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Abstract: The processes removing aerosols from the atmosphere during rainfall are generically 
referred to as scavenging. Scavenging influences aerosol distributions in the atmosphere, with 
consequent effects on cloud properties, radiative forcing, and human health. In this study, we 
investigated the below-cloud scavenging process, specifically focusing on the scavenging of 0.2 to 2 
µm-sized microbial aerosols by populations of water drops with average diameters of 3.0 and 3.6 
mm. Rainfall was simulated in convective boundary layer air masses by dispensing the water drops 
from a 55 m bridge and collecting them at ground level. Particles and microbial cells scavenged by 
the water drops were visualized, enumerated, and sized using scanning electron and 
epifluorescence microscopy. Aerosolized particles and DNA-containing microbial cells of 2 µm 
diameter were scavenged at efficiencies similar to those reported previously in empirical studies; 
however, the efficiencies derived for smaller aerosols were significantly higher (one to three orders 
of magnitude) than those predicted by microphysical modeling. Application of the derived 
scavenging efficiencies to cell data from rainfall implies that, on average, approximately 50 to 70% 
of the 1 µm microbial cells in the precipitation originated from within the cloud. Further study of 
submicron to micron-sized aerosol scavenging over a broader raindrop size distribution would 
improve fundamental understanding of the scavenging process and the capacity to estimate 
(bio)aerosol abundances in the source cloud through analysis of rainfall. 
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1. Introduction 

Particles aerosolized from natural and anthropogenic sources are transported horizontally and 
vertically in the atmosphere, where they can have direct effects on the formation of clouds and 
precipitation by serving as cloud condensation and ice nuclei, respectively [1]. In-cloud water 
droplets that form around aerosols (i.e., in the wet phase) are deposited in precipitation together with 
aerosols that are scavenged by rain drops as they descend through the atmosphere. In fact, the 
scavenging of aerosols by rain drops is the major process of particle deposition from the troposphere [2]. 
As such, knowledge of wet deposition processes is vital for understanding its consequences on global 
distributions and concentrations of aerosols in the atmosphere. 

Multiple mechanisms are involved in aerosol scavenging by rain drops, including inertial 
impaction, Brownian diffusion, and interception [1,3]. Aerosol scavenging simulations that consider 
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these mechanisms are generally in good agreement with empirical observations for the scavenging 
of particles <0.1 and >1 µm in diameter [4]. However, the predictive value of existing models is limited 
because they significantly underestimate scavenging efficiencies for particles that are within the 
“scavenging gap” (0.1–1 µm in diameter) [5–7]. The scavenging gap paradox is specifically related to 
particles of this size because their diameters are too small to experience inertial impaction and too 
large to be subject to Brownian diffusion [5]. Based on these assumptions, models considering 
scavenging gap-sized aerosols infer interception to be the primary mode of scavenging by drops [3]. 
In this process, the particle impacts the surface of the drop after following streamlines of a distance 
equal to the particle’s radius [8]. Additional mechanisms expected to affect the scavenging process 
include thermo-, electro-, and diffusio-phoresis, whereby differences in temperature, charge, and 
presence of a gas concentration gradient, respectively, induce particle motion [9–11]. 

An improved understanding of the scavenging gap phenomenon is highly relevant to 
aerobiology since the majority of microbial aerosols are within or near this size range [12–14]. In 
addition to the role of wet deposition in dissemination of microbiota, there is evidence that certain 
bioaerosols may play roles in the formation of precipitation by serving as efficient ice nucleating 
particles [15–18]. Since logistical challenges have limited opportunities to study microorganisms in 
cloud water droplets, the characterization of microbes in precipitation is often used as a proxy for 
cloud water compositions [19]. However, experimental data support that bacteria and fungi are 
scavenged from the atmosphere during precipitation events [20,21], complicating efforts to infer 
cloud water compositions from rainfall. The wet deposition process for bacterial-sized aerosols is 
poorly constrained by empirical data, and to our knowledge, scavenging of micron-to sub-micron- 
sized aerosols has not been experimentally examined for drop diameters outside of the 2–2.6 mm 
range. Therefore, new data are necessary to validate the veracity of predictions by scavenging models 
for the range of bioaerosol sizes observed in the atmosphere [22]. 

