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Abstract: This study evaluates the performance of the Weather Research and Forecasting Model
with Chemistry (WRF-Chem) for simulating biomass burning aerosol transport at high resolution
in the tropics using two different biomass burning emission inventories. Hourly, daily, and
monthly average PM10 dry mass concentrations at 5 km resolution—simulated separately using
the Brazilian Biomass Burning Emission Model (WRF-3BEM) and the Fire Inventory from NCAR
(WRF-FINN) and their averages (WRF-AVG) for 3 months from February to April—are evaluated,
using measurements from ground stations distributed in northern Thailand for 2014 and 2015. Results
show that WRF-3BEM agrees well with observations and performs much better than WRF-FINN and
WRF-AVG. WRF-3BEM simulations are almost unbiased, while those of WRF-FINN and WRF-AVG
are significantly overestimated due to significant overestimates of FINN emissions. WRF-3BEM and
the measured monthly average PM10 concentrations for all stations and both years are 89.22 and
87.20 µg m−3, respectively. The root mean squared error of WRF-3BEM simulated monthly average
PM10 concentrations is 72.00 and 47.01% less than those of WRF-FINN and WRF-AVG, respectively.
The correlation coefficient of WRF-3BEM simulated monthly PM10 concentrations and measurements
is 0.89. WRF-3BEM can provide useful biomass burning aerosol transport simulations for the northern
region of Thailand.

Keywords: air quality modeling; biomass burning emissions; biomass burning aerosol transport
simulation; northern region of Thailand; PM10 concentration; smoke haze episode

1. Introduction

Thailand is an agricultural country, where nearly half of all Thai workforce is in the agricultural
sector. Biomass burning is the main cause for the smoke haze episode covering a large area of the
northern region of Thailand in every cold season. Biomass burning in the region is mainly related to
agricultural activities. Open biomass burning occurs both before harvesting to facilitate harvesting
operations, and after harvesting to get rid of crop residues in preparation for a new planting season.
Most forest fires are mainly caused by human activities [1]. Burning crop residues in agricultural
industries—e.g., the sugarcane industry—is also a main cause of biomass burning.

Particulate matters (PMs), which are generated by biomass burning, severely degrade air quality
and greatly impact public health and visibility in many provinces in the northern region of Thailand.
During the smoke haze episodes, the number of patients with respiratory diseases was found to
significantly increase [2]. Due to the important impacts of PM to the public, the capability to provide
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three-dimensional maps of PM transport as a function of time is important for developing a more
detailed understanding and solving the problem.

Ground stations can provide measured PM dry mass concentrations at specific locations. However,
they are sparse and cannot provide detailed information about the PM spatial distribution and transport
and their sources. Even though satellite observations can provide information about the PM spatial
distribution and transport, they are often obstructed by clouds. A high-resolution numerical aerosol
transport simulation system is the only method that can provide three-dimensional maps of biomass
burning emissions of particles and trace gases as a function of time.

Several previous studies have employed numerical models for aerosol transport simulations [3–6].
Since different numerical models have been developed differently, they perform differently for different
areas. It has also been shown that employing the same numerical model for the same study area but
with different global biomass burning emissions inventories leads to different results [7,8]. Moreover,
atmospheric parameters related to aerosol transport are inhomogeneous, particularly for the area in
the tropics with complex terrain [9]. Since the northern region of Thailand is in the tropics and has
complex terrain, a numerical model that can provide biomass burning aerosol transport simulations at
high resolution is required.

Despite the crucial need of a useful high-resolution numerical aerosol transport simulation system
for the northern region of Thailand, only a few previous studies exist. Biomass burning aerosol
transport in the northern region of Thailand has been simulated using a system composed of the
next-generation Weather Research and Forecasting Model (WRF) and the California Puff Mesoscale
Dispersion Model (CALPUFF) [10]. However, the resolution of the simulations is only at 12 km, the
study area only covers a single province, i.e., Chiang Mai, the study period is only in a single month, i.e.,
March 2007, and only measurements from two ground stations are used for evaluating the simulated
daily average concentrations of particulate matters less than 10 µm (PM10). Biomass burning aerosol
transport in upper Southeast Asia, which includes the northern region of Thailand, in March 2012
simulated using a system composed of the Weather Research and Forecasting Model (WRF) and the
Community Multiscale Air Quality (CMAQ) model has been assessed in [8]. PM10 concentrations
simulated using two different global fire emission inventories, i.e., the Fire INventory from NCAR
(FINN) and the Global Fire Assimilation System (GFAS), are evaluated using measurements from 13
ground stations, which are the same ground stations employed in this study, with the addition of the
Tap Mun station located in Hong Kong. Results show that monthly average PM10 concentrations
simulated using FINN and GFAS are not only very different among themselves, but they are also
very different from ground measurements, that is, monthly average PM10 concentrations simulated
using FINN and GFAS and measurements are 312, 79, and 143 µg m−3, respectively. While FINN
PM10 concentration simulations are significantly overestimated, GFAS simulations are significantly
underestimated. In addition, the resolution of the simulations is only at 27 km.

This study is the work towards the main goal of developing a high-resolution numerical aerosol
transport simulation system that can provide useful high-resolution aerosol transport simulations for
the northern region of Thailand. Although our preliminary study [11] has evaluated high-resolution
numerical aerosol transport simulations for the northern region of Thailand, it only employs one
biomass burning emission inventory, i.e., the Brazilian Biomass Burning Emission Model (3BEM) [12],
and only evaluates simulated hourly average PM10 concentrations in 2015.

The Weather Research and Forecasting Model with Chemistry (WRF-Chem) has been widely
used for air quality modeling studies [3–6,13–15]. WRF-Chem is employed in this study. Biomass
burning emissions from two inventories, including 3BEM and the Fire Inventory from NCAR version
1.5 (FINN) [16] are employed. The study area covers the whole of the northern region of Thailand.
Hourly, daily, and monthly average PM10 dry mass concentrations at 5 km resolution simulated
using 3BEM and FINN for the 3-month period, which covers when PM10 concentrations are peak,
are evaluated using measurements from 12 and 13 ground stations distributed in the northern region
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of Thailand in years 2014 and 2015, respectively. The averages of 3BEM and FINN simulated PM10
concentrations are also evaluated.

Section 2 describes the research methodology employed in this study, which includes the study
area, measurements of PM10 dry mass concentrations from ground stations, WRF-Chem domain
configurations, biomass burning emission inventories employed in this study, and evaluation method.
The evaluation results are presented in Section 3. Section 4 summarizes and concludes this study.

