	but	there	are	limiting	cases	in	which	the	matrix	
identities	given	in	Section	2.5	produce	simplifications.		The	complete	M	matrix	is	a	sum	of	
four	outer-product	matrices.		Interesting	simplifications	occur	when	only	two	of	the	four	
outer	products	are	important.		(When	we	approximate	M	with	only	one	of	the	four	outer	
products,	the	resulting	M	is	non-invertible.)		Now	consider	two	of	these	cases:	
 
Air-side	control.		(MA	irrelevant	relative	to	MW.)	
 

𝐌 ≅ 𝐌g 
 

𝐌 ≅ 𝜁g𝐽g[−𝐕g ⊗𝐖+ 𝑥g𝑄g	𝐒⊗ 𝚯g] 
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det𝐌	 ≅ 	−𝜁g) 𝐽g) 𝑥g𝑄g(𝐖 × 𝚯g) ∙ (𝐕g × 𝐒) = 	 𝜁g) 𝑥g𝑄g 

 
𝐌@4 ≅ 𝜁g@4𝑥g@4𝑄g@4[−𝐽g	adj	(𝐕g ⊗𝐖) + 𝐽g𝑥g𝑄g	adj	(𝐒 ⊗ 𝚯g)] 

 
𝛕. ≅ 𝜁g𝐌@4 ∙ 𝐕g 	≅ 𝐽g	adj	(𝐒 ⊗ 𝚯g) ∙ 𝐕g 

 
𝑓p� = −𝜁p𝐀 ∙ 𝛕. ≅ −𝜁p𝐽g	𝐀 ∙ adj(𝐒 ⊗ 𝚯g) ∙ 𝐕g = −𝜁p𝐽g(𝐀 × 𝚯g) ∙ (𝑽g × 𝐒) 

 
𝑓p� ≅ 𝜁p𝐻4(𝑄p + 𝐾p) 

 
Water-side	control.		(MW	irrelevant	relative	to	MA).	
 

𝐌 ≅ 𝐌p 
 

𝐌 ≅ 𝜁p𝐽p[−𝐕p ⊗ 𝐀 + 𝑥p𝑄p	𝐒 ⊗ 𝚯p] 
 

det𝐌	 ≅ 	−𝜁p)𝐽p)𝑥p𝑄p(𝐀 × 𝚯p) ∙ (𝐕p × 𝐒) = 	 𝜁p)𝑥p𝑄p𝐻4𝐻) 
 

𝐌@4 ≅ 𝜁p@4𝑥p@4𝑄p@4𝐻4@4𝐻)@4𝐽p[−	adj	(𝐕p ⊗ 𝐀) + 𝑥p𝑄p	adj	(𝐒 ⊗ 𝚯p)] 
 

𝛕. ≅ (𝜁p𝑥p𝑄p𝐻4𝐻))@4𝜁g𝐽p[−	adj	(𝐕p ⊗ 𝐀) ∙ 𝐕g + 𝑥p𝑄p	adj	(𝐒 ⊗ 𝚯p) ∙ 𝐕g] 
 

𝑓p� = −𝜁p𝐀 ∙ 𝛕. ≅ −(𝐻4𝐻))@4𝜁g𝐽p(𝐀 × 𝚯p) ∙ (𝐕g × 𝐒) 
 

𝑓p� ≅ 𝜁g(𝑄g + 𝐾g) 
 
These	expressions	are	also	limiting	expressions	for	fA1E.		This	implies	that	there	are	
instances	for	which	𝑓p4� → 𝑓p�.		Figure	S4	displays	the	joint	probability	density	of	the	ratio	
fA1E/fA4	and	RA	from	the	Monte	Carlo	calculations	carried	out	using	inputs	distributed	as	in	
Table	S3.		The	following	results	have	been	obtained:	
 
(1)		fA1E	>	fA4	always,	but	there	are	limiting	processes	in	which	the	two	become	arbitrarily	
close.		The	red-toned	pixels	at	fA1E/fA4	@	1	are	examples	of	this	behavior.		Then,	the	much	
simpler	A1E	model	performs	as	well	as	model	A4.		But	there	are	also	conditions	for	which	
fA1E	>>	fA4.		About	15%	of	all	Monte	Carlo	samples	fell	off	the	scale	of	figure	S4,	with	fA1E/fA4	
>	31.6.	
	
(2)		The	tendency	for	fA1E	@	fA4	intensifies	when	the	system	is	under	either	air-	or	water-
barrier	control,	as	exemplified	by	the	two	swooping	red-toned	curves	converging	either	to	
(𝑅p, 𝑓p4� 𝑓p�⁄ ) = (0,1)	or	(1,1).		However,	𝑅p ≅ 0	or	1	is	no	guarantee	for	fA1E	@	fA4.		
Significant	probability	density	is	found	when	𝑅p ≅ 0	or	1	at	larger	values	of	fA1E/fA4.			
	
 
 



 24 

 
Figure	S4.		Joint	probability	density	of	model	instances	with	the	indicated	values	of	RA	and	
fA1E/fA4.	
 
Figure	S5	displays	the	joint	distribution	of	the	ratio	fA3/fA4	and	RA	in	the	Monte	Carlo	runs.		
We	find	𝑓p} < 	𝑓p�	always,	but	with	many	instances	of	𝑓p} 𝑓p� ≅ 1⁄ 	fa3/fa4.		Similar	
calculations,	not	shown,	indicate	that	𝑓p) < 𝑓p} < 𝑓p� < 𝑓p4� 	fa2	<	fa3	<	fa4	always,	with	the	
possibility	that	any	two	of	the	four	can	become	arbitrarily	close.				
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Figure	S5.		Joint	probability	of	model	instances	with	the	indicated	values	of	RA	and	fA3/fA4.	
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