This study examined the efficiency at which two water drop sizes captured 0.2 to 2 µm aerosols 
while descending through the atmosphere, with the specific objective of deriving data relevant for 
understanding wet deposition processes of microorganisms and similarly sized particles. The drop 
sizes (average equivalent diameters of 3.0 and 3.6 mm) used in these experiments are similar to those 
typically observed in thunderstorms that form from melting ice particles [2]. The scavenging 
efficiencies we derived provide the first empirical observations for aerosol sizes that are typical for 
most bacteria [14] and fall within the “scavenging gap” [5]. We discuss the implications of our 
findings for understanding wet scavenging of microbial bioaerosols in the atmosphere and how 
inverse modeling may be used to estimate bioaerosol abundances in precipitating source clouds. 

2. Materials and Methods 

2.1. Site Description 

The field site for this study is located at the Virginia Tech Transportation Institute Smart Road 
Bridge (SRB) in Blacksburg, VA (USA). The location on the SRB where experiments were performed 
is 55 m above ground level. Further detail on the site is provided in Hanlon et al. [20]. 

2.2. Simulated Rain Events 

Eight simulated rain events (SREs) were generated using two commercially available ~10 L 
watering cans (Gardener’s Supply, # 06-341). The cans have interchangeable stainless-steel rose 
heads, which were modified so that two size populations of water drops could be generated (the 
holes were 1.65 ± 0.02 mm and 1.04 ± 0.02 mm in diameter). Each watering can was cleaned using 
detergent and rinsed thoroughly with deionized water. Prior to each experiment, the watering cans 
were flushed with 2 L of 0.22 µm-filtered deionized water to reduce contributions of contaminating 
cells and particles to the measurements. 

Six liters of 0.22 µm-filtered deionized water was poured from the watering cans during each 
experiment, and a total of ~1 L of each sample was successfully recovered ~2 m above ground in three 
117 L galvanized cans (Home Depot, cat #001223296) that were lined with sterile polypropylene bags 
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(Fisher #01-830E, 122 cm × 94 cm). Each SRE was approximately the same duration (mean of 41 s). 
After collection, the water was transferred to sterile 1-L Nalgene bottles (Nalgene #2187-0032) and 
chilled on ice. Immediately after return to the laboratory (~4 h), the water samples were fixed by the 
addition of formalin to a final concentration of 4% (v/v), stored at 4 °C, and processed within 30 days 
of collection. 

To determine the mean volumes of the drop populations, two of the SREs (7 and 8, watering 
cans with 1.65 ± 0.02 mm and 1.04 ± 0.02 mm diameter holes, respectively) were collected in a dewar 
containing liquid nitrogen [23] and processed as described previously [20]. Briefly, the frozen water 
drops collected in the liquid nitrogen were recovered and placed into individual microcentrifuge 
tubes. These drops were then thawed and their volume was determined using a micropipette [23]. 

Procedural blanks were prepared for each SRE and analyzed in parallel to assess the level of 
background microbe and particle contamination associated with the measurements. The controls 
used the same water source as the SREs but were poured directly into a bag-lined galvanized can, 
collected, and analyzed. 

2.3. Measurement of Ambient Particulate Matter 

Two Plantower PMS7003 particle sensors and two Nova Fitness SD021 particle sensors were 
positioned adjacent to where the SREs were deployed from the top of the bridge. Both sensors 
measure particulate matter between 0.3 and 10 µm in diameter. Data were continuously collected 
during the experiments, with the Plantower PMS7003 measuring ambient particulate matter (PM) ≤1, 
≤2.5, and ≤10 µm in diameter, and the Nova Fitness SD021 measuring PM ≤ 2.5, and ≤10 µm. The 
particulate matter data are expressed by weight (µg m−3). 