2. Research Methodology

2.1. Study Area

The study area covers the northern region of Thailand and is shown in the red box in Figure 1a.
Thailand is located in the center of the Indochina peninsula and is bordered by Myanmar and Laos to
the north, Laos and Cambodia to the east, the Gulf of Thailand and Malaysia to the south, and the
Andaman Sea and the southern extremity of Myanmar to the west. The weather in Thailand is tropical
and is mostly hot and humid. There are three seasons, including the cold season (approximately from
the middle of October to the middle of February), the hot season (approximately from the middle
of February to the middle of May), and the rainy season (approximately from the middle of May
to the middle of October). The southwest and northeast monsoons strongly drive the weather in
Thailand [17]. The southwest monsoon occurs from approximately the middle of May to the middle of
October and brings humid air from the Indian Ocean to the west of Thailand, which leads to the rainy
season. The northeast monsoon occurs approximately from the middle of October to the middle of
February and brings the cold and dry air to the northern and northeastern parts of Thailand, which
leads to the cold season. The northeast monsoon also brings humid air from the Gulf of Thailand to
the eastern part of Thailand’s southern peninsula.

Figure 1b zooms in the study area of this study. It covers the whole of the northern region
of Thailand, where terrain is complex with high mountains. Since the land in the region is fertile,
agriculture is widespread. The smoke haze problem usually occurs in the dry season and affects the
air quality of all provinces in the region. To see the temporal distribution and density of hotspots in
the study area, Figure 2 shows all hotspot locations shown by red dots occurring in February-May
of 2014 from the Collection 6 Terra/Aqua Moderate Resolution Imaging Spectroradiometer (MODIS)
fire products [18,19]. Hotspots are widespread in the study area and surrounding regions with high
densities in March and April. The hotspot locations and densities occurring in 2015 are similar to
those occurring in 2014. The hotspot data are not directly used in any computations in this study.
The biomass burning emission data employed in this study is from the inventories described later in
Section 2.4.
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Figure 1. (a) Overview of the study area, which is in the red box. (b) Locations of 13 PM10 

concentration measuring stations in the northern region of Thailand employed in this study, where 

black lines show boundaries of provinces. 

Figure 1. (a) Overview of the study area, which is in the red box. (b) Locations of 13 PM10 concentration
measuring stations in the northern region of Thailand employed in this study, where black lines show
boundaries of provinces.
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Figure 2. All hotspots occurring in February–May of 2014 in the study area and neighboring regions.

2.2. Measurements of PM10 Dry Mass Concentrations from Ground Stations

The measurements of PM10 dry mass concentrations employed in this study are from 13 ground
stations that are distributed in the northern region of Thailand and are operated by the Thailand
Pollution Control Department. The locations of the 13 stations are shown in Figure 1b. Table 1 shows
the latitude, longitude, province, land use category, topography (m) above mean sea level, dates when
the peak daily average PM10 concentrations occurred in 2014 and 2015, and the peak values of daily
average PM10 concentrations for both years for the 13 ground stations. Two stations, i.e., T35 and T36,
are in Chiang Mai. Four stations, i.e., T37, T38, T40, and T57 are in Lampang, two stations, i.e., T57 and
T73, are in Chiang Rai. Five other stations are in Mae Hong Son, Nan, Lamphun, Phrae, and Phayao.
T73 is the most northern station, while T69 is the most southern station. T58 is the most western station,
while T67 is the most eastern station. The land use category for most stations is urban. The land use
data shown in Table 1 is from the Thailand Land Development Department and is at 15 m resolution.
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Table 1. Latitude, longitude, province, land use category, topography (m) above mean sea level, dates
when the peak daily average PM10 concentrations occurred in 2014 and 2015, and the peak daily
average PM10 concentrations for both years for the 13 ground stations.

Station Latitude Longitude Province
Land Use
Category

Topography
(m)

Peak of Daily Average PM10
Concentration

Month/Date Values (µg m−3)

2014 2015 2014 2015

T35 18.8406 98.9697 Chiang Mai Urban 410.7 3/21 3/16 284.0 282.4
T36 18.7911 98.9900 Chiang Mai Urban 365.4 3/21 3/16 240.0 299.8
T37 18.2783 99.5064 Lampang Urban 274.2 3/7 3/12 204.3 213.2
T38 18.2507 99.7640 Lampang Urban 395.2 3/7 3/12 181.5 165.0
T39 18.4197 99.7273 Lampang Agriculture 409.5 N/A 3/1 N/A 255.3
T40 18.2827 99.6599 Lampang Forest 377.15 3/10 3/1 138.7 260.0
T57 19.9092 99.8234 Chiang Rai Urban 381.4 3/21 3/17 263.3 384.0

T58 19.3047 97.9710 Mae Hong
Son Urban 410.7 3/21 3/15 322.7 304.0

T67 18.7889 100.7764 Nan Urban 224.6 3/3 3/16 169.7 189.2
T68 18.5674 99.0080 Lamphun Urban 287.75 3/21 3/17 175.6 218.2
T69 18.1289 100.1623 Phrae Urban 183.7 3/6 3/1 181.2 214.7
T70 19.1639 99.9027 Phayao Urban 385.85 3/7 3/16 211.0 263.5
T73 20.4272 99.8837 Chiang Rai Urban 510.9 3/20 3/18 244.9 282.6

N/A: Not available.

Figure 3 shows the time series of measured hourly averaged PM10 dry mass concentrations
covering the whole years of 2014 and 2015 for 13 stations employed in this study. The smoke haze
episode occurred during February–April of each year, where PM10 concentrations for these stations
peak in March. The peak of PM10 concentration in March is consistent with the highest density of
hotspots that occur in March, as Figure 2 shows. The smoke haze affects all stations with different
magnitudes and times. The station T58 in Mae Hong Son has the highest hourly average PM10
concentrations for both years, where the peak hourly average PM10 concentrations are 593 and
660 µg m−3, in 2014 and 2015, respectively. Since the station T39 does not have measurements during
February–April of 2014, it is not employed in this study for 2014.

Table 1 shows that the peak daily average PM10 concentrations for both years for all stations
occurred in March. The highest daily average PM10 concentration in 2014 occurred at the station
T58 in Mae Hong Son on 21 March with the value of 322.7 µg m−3. The highest daily average
PM10 concentration in 2015 occurred at the station T57 in Chiang Rai on 17 March with the value of
384.0 µg m−3. The peak daily average PM10 concentrations for most stations for both years significantly
exceed the safety standards set by World Health Organization (WHO) and Thailand Pollution Control
Department and, which are 50 and 120 µg m−3, respectively [20,21]. This emphasizes the need for
this study.

2.3. WRF-Chem Domain Configurations

The Weather Research and Forecasting Model (WRF) is the state-of-the-art mesoscale numerical
weather prediction system widely used for atmospheric research and operations [22]. The research
in [23] has shown that WRF can provide high-resolution weather forecasts in good agreement with
satellite observations for Thailand and nearby regions. The research in [24,25] has also shown that WRF
can provide simulated and forecasted near surface wind speed and direction in good agreement with
measurements. WRF has several versions and has two dynamical solvers, i.e., the Advanced Research
WRF (ARW) core and the Nonhydrostatic Mesoscale Model core. The WRF model with Chemistry
(WRF-Chem) is a version of the WRF model that simultaneously simulates the emission transport,
turbulent mixing, and chemical transformation of trace gases and aerosols with the meteorology [26,27].
The WRF-Chem version 3.5.1 with the ARW dynamical solver is employed in this study.
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Figure 3. Time series of measured hourly average PM10 concentrations (µg m−3) covering the whole
years of 2014 (red) and 2015 (blue) for 13 stations employed in this study.