2.4. Characterization of Microbial Cells and Particles 

To enumerate DNA-containing cells, triplicate 10 mL samples from each SRE and control were 
stained with a final concentration of 25× SYBRTM Gold (Life Technologies Corp., cat. no. S-11494) in 
the dark for 15 min. The samples were then filtered onto black, 25 mm diameter 0.22 µm 
polycarbonate Isopore™ filters (Millipore, cat. no. GTTP04700). A 4 µL drop of antifade (1:1 solution 
of glycerol and PBS, 0.1% phenylenediamine) was added to each of the filters before coverslips were 
mounted. A Nikon ECLIPSE Ni epifluorescence microscope was used to visualize and enumerate the 
DNA-containing microbial cells in sixty random fields of view (FOV, area of 1.8 × 104 µm2) on each 
filter. NIS-Elements Advanced Research software (Nikon, Inc., Tokyo, Japan) was used to 
automatically trace and measure the cells in each FOV. Cells that were present as aggregates were 
not individually counted; each aggregate was sized and considered a single particle [24]. 

For particle characterization, triplicate 10 mL samples from eight SREs and controls were filtered 
onto white, 25 mm diameter 0.22 µm polycarbonate filters (GE Water & Process Technologies, cat. 
no. K02CP02500) and sputter coated with gold palladium for 1.5 min [12]. Particles were visualized 
using a Hitachi SU5000 Schottky Field-Emission scanning electron microscope under high vacuum 
mode. Sixty random FOVs (69 µm2 each) from each filter were imaged at a voltage of 11–12 kV and 
the particle area was traced and analyzed using ImageJ software [12,25]. Particles that appeared 
aggregated were counted as a single particle [24]. 

Particle and cell area was used to calculate equivalent diameters according to the following 
formula [24]: 

Equivalent diameter = √(4 × area/π) (1) 

Particle and cell concentration per SRE sample was calculated based on the average number of 
objects per FOV, filtration area (226.9 mm2), and sample volume (10 mL). Particles and cells with 
equivalent diameters of 0.2 to 2 µm were binned into 10 categories of 0.2 µm increments. For each 
size bin where the sample and control concentrations were significantly different, the mean number 
of objects (particles or cells) per FOV in the controls were subtracted from the mean number of objects 
per FOV in the samples. The binned number concentrations were used to estimate particle and cell 
mass by assuming a particle density of 1.0 g cm−3 and cell density of 1.1 g cm−3 [26,27]. 
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2.5. Ambient Particulate Size Distribution 

The size distribution of ambient aerosols 0.2 to 2 µm in diameter was estimated by Equation (2) 
[28]: 

n(r) = 0.05 × Φ × r−4 (2) 

where n is the number of particles cm−3 of radius r (µm) and Φ is the volume of particles per unit 
volume of air sampled. This equation is based on Junge’s power law [29] and creates size distribution 
curves that have been shown to agree well with empirical measurements of aerosols with radii >0.05 
µm [24,28,29]. PM10 measurements taken during each SRE (W) and the particle density estimated per 
unit volume (ρ) were utilized in the calculation of Φ (Φ = W/ρ; [28]). The mass concentration 
distribution of ambient particles was inferred from the number concentration distribution and 
assuming a density of 1.0 g cm−3 [27]. Cell mass and number distribution was estimated from the 
ambient particle distribution, the cell to particle ratio observed by bin in the 3.6 mm drops (Tables S1 
and S2), and assuming a cell density of 1.1 g cm−3 [26]. 

2.6. Calculation of Scavenging Efficiencies 

The efficiency of drop scavenging was calculated according to Equation (3) [11]: 

E = (2 × D × [PM]drop)/(3 × H × [PM]air) (3) 

where E is the scavenging efficiency for a drop of diameter D, [PM]drop is mass concentration (µg m−3) 
for particles of diameter d in the drop, H is the fall height of the drop, and [PM]air is the mass 
concentration (µg m−3) of particulate matter of diameter d in the ambient air (Equation (2)). 

2.7. Application of the Scavenging Efficiencies to Rain Data 

The capture cross-section of a droplet, namely E × π × D2 / 4 [21], was used to estimate the volume 
of air scavenged by a drop (V) falling from a cloud-base height of B (in meters). This was calculated 
according to Equation (4): 

V = (π × D2)/(4 × E × B) (4) 

The number of particles or cells removed from the air column below the cloud by a single drop 
was estimated by multiplication of V by the number of ambient particles or cells m−3. 

To assess the contribution of scavenging to the microbes deposited in rain at the surface, the 
fraction of cells scavenged and that originated from the precipitating cloud was estimated using select 
events from a two-year record of rainfall data from Baton Rouge, Louisiana [30]. Following Marshall 
and Palmer’s [31] drop-size distributions derived from rain rates, 13 rain events were chosen for the 
scavenging calculations, representing end members of rain rates (mean 2.8 mm h−1, n = 7; and 14.5 
mm h−1, n = 6) that would be expected to contain drop sizes relevant to this study (average equivalent 
diameter of 3.0 and 3.6 mm). The cloud-base heights for both subsets of storms ranged from 100 to 
1160 m above ground level, and the cell concentrations in the rain samples ranged from 8.45 × 104 to 
1.3 × 106 cells L−1 [30]. Using Equation (2), the number of 1 µm bioaerosols (in cells m−3) for each rain 
event was estimated based on the 24-h average PM10 records for Baton Rouge (US Environmental 
Protection Agency daily records, https://www.epa.gov/outdoor-air-quality-data). The estimated 
number of cells scavenged by each rain drop size was based on the cloud-base height for each rain 
event, the capture cross-section of each raindrop, and the concentration of 1 µm bioaerosols (Equation 
(4)). The difference between the number of scavenged cells per liter of drops and the cell density in 
each rain sample provides an estimate for the number of cells that originated from the cloud (As 
compared to below-cloud). 

2.8. Statistical Analyses 

R Software Version 3.5.1 [32] was used for all statistical analyses. Differences between 
concentration, volume, and efficiencies were determined using Student’s t-tests (base R). Analysis of 
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variance (ANOVA) was utilized to test the differences between measured and calculated ambient 
particle concentrations. Scavenging efficiency models were produced and plotted with the ggplot2 
package [33]. The models were fit with the stat_smooth function using the linear model method and 
the y = x + x2 formula [34]. 

3. Results 

3.1. Water Drop Volumes 

Hundreds of drops generated from two dispensing cans with different hole sizes (1.04- and 1.65-
mm diameter) were recovered in liquid nitrogen from SRE 7 and 8 (Table 1). From these populations, 
the volume of randomly selected drops from SRE 7 (n = 56) and SRE 8 (n = 52) was measured. Mean 
drop volumes of 14.6 ± 1.6 µL and 25.0 ± 1.9 µL (± standard error of the mean) from the small and 
large holes, respectively, in the dispensing cans were significantly different (t-test, p < 0.001). 
Assuming a sphere, the drop volumes correspond to equivalent diameters of 3.0 ± 1.5 mm and 3.6 ± 
1.5 mm (Figure 1). 

 
Figure 1. The diameter of sampled drop populations, inferred by volume, based on the size (1.65 or 
1.04 mm) of the holes in the rose head. Boxes represent the interquartile range, with the middle 
horizontal line indicating the median, and whiskers represent the minimum and maximum values. 

Table 1. Total particle, cell, and environmental data from simulated rain events. The total particles 
and cells scavenged (0.2 to 2 µm in diameter) are average concentrations ± standard error of the mean, 
n = 3. (EDT: Eastern Daylight Time). 

Sim
ulat
ed 

Rain 
Eve
nt 

Date 
(d/m/yy) 

Start 
Time 
(EDT) 

Total 
Pour 
Time 

(s) 

Mean 
Drop 

D 
(mm) 

Mean 
Particles 
Drop−1 

Mean 
Cells 

Drop−1 

Air 
°C 

Wind 
Speed 
m s−1 

% 
Rela
tive 
Hu

midi
ty 

PM10 
µg m−3 

PM2.