Table 2 shows WRF-Chem domain configurations and physics options employed in this study.
This study employs two nested domains co-centered at 18.97◦ N and 99.4◦ E, as Figure 4a shows. The
inner domain is chosen to focus on the northern region of Thailand. The outer domain is chosen to be
large enough to cover hot spots whose emissions could transport into the inner domain. The outer
domain has 99 × 99 grid points at 15 km resolution. The inner domain has 120 × 120 grid points at
5 km resolution. Both domains have 45 terrain-following vertical levels extending from the surface
to 50 mb. Since this study focuses on PM10 near surface, vertical levels are selected to have high
resolution near surface. There are 6 terrain-following levels that are below the planetary boundary
layer (PBL). The height of PBL varies with time. The average altitudes above ground for the five lowest
terrain-following levels above ground are 4.15, 8.29, 16.60, 24.92, and 33.25 m. Outputs from the inner
domain at 5 km resolution are used for evaluation. Figure 4b shows topography above mean sea level
of the inner domain. The terrain of the study is complex with high mountains in the west, north, and
east and low flat land in the south. The topographic data employed in this study is the U.S. Geological
Survey (USGS) data at 30 arcsecond resolution. The USGS-based land use data with 24 categories at
30 arcsecond resolution is employed in this study. Since the resolution of the simulations in this study
is 5 km, the resolutions of the topographic and land use data employed in this study are appropriate.
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Table 2. WRF-Chem domain configurations and physics options employed in this study.

Configuration Domain 1 Domain 2

Grid Size 99 × 99 120 × 120

Spatial Resolution (km) 15 5

Number of Vertical Levels 45 45

Microphysics Scheme WRF Double-Moment 6-class WRF Double-Moment 6-class

Cumulus Parameterization
Scheme Grell 3D Ensemble Scheme Grell 3D Ensemble Scheme

Planetary Boundary Layer (PBL)
scheme Bretherton and Park Bretherton and Park

Surface Layer Scheme Revised MM5 Monin-Obukhov Revised MM5 Monin-Obukhov

Land Surface Model Unified Noah Unified Noah

Aerosol Scheme Goddard Chemistry Aerosol
Radiation and Transport

Goddard Chemistry Aerosol
Radiation and Transport
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WRF provides many physics options for users to choose for each parameter and domain.
The WRF Double-Moment 6-class microphysics scheme [28] and the Grell 3D Ensemble Scheme
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cumulus parameterization scheme [29] are employed for both domains. Previous studies [30–32]
have demonstrated that the activation of the cumulus parameterization scheme in the inner domain
with high resolution improves the precipitation simulations. Since this study focuses on PM10
concentrations near the ground, the performance of the model for simulating near-surface wind fields
is important. The research in [24,25] has evaluated WRF planetary boundary layer (PBL) schemes for
simulating near-surface winds in northeastern Thailand and found that the Bretherton and Park (UW)
PBL scheme [33] together with the Revised MM5 Monin-Obukhov surface layer scheme [34] and the
Unified Noah land surface model [35] provides the best agreement between simulations and measured
wind speed and direction. They are employed in this study for both domains.

The NCEP final operational model global tropospheric analyses on a 1-degree grid available every
6 h, i.e., 00, 06, 12, and 18Z, from the surface to 10 mb are used as initial and boundary conditions
for WRF. The NCEP analyses have successfully been employed by [36] to simulate 122 global storm
systems at 5 km resolution with good agreement with coincident satellite passive millimeter-wave
observations. Data assimilation techniques and nudging are not employed in this study.

The chemical part of WRF-Chem employs the Goddard Chemistry Aerosol Radiation and Transport
(GOCART) aerosol scheme [37]. The preprocessor PREP-CHEM-SRC version 1.5 [38] is employed to
prepare emission fields of trace gases and aerosols for WRF-Chem. Both anthropogenic emission and
biomass burning emission are included, where details about the biomass burning emission inventories
employed in this study are described in the next section. The anthropogenic emission data from two
emission inventories, including the REanalysis of the TROpospheric chemical composition over the
past 40 years (RETRO) [39] and the Emission Database for Global Atmospheric Research version 4
(EDGARv4) [40] are employed. The RETRO global emission data is based on the year 2000 and is at 0.5
degree resolution. The EDGARv4 global emission data is based on the year 2005 and is at 0.1 degree
resolution. Emissions of organic carbon, black carbon, sulfur dioxide (SO2), and dimethylsulfide (DMS)
based on the year 2006 at 1 degree resolution from the GOCART model database are employed.

2.4. Biomass Burning Emission Inventories Employed in This Study

Several inventories of global biomass burning emissions are available to be used [12,16,41,42]. In
this study, biomass burning emissions from the Brazilian Biomass Burning Emission Model (3BEM) [12]
and the Fire Inventory from NCAR version 1.5 (FINN) [16] are employed and their simulation results
are compared.

3BEM provides daily global estimates of trace gases and particle emissions from biomass burning
at 1 km resolution. 3BEM estimates biomass burning emissions for each detected fire pixel using

Mi = L·× C ×·Fi·× A (1)

where Mi is the emission load of species i (mass of i emitted; g), L is the biomass loading (kg km−2), C
is the combustion factor (the fraction of that biomass burned in in the fire; unitless), Fi is the emission
factor for a certain species i (mass of i emitted divided by mas of biomass burned; g kg−1), and A is
the burned area (km2). To detect the actively hotspot locations, 3BEM employs the combination of
satellite observation products, including: (1) the Wildfire Automated Biomass Burning Algorithm
(WF_ABBA) product using observations from the Geostationary Operational Environmental Satellite
(GOES) constellation data [43], (2) the Brazilian National Institute for Space Research (INPE) fire
product using observations from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard
Meteosat Second Generation, the Advanced Very High Resolution Radiometer (AVHRR) aboard the
National Oceanic and Atmospheric Administration (NOAA) constellation, GOES, and MODIS [44],
and (3) the MOD14 and MYD14 products using observations from MODIS aboard the Terra and Aqua
satellites [18]. To avoid counting the same fire more than once in each day, the three products are
combined by eliminating multiple detections of the same fire location within a circle of 1 km radius.
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The emission factor (Fi), the combustion factor (C), and the biomass loading (L) are estimated using the
MODIS land cover map at 1 km resolution, where values from literatures are employed [12].

FINN provides daily global estimates of trace gases and particle emissions from open biomass
burning at 1 km resolution. While FINN includes wildfire and agricultural fires, it does not include
biofuel use and trash burning. FINN also estimates biomass burning emissions for each detected
fire pixel using Equation (1). The locations of active fires are from the MOD14 and MYD14 products
using observations from MODIS aboard the Terra and Aqua satellites. Since MODIS does not observe
the entire globe daily due to its swath width—its detected active fires over two days are smeared to
generate daily FINN estimates. To avoid counting the same fire more than once in a single day, multiple
detections of the same fire location for each day are removed. The emission factor, the combustion
factor, and the biomass loading (L) are estimated using the MODIS Land Cover Type for 2005 and the
MODIS Vegetation Continuous Fields (VCF) product and values from literatures [16].