5 µg 
m−3 

PM1 
µg 
m−3 

1 1/8/17 1000 37 3.6 
2.8 ± 
0.85 × 

104 

46 ± 10 23 0.62 62 
19.9 ± 

2.6 
18.2 
± 2.2 

13.8 
± 0.7 

2 1/8/17 1015 27 3.6 
2.2 ± 
0.19 × 

104 

44 ± 3 26 0.51  

3 1/8/17 1024 34 3.6 
4.5 ± 
0.22 × 

104 

113 ± 
31 

26 0.72 62 
18.6 ± 

2.6 
17.1 
± 2.2 

14.9 
± 2.4 

4 1/8/17 1040 57 3.0 
3.2 ± 

0.043 × 
103 

89 ± 4 26 0.72  
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5 1/8/17 1050 51 3.0 
1.7 ± 
0.33 × 

104 

106 ± 
25 

28 0.82 62 
26.7 ± 

6.7 
24.6 
± 5.9 

19.5 
± 6.1 

6 1/8/17 1101 30 3.0 
1.0 ± 
0.21 × 

104 

54 ± 10 27 0.93  

7 2/8/17 1042 34 
3.6 ± 
1.5 * 

2.2 ± 
0.85 × 

104 

88 ± 24 26 1.3 69 
22.9 ± 

3.4 
20.6 
± 2.8 

15.1 
± 1.2 

8 2/8/17 1114 61 
3.0 ± 
1.5 * 

8.8 ± 6.3 
× 103 

23 ± 8 27 1.6  

* Droplet diameters determined following SRE collection. 

3.2. Ambient Particulate Size Distribution 

Ambient PM10 concentrations measured during the experiments were not statistically different 
(t-test, p > 0.05) and averaged 22 ± 4 µg m−3. Using this value and Equation (2), the number distribution 
of particles m−3 was determined (Figure 2). The concentration of ambient particles and cells were 
estimated from this distribution as described in Section 2.5 (Figure 2). 

 
Figure 2. Inferred size distribution of the number and mass concentration of total ambient particulates 
(solid line) and microbial cells (dashed line). Standard error of the mean = ±10%, n = 4. 

The PM10 mass concentration distribution (Figure 2) in the sampled air masses are consistent 
with the Environmental Protection Agency Air Quality Index category “Good” and indicative of 
relatively low anthropogenic emissions. Inferred biomass was highly similar across the size bins, but 
inferred cell concentrations were highest for cells <1 µm in diameter. The estimated µg m−3 
distribution (Figure 2) was not statistically different (ANOVA, p = 0.99) from measured values of 
PM10, PM2.5, and PM1 sampled during the SREs (Figure S1). Based on these results, the calculated µg 
m−3 distribution was used in the scavenging efficiency calculations. 

3.3. Cell and Particle Scavenging 

Based on data from the procedural controls and a limit of detection at 3-sigma, our method 
allowed detection of 9.0 × 102 cells and 6.5 × 105 particles mL−1. The concentrations of particles (raw 
mean 1.0 ± 0.18 × 106 mL−1) and cells (raw mean 2.0 ± 0.049 × 104 mL−1) in samples for the 3.6 mm drops 
were above the level of detection and significantly different (t-test, p < 0.001) from the procedural 
controls (background average 2.1 ± 1.1 × 102 cells and 3.5 ± 0.70 × 105 particles mL−1). For samples of 
the 3.0 mm drops, the raw concentrations of cells (raw mean 1.3 ± 0.18 × 103 cells mL−1) were also 
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above the level of detection and significantly different from the background concentrations; however, 
the particle data (raw mean 5.8 ± 1.1 × 105 particles mL−1) were only above the level of detection in the 
0.6 to 0.8 and 1.4 to 1.6 µm diameter size bins. Background concentrations were subtracted from the 
raw sample concentrations for all size bins that were above the level of detection (Figure 3). 

 

Figure 3. Total particles (triangle) and DNA-containing cells (circle) scavenged per mL of 3.6 (blue) 
or 3.0 (red) mm drops. The data are binned by particle/cell diameter (µm), as described in Section 2.5. 
Error bars indicate standard error of the mean, n = 4. 

Particle abundance between individual size bins was significantly different based on drop size 
(t-test, p < 0.01). The concentrations of 0.2 to 2 µm particles collected by the 3.0-and 3.6-mm drops 
averaged 1.4 ± 0.42 × 105 and 7.3 ± 1.4 × 105 particles mL−1, respectively (Figure 3, Tables S1and S2). 
This equates to 1.0 ± 0.29 × 104 and 3.0 ± 0.55 × 104 particles scavenged per 3.0-or 3.6-mm drop (Table 
1), respectively, while descending 53 m in the atmosphere. Bulk samples of the 3.0-and 3.6-mm drops 
contained 0.4 to 2 µm cells at average concentrations of 9.9 ± 2.7 × 102 and 1.8 ± 0.42 × 103 cells mL−1, 
respectively (Figure 3, Tables S1and S2). This corresponds to 68 ± 18 and 73 ± 17 cells scavenged per 
3.0-or 3.6-mm drop, respectively, during the experiments. 

The scavenging efficiencies of particles and cells collected by the 3.6 mm drops showed an 
identical trend, with minimum values observed for the smallest particle and cell diameters (Figure 4, 
Tables S1and S2). The scavenging efficiencies of 3.6 mm drops for cells and particles with mean 
diameters 0.5 to 1.9 µm were not significantly different (p > 0.05) (Tables S1and S2). Similarly, 
scavenging efficiencies of 3.0 mm drops were not significantly different between cells and particles 
within the 0.6 to 0.8 and 1.4 to 1.6 µm bins (p > 0.05) (Tables S1and S2). Therefore, the particle and cell 
data were combined and fitted to quadratic models to examine the difference in scavenging 
efficiencies between the 3.0-and 3.6-mm drops (Figure 4). The highest scavenging efficiencies for both 
drop sizes were for the largest (2 µm) particles, and the efficiency decreased exponentially with 
particle size. The efficiency at which 3.6 mm drops scavenged particles in the 0.4 to 2 µm size range 
was ~twofold higher than the 3.0 mm drops. 
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Figure 4. Scavenging collection efficiencies (all technical replicates from eight SREs) derived for 
particles and cells collected by 3.6 mm and 3.0 mm drops. The data were fitted to quadratic models 
(solid lines) and are provided in supplemental Table 1. The grey shaded regions indicate 95% 
confidence intervals. 

To explore the contribution of scavenged bioaerosols to cell concentrations in precipitation, we 
used select events from a published precipitation dataset collected in Louisiana [30]. We assumed the 
majority of bacterial-sized aerosols were 1 µm in diameter and used the corresponding modelled 
scavenging efficiencies for 3.0-and 3.6-mm drops to infer source contributions from scavenging 
versus the precipitating cloud (Table 2). Low intensity rain events are associated with smaller drops 
(1 to 2 mm), whereas moderate to heavy rainfalls can produce larger drops (1 to 4 mm) [2]. Our 
analysis implies higher scavenging of cell sizes within the scavenging gap range for larger drop sizes 
and rainfall intensities. For example, calculations based on the lowest intensity rainfalls (2.8 mm h−1) 
suggest 27% of cells in precipitation were scavenged by drops below the cloud, whereas higher 
intensity rainfalls (14.5 mm h−1) had higher rates of scavenging (45%; Table 2). Nevertheless, our data 
and related calculations imply that the majority of cells in these rain samples originated from the 
source cloud. 

Table 2. Effect of drop size and rain intensity on cell scavenging. The proportion of cells in Louisiana 
rain samples that were scavenged below-cloud (%S) or originated from the cloud (%C) were estimated 
using the scavenging efficiencies in Figure 4. Rain data are from [29]. 

Drop 
Diameter 

(mm) 

Capture Cross 
Section (mm2) 

Scavenging 
Efficiency (1 µm) Drops L−1 

2.8 mm h−1 14.5 mm h−1 
n = 7 n = 6 

%S %C %S %C 

3.6 5 × 10−1 5 × 10−2 4.8 × 104 36 64 45 55 
3.0 2 × 10−1 3 × 10−2 6.8 × 104 27 73 33 67 