To preprocess 3BEM emission data to be used as inputs for WRF-Chem, the preprocessor
PREP-CHEM-SRC version 1.5 [38] is employed. WMF-Chem employs the 3BEM daily emission data to
simulate hourly emissions. To preprocess FINN emission data to be used as inputs for WRF-Chem,
the preprocessor fire_emiss [45] is employed, where it applies the standard Western Regional Air
Partnership (WRAP) diurnal profile to compute hourly emissions from daily values. The preprocessed
hourly emission data for FINN are used as inputs for WRF-Chem. The plume rise of the wildfire
smoke is computed by WRF-Chem using biomass burning emissions together with the environmental
wind and temperature profile. The results of plume rise computation provide a vertical distribution of
the emissions.

2.5. Evaluation Method

Since the smoke haze episode in the northern region of Thailand occurs during February–April
and PM10 concentration peaks in March of each year, as Figure 3 shows, the biomass burning aerosol
transport is simulated separately using biomass burning emissions from 3BEM and FINN for the
3-month period starting from 30 January–30 April for years 2014 and 2015. The first two days of the
simulation period are treated as a spin-up period, and simulations during the period are not used for
evaluation. To compute PM10 concentrations at the location and altitude above ground of each ground
station, simulations at 5-km resolution are bilinearly interpolated for each horizontal layer and are then
linearly interpolated in vertical direction between two neighboring levels surrounding the altitude
above ground of the station.

Hourly, daily, and monthly average PM10 concentrations simulated using biomass burning
emission inventories 3BEM and FINN for the 3-month period of 1 February–30 April are evaluated
using measurements from 12 and 13 ground stations for years 2014 and 2015, respectively. Only 12
ground stations are used for 2014, since measurements for the station T39 do not exist for the study
period. The simulations using 3BEM and FINN will be later called WRF-3BEM and WRF-FINN,
respectively. Since PM10 simulations of 3BEM and FINN may be improved by averaging their
simulations, their averages are also evaluated and are called WRF-AVG. The performance metrics
employed for evaluating PM10 simulations include root mean squared errors (RMSEs), mean errors
(MEs), which is E[simulations-measurements], and correlation coefficients (CCs) of simulations
and measurements.

3. Results

3.1. Evaluation of Simulated Hourly Average PM10 Concentrations

Figure 5 compares time series of hourly average PM10 concentrations (µg m−3) simulated
using 3BEM (WRF-3BEM) and those simulated using FINN (WRF-FINN) with measurements for
February–April of 2014 for 12 ground stations. Figure 6 compares time series of hourly average
PM10 concentrations (µg m−3) simulated using WRF-3BEM and WRF-FINN with measurements for
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February–April of 2015 for 13 ground stations. The comparisons of WRF-3BEM and WRF-FINN with
measurements show that WRF-3BEM agrees with measurements much better than WRF-FINN does
for most stations and both years. WRF-FINN simulations obviously have some spikes, which are
overestimates, for most stations for both years. The WRF-FINN’s significant overestimates are clearly
seen for the station T73 for both years.Atmosphere 2020, 11, 91 11 of 30 
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Figure 5. Comparisons of time series of measured hourly average PM10 concentrations (µg m−3) and
simulations of WRF-3BEM and WRF-FINN for February–April in 2014 for 12 ground stations.

Table 3 shows the MEs (E[simulations-measurements]), RMSEs, and CCs of simulations and
measurements for hourly average PM10 concentrations (µg m−3), simulated using WRF-3BEM and
WRF-FINN and their averages (WRF-AVG) for February–April 2014 evaluated using measurements
from 12 ground stations. Boldface highlights the model performing best for each performance metric.
Accuracies of WRF-3BEM, WRF-FINN, and WRF-AVG vary for different stations. The three models also
perform very differently. This emphasizes the importance of this study to evaluate PM10 simulations
using different biomass burning emission inventories. WRF-3BEM performs best in terms of ME for
most stations. MEs of WRF-3BEM are significantly lower than those of WRF-FINN and WRF-AVG.
When RMSE is considered, WRF-3BEM performs best for five stations while WRF-AVG performs best



Atmosphere 2020, 11, 91 12 of 30

for six stations. WRF-3BEM has best CCs for five stations while WRF-AVG has best CCs for seven
stations. The overall results show that WRF-3BEM performs best among the three models, where its
ME and RMSE are the lowest and its CC is close to that of WRF-AVG. WRF-FINN is least accurate.Atmosphere 2020, 11, 91 12 of 30 
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Table 3. MEs (E[simulations-measurements]), RMSEs, and CCs of simulations and measurements for
WRF-3BEM, WRF-FINN, and WRF-AVG simulated hourly average PM10 concentrations (µg m−3)
for February–April of 2014 evaluated using measurements from 12 ground stations. (CC: correlation
coefficient, RMSE: root mean squared error).

Station
WRF-3BEM WRF-FINN WRF-AVG

ME RMSE CC ME RMSE CC ME RMSE CC

T35 −7.65 66.71 0.38 8.57 101.00 0.45 0.46 70.48 0.48
T36 4.22 60.03 0.44 29.40 93.26 0.48 16.81 65.26 0.52
T37 −4.88 84.80 0.22 −22.56 73.12 0.44 −13.72 69.62 0.37
T38 −4.38 58.36 0.45 −10.01 88.65 0.27 −7.19 63.01 0.40
T40 0.78 55.29 0.55 −7.39 71.35 0.38 −3.30 53.44 0.53
T57 2.48 70.66 0.49 49.62 122.67 0.63 26.05 83.29 0.63
T58 −1.90 130.04 0.56 19.38 167.88 0.41 8.74 121.12 0.56
T67 −1.52 102.71 0.41 −3.77 71.80 0.65 −2.64 71.93 0.60
T68 −1.26 66.05 0.36 26.54 81.63 0.49 12.64 62.32 0.49
T69 −2.08 62.58 0.37 −24.35 59.87 0.43 −13.22 53.99 0.44
T70 −4.75 68.39 0.57 8.16 91.29 0.49 1.71 68.52 0.58
T73 −1.22 94.79 0.54 119.46 343.72 0.40 59.12 191.59 0.48
All −1.83 79.84 0.46 16.43 137.24 0.38 7.30 89.92 0.48

Boldface highlights the model performing best for each performance metric.

Table 4 shows MEs (E[simulations-measurements]), RMSEs, and CCs of simulations and
measurements for simulated hourly average PM10 concentrations (µg m−3) of WRF-3BEM, WRF-FINN,
and WRF-AVG for February–April 2015, evaluated using measurements from 13 ground stations.
Results are similar to those for 2014. WRF-3BEM performs best in terms of ME for all stations. In terms
of RMSE, WRF-3BEM performs best for six stations while WRF-AVG performs best for seven stations.
WRF-AVG performs best in terms of CC when stations are considered separately. Overall results show
that WRF-3BEM performs best for all performance metrics, where its ME is close to zero.

Table 4. MEs (E[simulations-measurements]), RMSEs, and CCs of simulations and measurements for
WRF-3BEM, WRF-FINN, and WRF-AVG simulated hourly average PM10 concentrations (µg m−3) for
February–April of 2015 evaluated using measurements from 13 ground stations.

Station
WRF-3BEM WRF-FINN WRF-AVG

ME RMSE CC ME RMSE CC ME RMSE CC

T35 5.97 78.76 0.41 26.97 124.99 0.42 16.47 86.17 0.47
T36 −5.05 67.25 0.50 25.59 114.44 0.46 10.27 75.73 0.54
T37 2.46 76.93 0.44 −23.90 69.70 0.44 −10.72 62.27 0.50
T38 0.25 49.41 0.60 −11.54 62.22 0.43 −5.65 46.60 0.59
T39 1.01 63.72 0.63 −6.82 77.63 0.43 −2.90 56.25 0.63
T40 −3.16 63.09 0.50 −19.78 67.65 0.39 −11.47 55.66 0.52
T57 −2.70 74.19 0.64 54.78 170.95 0.64 26.04 105.94 0.68
T58 2.45 130.20 0.58 35.78 209.88 0.31 19.11 141.79 0.50
T67 2.52 91.87 0.43 5.23 73.02 0.65 3.88 71.14 0.60
T68 2.90 69.26 0.40 31.79 86.77 0.52 17.34 65.72 0.53
T69 −2.20 53.79 0.53 −19.91 63.11 0.44 −11.05 49.79 0.55
T70 2.68 59.59 0.69 7.08 79.21 0.63 4.88 61.22 0.70
T73 0.83 92.98 0.64 128.47 401.57 0.52 64.65 220.68 0.60
All 0.63 77.32 0.55 18.17 153.50 0.41 9.40 96.55 0.53

Boldface highlights the model performing best for each performance metric.

Figure 7 shows scatter plots comparing measured hourly average PM10 concentrations and
simulations of WRF-3BEM, WRF-FINN, and WRF-AVG for February–April 2014 and 2015 for all
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ground stations. Results are consistent with those shown in Tables 3 and 4, that is, WRF-3BEM and
WRF-AVG perform comparably in terms of CC and WRF-FINN performs worst.
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Figure 7. Scatter plots comparing measured hourly average PM10 concentrations (µg m−3) and
simulations of WRF-3BEM, WRF-FINN, and WRF-AVG for February–April in 2014 and 2015 for all
ground stations.

When results for all ground stations and for both years are combined, Table 5 shows overall MEs
(E[simulations-measurements]), RMSEs, and CCs of simulations and measurements for WRF-3BEM,
WRF-FINN, and WRF-AVG simulated hourly, daily, and monthly average PM10 concentrations
(µg m−3). Boldface highlights the model performing best for each performance metric. WRF-3BEM
simulated hourly PM10 concentrations are obviously most accurate in terms of ME, RMSE, and CC and
are followed by those of WRF-AVG and WRF-FINN, respectively. ME of WRF-3BEM is almost zero,
while those of WRF-FINN and WRF-AVG are much higher and are 17.34 and 8.40 µg m−3, respectively.
RMSE of WRF-3BEM is 46.22 and is 15.99% less than those of WRF-FINN and WRF-AVG, respectively.
CC of WRF-3BEM is close to that of WRF-AVG and is much better than that of WRF-FINN.



Atmosphere 2020, 11, 91 15 of 30

Table 5. Overall MEs (E[simulations-measurements]), RMSEs, and CCs of simulations and
measurements for WRF-3BEM, WRF-FINN, and WRF-AVG simulated hourly, daily, and monthly
average PM10 concentrations (µg m−3) for February–April of 2014 and 2015 evaluated using
measurements from all 12 ground stations.

PM10
WRF-3BEM WRF-FINN WRF-AVG

ME RMSE CC ME RMSE CC ME RMSE CC

Hourly −0.54 78.52 0.51 17.34 146.00 0.40 8.40 93.46 0.50
Daily −0.18 40.94 0.76 19.03 92.23 0.70 9.43 56.79 0.77

Monthly −2.02 14.81 0.89 14.13 52.87 0.63 6.06 27.95 0.79

Boldface highlights the model performing best for each performance metric.

3.2. Evaluation of Simulated Daily Average PM10 Concentrations

Figure 8 compares time series of measured daily average PM10 concentrations (µg m−3) and
simulations of WRF-3BEM and WRF-FINN for February–April in 2014 for 12 ground stations. Figure 9
compares time series of measured daily average PM10 concentrations (µg m−3) and simulations of
WRF-3BEM and WRF-FINN for February–April 2015 for 13 ground stations. WRF-3BEM agrees
well with measurements and performs obviously better than WRF-FINN does. The overestimates of
WRF-FINN are clearly shown in several stations and both years. This is consistent with results for
simulated hourly average PM10 concentrations.
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simulations of WRF-3BEM and WRF-FINN for February–April in 2014 for 12 ground stations.
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Figure 9. Comparisons of time series of measured daily average PM10 concentrations (µg m−3) and
simulations of WRF-3BEM and WRF-FINN for February–April in 2015 for 13 ground stations.

Table 6 shows MEs (E[simulations-measurements]), RMSEs, and CCs of simulations and
measurements for simulated daily average PM10 concentrations (µg m−3) of WRF-3BEM, WRF-FINN,
and WRF-AVG for February–April 2014 evaluated using measurements from 12 ground stations. Daily
averaging significantly improves the accuracies of all models when compared with the accuracies for
hourly simulations. WRF-3BEM, WRF-FINN, and WRF-AVG perform very differently. WRF-3BEM
performs best for eight stations in terms of ME and seven stations in terms of RMSE. WRF-AVG has
best CCs for seven stations. Overall results are consistent with those shown in Table 3. WRF-3BEM
performs best and is followed by WRF-AVG and WRF-FINN, respectively. WRF-3BEM has the lowest
overall ME and RMSE and its CC is close to that of WRF-AVG.
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Table 6. MEs (E[simulations-measurements]), RMSEs, and CCs of simulations and measurements for
WRF-3BEM, WRF-FINN, and WRF-AVG simulated daily average PM10 concentrations (µg m−3) for
February–April of 2014 evaluated using measurements from 12 ground stations.