4. Discussion 

A number of phoretic forces are known to affect scavenging of particles within the scavenging 
gap range. The negative surface charge possessed by bacterial cells could potentially influence drop 
scavenging through electrophoresis [6]. Nonetheless, we observed no significant differences in drop 
scavenging of microbial cells and particles with mean equivalent diameters of 0.5 to 1.9 µm (Figure 
4). Diffusiophoresis can occur during drop evaporation, with a higher concentration of water vapor 
nearest the evaporating drop resulting in particle motion away from the drop [1]. Thermophoresis is 
also possible if there is a temperature gradient between the drop and the surrounding air. For 
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example, aerosols may be attracted toward an evaporating drop that becomes colder at its surface. 
However, phoretic effects are generally thought to be negligible unless there is a steep temperature 
or gas gradient (e.g., >1 °C difference between the drop surface and air temperature) [1,35]. Brownian 
diffusion may also effect scavenging by bringing a particle into contact with a drop, and this random 
motion is important for the scavenging of particles <0.2 µm in diameter [1]. For aerosol particles >2 
µm in diameter, chemical composition may affect scavenging rates; however, its effects may be 
negligible for the particle sizes examined in this study [36]. Considering this, the most relevant 
scavenging mechanism applicable to particles with equivalent diameters of 0.2 to 2 µm is 
interception. 

Drop scavenging of particles in the scavenging gap size range (Figure 4) occurs at much higher 
efficiencies than the model predictions of Quérel et al. [22] and Slinn [3] (Figure S2). The scavenging 
efficiencies derived for the 3.0 and 3.6 mm drops were at least an order of magnitude greater than 
those predicted in the DESCAM model (Figure S2; DEtailed SCavening Model, [11,22]). For example, 
the DESCAM model efficiency for 0.81 µm diameter particles is 9.30 × 10−4 for 3.25 mm drops, whereas 
observed efficiencies for 3.0 and 3.6 mm drops are 2 × 10−2 and 4 × 10−2, respectively (Figure S2) [22]. 
The empirically derived drop scavenging efficiencies are also ~600-fold higher than those for 3.6 mm 
drops using the interception term from the Slinn model (Figure S2) [37]. This is consistent with 
previous studies that have observed scavenging efficiencies for particles within the scavenging gap 
one to five orders of magnitude greater than efficiencies predicted using the Slinn model [7,10,37,38]. 
Volken and Schumann [39] and Chate and Pranesha [10] suggest that some of the mechanisms 
neglected in current models (e.g., phoretic forces and the growth of hygroscopic aerosol particles) 
may explain the discrepancies. Nevertheless, attempts to incorporate parameters that may be relevant 
(i.e., thermophoresis, diffusiophoresis, and electric forces) have not improved the predictive value of 
models for particles within the scavenging gap [10]. 

Rain drops in many precipitation events are 1 to 3 mm in diameter, with larger drops typically 
forming from melting ice particles produced by convective storms [2,31]. The drop diameters (3.0 and 
3.6 mm) examined in this study are relevant for low to moderately intense rainfall rates in the range 
of 2.5–25 mm h−1 [31,40]. There have been few empirical data available on scavenging within the 
scavenging gap by drops of known diameters. For example, our results generally agree with those 
measured during natural rainfall events [6,7]; however, the lack of drop diameter data makes direct 
comparisons difficult. Also notable is the work of Pranesha and Kamra [41], who examined large 
water drops (3.6, 4.2, and 4.8 mm diameter) and the scavenging of particles 1.9 to 6.4 µm diameter. 
The scavenging efficiency they found for 3.6 mm drops of 1.9 µm diameter particles (~3 × 10−1) is 
similar to our estimate (2 × 10−1; Figure S2). Although below-cloud scavenging of bacterial and fungal 
bioaerosols has been studied previously [20], there have been no measurements of drop scavenging 
efficiencies for particles that are representative of bacterial cell sizes <2 µm. 

Based on the drop population sizes tested in this study, scavenging efficiency increases with 
drop diameter (Figure 4). This relationship has been observed previously [42–44], but it is not 
consistent with all studies. For example, Pranesha and Kamra [41] observed a decrease in collection 
efficiency of particle diameters 1.9 to 6.4 µm with increasing drop size (3.6–4.8 mm). The Slinn model 
also predicts a decrease in collection efficiency with increasing drop size [37]. However, Hampl et al. 
[44] found that collection efficiency increased with increasing drop diameter (1.44 to 5.08 mm) for 
silver chloride aerosols with average diameters of 0.366 µm. The experimental data of Beard et al. 
[42] for scavenging of 0.38 to 4.4 µm particles by 0.28 to 1.24 mm drops also demonstrated increased 
efficiency with drop size. Furthermore, there were no discernable differences in the experimental 
collection efficiencies measured by Quérel et al. [22] for 2.0 to 2.62 mm drops, suggesting little to no 
difference between drop sizes. This collection of contrary results, generated under a variety of 
experimental conditions (e.g., temperature, relative humidity, drop charge, aerosol composition and 
diameter), makes clear the complexity of this phenomenon and need for future studies that examine 
scavenging under controlled experimental conditions [4,38]. 