Station
WRF-3BEM WRF-FINN WRF-AVG

ME RMSE CC ME RMSE CC ME RMSE CC

T35 −7.54 27.92 0.81 8.88 45.40 0.90 0.67 28.43 0.89
T36 5.48 29.20 0.82 31.95 50.65 0.87 18.71 30.94 0.88
T37 −2.87 38.63 0.65 −22.11 43.43 0.68 −12.49 35.54 0.71
T38 −3.75 27.95 0.56 −15.18 40.15 0.69 −9.47 29.14 0.69
T40 1.61 26.75 0.82 −4.69 39.07 0.74 −1.54 29.20 0.82
T57 2.01 38.15 0.76 50.99 87.69 0.88 26.50 53.08 0.86
T58 −2.73 64.84 0.83 −22.01 78.20 0.88 9.64 63.59 0.89
T67 −4.43 56.99 0.65 −3.68 44.85 0.86 −4.06 46.20 0.79
T68 −1.21 35.51 0.44 27.47 44.06 0.84 13.13 30.25 0.75
T69 −1.48 28.94 0.73 −24.94 38.73 0.73 −13.21 27.90 0.79
T70 −3.77 35.06 0.81 9.67 49.03 0.83 2.95 36.88 0.85
T73 −2.05 46.15 0.85 116.06 206.60 0.81 57.01 117.52 0.84
All −1.77 40.38 0.75 18.19 81.32 0.71 8.21 51.98 0.77

Boldface highlights the model performing best for each performance metric.

Table 7 shows MEs (E[simulations-measurements]), RMSEs, and CCs of simulations and
measurements for simulated daily average PM10 concentrations (µg m−3) of WRF-3BEM, WRF-FINN,
and WRF-AVG for February–April 2015 evaluated using measurements from 13 ground stations.
Results are consistent with those for the hourly average PM10 concentrations shown in Table 4.
WRF-3BEM performs best in terms of ME for all stations and performs best in terms of RMSE for nine
stations. When individual stations are considered, WRF-AVG performs best in terms of CC. Overall
results show that WRF-3BEM performs best for all performance metrics.

Table 7. MEs (E[simulations-measurements]), RMSEs, and CCs of simulations and measurements for
WRF-3BEM, WRF-FINN, and WRF-AVG simulated daily average PM10 concentrations (µg m−3) for
February–April of 2015 evaluated using measurements from 13 ground stations.

Station
WRF-3BEM WRF-FINN WRF-AVG

ME RMSE CC ME RMSE CC ME RMSE CC

T35 6.71 33.66 0.79 27.43 78.33 0.72 17.07 46.07 0.80
T36 −5.02 34.31 0.78 26.68 75.85 0.68 10.83 43.13 0.77
T37 4.53 35.15 0.74 −25.21 42.08 0.75 −10.34 27.91 0.83
T38 0.24 25.38 0.78 −13.70 43.42 0.59 −6.73 28.07 0.75
T39 0.68 31.86 0.80 −5.95 44.92 0.69 −2.64 32.96 0.79
T40 −2.95 33.19 0.71 −21.69 46.62 0.58 −12.32 33.21 0.72
T57 −2.32 36.73 0.87 55.38 116.49 0.89 26.53 64.59 0.90
T58 2.35 82.30 0.78 36.41 106.69 0.80 19.38 81.23 0.84
T67 3.98 54.09 0.68 6.64 58.02 0.78 5.31 51.63 0.76
T68 3.87 37.89 0.60 28.34 51.18 0.74 16.11 34.20 0.77
T69 −3.54 27.24 0.79 −21.70 43.85 0.65 −12.62 29.49 0.78
T70 2.97 31.17 0.87 5.62 52.70 0.80 4.29 36.03 0.87
T73 3.60 43.74 0.90 148.01 276.50 0.92 75.81 152.92 0.92
All 1.22 41.42 0.78 19.76 100.80 0.69 10.49 60.69 0.77

Boldface highlights the model performing best for each performance metric.

Figure 10 shows scatter plots comparing measured daily average PM10 concentrations and
simulations of WRF-3BEM, WRF-FINN, and WRF-AVG for February–April in 2014 and 2015 for
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all ground stations. Simulated daily average PM10 concentrations agree much better with the
measurements than simulated hourly average PM10 concentrations do. CCs of WRF-3BEM are close to
those of WRF-AVG and are better than those of WRF-FINN.Atmosphere 2020, 11, 91 18 of 30 
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Figure 10. Scatter plots comparing measured daily average PM10 concentrations (µg m−3) and
simulations of WRF-3BEM, WRF-FINN, and WRF-AVG for February–April 2014 and 2015 for all
ground stations.

Overall MEs (E[simulations-measurements]), RMSEs, and CCs of simulations and measurements
for WRF-3BEM, WRF-FINN, and WRF-AVG simulated daily average PM10 concentrations (µg m−3)
are computed using all ground stations and both years and are shown in Table 5, where boldface
highlights the model performing best for each performance metric. Results show that WRF-3BEM
performs significantly better than WRF-FINN and WRF-AVG do. WRF-3BEM simulated daily average
PM10 concentrations are almost unbiased, while MEs for WRF-FINN and WRF-AVG are 19.03 and
9.43 (µg m−3), respectively. WRF-FINN and WRF-AVG significantly overestimate daily average PM10
concentrations. WRF-3BEM also performs best in terms of RMSE. RMSE of WRF-3BEM is 55.61 and
27.91% lower than those of WRF-FINN and WRF-AVG, respectively. CC of WRF-3BEM is comparable
to that of WRF-AVG and is better than that of WRF-FINN.
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3.3. Evaluation of Simulated Monthly Average PM10 Concentrations

Figures 11 and 12 compare simulated monthly average PM10 concentrations (µg m−3) at 2 m
above ground of WRF-3BEM and WRF-FINN, where top to bottom rows are February, March, and
April of 2014 and 2015, respectively. Both figures show significant differences between WRF-3BEM
and WRF-FINN. WRF-FINN simulated monthly average PM10 concentrations are significantly higher
than those of WRF-3BEM particularly in March and April in the upper portion of the figures. This
emphasizes the need for this study to find a system that can provide useful simulations of biomass
burning aerosol transport at high resolution. Results in the figures are also consistent with significant
overestimates of WRF-FINN shown earlier in Sections 3.1 and 3.2.
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Figure 12. Comparisons of simulated monthly average PM10 concentrations (µg m−3) at 2 m above
ground of WRF-3BEM and WRF-FINN. Top to bottom are February, March, and April of 2015.

Figure 13 compares measured monthly average PM10 concentrations (µg m−3) and simulations of
WRF-3BEM and WRF-FINN for February–April of 2014 for 12 ground stations. Figure 14 compares
the measured monthly average PM10 concentrations (µg m−3) and simulations of WRF-3BEM and
WRF-FINN for February–April of 2015 for 13 ground stations. The significant overestimates of
WRF-FINN in March and April of both years are clearly seen, particularly for the station T73, which is
the most northern station. WRF-3BEM agrees well with measurements for most stations and months.
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Table 8 shows MEs (E[simulations-measurements]), RMSEs, and CCs of simulations and
measurements for simulated monthly average PM10 concentrations (µg m−3) of WRF-3BEM,
WRF-FINN, and WRF-AVG for February–April 2014, evaluated using measurements from 12 ground
stations. The RMSEs and CCs for the monthly average PM10 concentrations of all models are
much better than those for their hourly and daily average PM10 concentrations, as expected. While
WRF-3BEM has the lowest MEs for most stations, WRF-AVG performs best in terms of RMSE if
individual stations are considered separately. The overall RMSE of WRF-3BEM is significantly lower
than that of WRF-FINN and WRF-3AVG. WRF-FINN has the highest number of stations with best CC.
The overall results in 2014 show that WRF-3BEM clearly performs best for all performance metrics.
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Figure 14. Comparisons of measured monthly average PM10 concentrations (µg m−3) and simulations
of WRF-3BEM and WRF-FINN for February–April 2015 for 13 ground stations.

Table 9 shows MEs (E[simulations-measurements]), RMSEs, and CCs of simulations and
measurements for simulated monthly average PM10 concentrations (µg m−3) of WRF-3BEM,
WRF-FINN, and WRF-AVG for February–April 2015 evaluated using measurements from 13 ground
stations. WRF-3BEM clearly performs best in terms of ME and RMSE. WRF-AVG performs best in
terms of CC. ME and RMSE of WRF-3BEM for the station T73 are significantly less than those of
WRF-FINN and WRF-AVG. WRF-3BEM clearly performs best in 2015 when all stations are considered.
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Table 8. MEs (E[simulations-measurements]), RMSEs, and CCs of simulations and measurements for
WRF-3BEM, WRF-FINN, and WRF-AVG simulated monthly average PM10 concentrations (µg m−3) for
February–April 2014 evaluated using measurements from 12 ground stations.

Station
WRF-3BEM WRF-FINN WRF-AVG

ME RMSE CC ME RMSE CC ME RMSE CC

T35 −8.23 14.46 0.92 6.45 15.09 1.00 −0.89 6.76 0.98
T36 2.87 18.93 0.92 26.25 26.71 1.00 14.56 16.12 1.00
T37 −5.34 18.89 0.88 −23.56 23.89 0.99 −14.45 16.24 0.98
T38 −12.64 20.45 0.89 −18.40 24.86 0.97 −15.52 19.95 1.00
T40 0.85 14.58 0.99 −8.70 20.55 0.77 −3.93 15.14 0.92
T57 −5.80 23.13 0.80 37.53 44.29 0.98 15.86 22.05 0.94
T58 −4.26 23.05 0.91 15.81 30.26 0.99 5.78 22.61 0.96
T67 −3.29 4.71 1.00 −6.12 18.33 0.97 −4.71 11.35 0.99
T68 1.18 25.55 0.48 25.61 31.07 0.98 13.39 22.06 0.82
T69 −2.17 10.39 0.97 −25.17 29.29 0.81 −13.67 14.72 0.99
T70 −1.58 11.73 0.95 8.13 19.67 0.99 3.28 10.70 1.00
T73 −1.91 14.32 0.99 116.57 154.88 0.97 57.33 81.60 0.98
All −3.36 17.67 0.86 12.87 51.61 0.67 4.75 28.58 0.80

Boldface highlights the model performing best for each performance metric.

Table 9. MEs (E[simulations-measurements]), RMSEs, and CCs of simulations and measurements for
WRF-3BEM, WRF-FINN, and WRF-AVG simulated monthly average PM10 concentrations (µg m−3) for
February–April 2015 evaluated using measurements from 13 ground stations.

Station
WRF-3BEM WRF-FINN WRF-AVG

ME RMSE CC ME RMSE CC ME RMSE CC

T35 6.13 9.97 0.95 25.80 33.08 0.72 15.97 17.93 0.95
T36 −4.64 12.27 0.93 24.59 31.37 0.72 9.97 14.11 0.96
T37 3.50 11.69 0.92 −23.66 27.90 0.77 −10.08 11.59 0.98
T38 −4.23 6.29 0.98 −16.70 23.97 0.32 −10.47 12.60 0.99
T39 2.20 8.12 0.94 −6.36 15.80 0.76 −2.08 6.20 1.00
T40 −5.55 10.76 0.98 −22.89 27.31 0.16 −14.22 15.58 0.90
T57 −3.24 12.85 0.93 52.41 62.55 1.00 24.58 29.16 1.00
T58 −2.06 15.97 0.99 31.46 37.69 0.94 14.70 18.60 1.00
T67 2.46 8.47 0.88 4.25 16.88 0.78 3.35 12.50 0.82
T68 3.74 18.80 0.70 31.93 32.86 1.00 17.83 20.20 0.83
T69 −5.53 8.96 0.93 −24.73 30.34 0.22 −15.13 16.52 0.98
T70 3.12 9.35 0.95 6.20 19.33 0.76 4.66 8.29 0.99
T73 −6.02 10.77 1.00 116.65 159.67 1.00 55.31 80.82 1.00
All −0.78 11.56 0.93 15.30 54.00 0.58 7.26 27.36 0.78

Boldface highlights the model performing best for each performance metric.

Figure 15 shows scatter plots comparing measured monthly average PM10 concentrations and
simulations of WRF-3BEM, WRF-FINN, and WRF-AVG for February–April 2014 and 2015. WRF-3BEM
performs much better than the other two models, where all points in the scatter plots stay close to the
one-to-one lines, particularly for 2015. CCs of WRF-3BEM and measurements are as high as 0.86 and
0.93 for 2014 and 2015, respectively. WRF-3BEM simulations are almost unbiased for both years, which
is consistent with those shown in Tables 8 and 9. WRF-FINN clearly performs worst.
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Figure 15. Scatter plots comparing measured monthly average PM10 concentrations (µg m−3) and
simulations of WRF-3BEM, WRF-FINN, and WRF-AVG for February–April 2014 and 2015.

Table 5 shows overall MEs (E[simulations-measurements]), RMSEs, and CCs of simulations
and measurements for WRF-3BEM, WRF-FINN, and WRF-AVG simulated monthly average PM10
concentrations (µg m−3) computed using all ground stations and for both years., where boldface
highlights the model performing best for each performance metric. WRF-3BEM clearly performs best
for all performance metrics and is followed by WRF-AVG and WRF-FINN, respectively. WRF-3BEM
simulated monthly average PM10 concentrations are slightly underestimated, while those of WRF-FINN
and WRF-AVG are significantly overestimated. The monthly average PM10 concentrations, computed
using all ground stations and for both years for measurements WRF-3BEM, WRF-FINN, and WRF-AVG
are 89.22, 87.20, 103.35, and 95.27 µg m−3, respectively. The RMSE of WRF-3BEM is 72.00 and 47.01%
less than those of WRF-FINN and WRF-AVG. CC of WRF-3BEM is 0.89, which is obviously higher
than those of the other two models, i.e., 0.63 for WRF-FINN and 0.79 for WRF-AVG.