In addition to improving understanding of bioaerosol removal by descending rain drops in the 
atmosphere, information about the scavenging process can be used to assess the fraction of particles 
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in rain that originated from the source cloud. We used data on microbial cell concentrations from 
Louisiana rain [30] and the scavenging behaviors documented in this study to infer that the majority 
(55% to 73%) of 1 µm microbes in low to moderate rainfall intensity events originated from within 
the cloud (Table 2). When compared to low intensity rainfall, moderately intense rainfall produces 
larger drop sizes, which tend to be more efficient at scavenging below-cloud aerosols (Figure 4). Our 
results are consistent with recent observations showing the fungal composition of rain correlated 
with lower altitude characteristics of storms, whereas the smaller-sized bacteria assemblages 
correlated with macroscale drivers that implied nonlocal sources [45]. It should be noted our 
calculations have ignored the contribution of microbial aerosols within the cloud that are subject to 
scavenging as drops descend through the cloud. As such, we are likely overestimating the fraction of 
aerosols that are sourced from the wet phase of a cloud. Furthermore, since we did not consider the 
progressive reduction of aerosol concentration during each storm, the total aerosols scavenged per 
rain event are likely overestimated. 

Various studies have leveraged the scavenging gap in attempts to estimate the concentration of 
particles and microbial cells in cloud water based on precipitation data [19,30,46]. If, however, the 
contribution of below-cloud scavenging is much larger than currently appreciated, then the cloud 
contribution of particles and cells will be overestimated [19,46] and assumptions inherent to aerosol 
transport models [14,47] may be flawed. For example, the particle transport model utilized by 
Burrows et al. [48] incorporated Slinn model scavenging efficiencies on microbial-sized particles [49], 
which are roughly three orders of magnitude lower than the values we obtained (Figure S2). Hence, 
improved understanding of droplet scavenging efficiency for particles with diameters of 0.2 to 2 µm 
would allow atmospheric residence time estimates for microbial aerosols to be constrained with 
greater confidence. 

5. Conclusions 

Although we did not determine the composition of microorganisms or particles present in the 
air masses sampled, our results (Figure 4) indicate that microbial aerosol composition was less 
important than their equivalent diameter. Therefore, we speculate that altering the microbial species 
that compose the bioaerosols would not have a perceptible effect on scavenging. These experimental 
results are consistent with the limited number of data available from empirical studies (e.g., [41]), 
documenting order of magnitude discrepancies between experimentally-derived scavenging 
efficiencies and those widely used in simulation models [22,37]. Intrinsically, the assumptions on 
which a number of microphysical models are based severely underestimate PM2.5 deposition flux for 
wet processes. New observations of rain scavenging over a broader range of drop diameters would 
improve understanding of how precipitation that deposits microorganisms entrained in cloud water 
droplets affects aerosol distributions in the air masses underlying precipitating clouds, and controls 
removal of atmospheric particles that have important consequences on public health. To our 
knowledge, no studies have considered scavenging processes for submicron aerosols over the entire 
range of drop diameters found in rain (0.5–5 mm) [2]. Future investigations that examine the effect 
of environmental conditions (e.g., temperature and relative humidity), aerosol composition, and a 
wider range of drop sizes could lend valuable insight into the wet deposition process for aerosol sizes 
within the scavenging gap. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1: Comparison 
of measured (particle sensor data) with computed (Equation (2)) PM1, PM2.5-1, and PM10-2.5 values across all SREs, 
Figure S2: Comparison of the scavenging efficiencies derived in this study with published and modeled values, 
Table S1: Drop volumes, Table S2: Scavenging efficiencies from all replicates. 
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