3.4. Comparisons of 3BEM and FINN Biomass Burning Emissions

Results in Sections 3.1–3.3 clearly show that while WRF-3BEM simulated hourly, daily, and
monthly PM10 concentrations agree well with measurements, those of WRF-FINN are significantly
overestimated and have high spikes. Figures 13 and 14 show that the WRF-FINN overestimates are
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worst for the station T73, the most northern ground station in this study, in March of both 2014 and
2015. To investigate the reason for WRF-FINN’s significant PM10 overestimates, the original 3BEM and
FINN biomass burning emissions used as inputs for WRF-Chem are compared. Figure 16 compares the
daily total 3BEM and FINN emissions (kg m−2 day−1) of carbon monoxide (CO), sulfur dioxide (SO2),
and nitrogen oxide (NO) over the study area averaged over 31 days of March 2014. Black squares in
each sub-figure show locations of ground stations employed in this study. Figure 17 compares daily
total 3BEM and FINN emissions (kg m−2 day−1) of CO, SO2, and NO over the study area averaged
over 31 days in March 2015. The 3BEM and FINN emission datasets also provide several other biomass
burning species, but CO, SO2, and NO are selected to illustrate the cause of WRF-FINN’s overestimates.
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Figure 16. Comparisons of daily total 3BEM (a,c,e) and FINN (b,d,f) emissions (kg m−2 day−1) over
the study area averaged over 31 days in March 2014. Top to bottom rows: CO, SO2, and NO emissions,
respectively. Black squares in each sub-figure show locations of ground stations employed in this study.

Figures 16 and 17 show that although the spatial patterns of 3BEM and FINN emissions are
similar, FINN’s emission amounts are significantly higher than those of 3BEM for all three emission
species, particularly in the area surrounding the station T73. Table 10 shows the daily total 3BEM and
FINN emissions (kg m−2 day−1) of CO, SO2, and NO averaged over the study area and over 31 days of
March of 2014 and 2015. The results are consistent with those shown in Figures 16 and 17, that is, FINN
significantly overestimates biomass burning emissions in the study area. The WRF-FINN significant
overestimates of PM10 concentrations are hence clearly due to the FINN’s overestimates of biomass
burning emissions in the study area.



Atmosphere 2020, 11, 91 26 of 30
Atmosphere 2020, 11, 91 26 of 30 

 

 

Figure 17. Comparisons of daily total 3BEM (a,c,e) and FINN (b,d,f) emissions (kg m−2 day−1) over the 

study area averaged over 31 days in March 2015. Top to bottom rows: CO, SO2, and NO emissions, 

respectively. The black squares in each sub-figure show the locations of ground stations employed in 

this study. 

Table 10. Daily total 3BEM and FINN emissions (kg m−2 day−1) of CO, SO2, and NO averaged over the 

study area and over 31 days in March of 2014 and 2015. 

Emission Species 
March 2014 March 2015 

3BEM FINN 3BEM FINN 

CO 154.06 498.15 133.08 440.06 

SO2 0.88 3.00 0.77 2.66 

NO 2.14 12.88 1.83 11.30 

Figure 17. Comparisons of daily total 3BEM (a,c,e) and FINN (b,d,f) emissions (kg m−2 day−1) over
the study area averaged over 31 days in March 2015. Top to bottom rows: CO, SO2, and NO emissions,
respectively. The black squares in each sub-figure show the locations of ground stations employed in
this study.



Atmosphere 2020, 11, 91 27 of 30

Table 10. Daily total 3BEM and FINN emissions (kg m−2 day−1) of CO, SO2, and NO averaged over
the study area and over 31 days in March of 2014 and 2015.

Emission Species
March 2014 March 2015

3BEM FINN 3BEM FINN

CO 154.06 498.15 133.08 440.06
SO2 0.88 3.00 0.77 2.66
NO 2.14 12.88 1.83 11.30

4. Discussion and Conclusions

A system for simulating the biomass burning aerosol transport at high resolution for the northern
region of Thailand, which is in the tropics, is evaluated. The WRF-Chem model is employed to
simulate biomass burning aerosol transport at 5 km resolution for the 3-month period covering from 1
February–30 April 2014 and 2015. The NCEP final analyses and the anthropogenic emission inventories
from RETRO and EDGAR are employed. Biomass burning aerosol transport is simulated separately
using two different biomass burning emissions inventories, i.e., 3BEM and FINN. PM10 dry mass
concentrations are simulated using 3BEM (WRF-3BEM); those simulated using FINN (WRF-FINN),
and their averages (WRF-AVG) are evaluated using hourly, daily, and monthly mean measurements
from 12 and 13 ground stations for the years 2014 and 2015, respectively.

While the WRF-FINN and WRF-AVG simulations for hourly, daily, and monthly PM10
concentrations are significantly overestimated, the WRF-3BEM simulations agree well with the
measurements. WRF-3BEM-simulated hourly, daily, and monthly PM10 concentrations are almost
unbiased; that is, their MEs (E[simulations-measurements]) are −0.54, −0.18, and −2.02 µg m−3,
respectively. WRF-3BEM’s monthly average PM10 concentrations—computed using all ground
stations and for both years—are very close to that of measurements, i.e., 87.20 µg m−3 for WRF-3BEM
and 89.22 µg m−3 for measurements, while those for WRF-FINN and WRF-AVG are 103.35 and 95.27
µg m−3, respectively. RMSEs of WRF-3BEM simulations are also much lower than those of WRF-FINN
and WRF-AVG simulations. RMSE of WRF-3BEM simulated hourly PM10 concentrations is 46.22 and
15.99% less than those of WRF-FINN and WRF-AVG, respectively. RMSE of WRF-3BEM simulated daily
PM10 concentrations is 55.61 and 27.91% lower than those of WRF-FINN and WRF-AVG, respectively.
RMSE of WRF-3BEM simulated monthly PM10 concentrations is 72.00 and 47.01% less than those
of WRF-FINN and WRF-AVG, respectively. WRF-3BEM simulations are well correlated with the
measurements of CCs of 0.76 and 0.89 for the daily and monthly PM10 concentrations, respectively.

The reason for WRF-FINN’s significant overestimates of PM10 concentrations in the study area is
investigated by comparing the original 3BEM and FINN biomass burning emissions (kg m−2 day−1) of
CO, SO2, and NO. The comparisons show that FINN emissions are significantly higher than those
of 3BEM, particularly over the areas surrounding the stations with high PM10 concentration errors.
Since WRF-3BEM-simulated PM10 concentrations are in agreement with observations, FINN emissions
are significantly overestimated over the northern region of Thailand. The WRF-FINN’s significant
overestimates of PM10 concentrations in the study are also consistent with the results presented by [8],
which has shown that the monthly average PM10 concentration at 27 km resolution for the same 13
ground stations employed in this study with the addition of the Tap Mun station located in Hong
Kong simulated using FINN is 2.18 times higher than that of measurements. Since [46] has previously
shown that 3BEM’s CO emissions are higher than those of FINN over Brazil, the same biomass burning
emissions inventory can perform very differently for different areas. The biomass burning emissions
inventory needs to be carefully selected to be appropriate for each study area.

The high-resolution biomass burning aerosol transport simulation system WRF-3BEM developed
in this study performs much better than those developed in other previous studies for the same study
area. WRF-3BEM is capable of providing useful high-resolution biomass burning aerosol transport
simulations for the northern region of Thailand and will be an important tool for mitigating and
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solving the biomass burning emission impacts to the society. The simulation accuracy could be
further improved by employing a higher resolution, and by using more accurate topographic data,
land use data, tropospheric analyses, emission data, aerosol transport simulation models, and data
assimilation techniques.
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