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Abstract: The processes removing aerosols from the atmosphere during rainfall are generically referred
to as scavenging. Scavenging influences aerosol distributions in the atmosphere, with consequent
effects on cloud properties, radiative forcing, and human health. In this study, we investigated
the below-cloud scavenging process, specifically focusing on the scavenging of 0.2 to 2 µm-sized
microbial aerosols by populations of water drops with average diameters of 3.0 and 3.6 mm. Rainfall
was simulated in convective boundary layer air masses by dispensing the water drops from a 55 m
bridge and collecting them at ground level. Particles and microbial cells scavenged by the water drops
were visualized, enumerated, and sized using scanning electron and epifluorescence microscopy.
Aerosolized particles and DNA-containing microbial cells of 2 µm diameter were scavenged at
efficiencies similar to those reported previously in empirical studies; however, the efficiencies derived
for smaller aerosols were significantly higher (one to three orders of magnitude) than those predicted
by microphysical modeling. Application of the derived scavenging efficiencies to cell data from rainfall
implies that, on average, approximately 50 to 70% of the 1 µm microbial cells in the precipitation
originated from within the cloud. Further study of submicron to micron-sized aerosol scavenging over
a broader raindrop size distribution would improve fundamental understanding of the scavenging
process and the capacity to estimate (bio)aerosol abundances in the source cloud through analysis
of rainfall.

Keywords: rain scavenging; aerosols; bioaerosols; wet deposition

1. Introduction

Particles aerosolized from natural and anthropogenic sources are transported horizontally and
vertically in the atmosphere, where they can have direct effects on the formation of clouds and
precipitation by serving as cloud condensation and ice nuclei, respectively [1]. In-cloud water
droplets that form around aerosols (i.e., in the wet phase) are deposited in precipitation together
with aerosols that are scavenged by rain drops as they descend through the atmosphere. In fact, the
scavenging of aerosols by rain drops is the major process of particle deposition from the troposphere [2].
As such, knowledge of wet deposition processes is vital for understanding its consequences on global
distributions and concentrations of aerosols in the atmosphere.

Multiple mechanisms are involved in aerosol scavenging by rain drops, including inertial
impaction, Brownian diffusion, and interception [1,3]. Aerosol scavenging simulations that consider
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these mechanisms are generally in good agreement with empirical observations for the scavenging
of particles <0.1 and >1 µm in diameter [4]. However, the predictive value of existing models is
limited because they significantly underestimate scavenging efficiencies for particles that are within
the “scavenging gap” (0.1–1 µm in diameter) [5–7]. The scavenging gap paradox is specifically related
to particles of this size because their diameters are too small to experience inertial impaction and
too large to be subject to Brownian diffusion [5]. Based on these assumptions, models considering
scavenging gap-sized aerosols infer interception to be the primary mode of scavenging by drops [3].
In this process, the particle impacts the surface of the drop after following streamlines of a distance
equal to the particle’s radius [8]. Additional mechanisms expected to affect the scavenging process
include thermo-, electro-, and diffusio-phoresis, whereby differences in temperature, charge, and
presence of a gas concentration gradient, respectively, induce particle motion [9–11].

An improved understanding of the scavenging gap phenomenon is highly relevant to aerobiology
since the majority of microbial aerosols are within or near this size range [12–14]. In addition to the
role of wet deposition in dissemination of microbiota, there is evidence that certain bioaerosols may
play roles in the formation of precipitation by serving as efficient ice nucleating particles [15–18].
Since logistical challenges have limited opportunities to study microorganisms in cloud water
droplets, the characterization of microbes in precipitation is often used as a proxy for cloud water
compositions [19]. However, experimental data support that bacteria and fungi are scavenged
from the atmosphere during precipitation events [20,21], complicating efforts to infer cloud water
compositions from rainfall. The wet deposition process for bacterial-sized aerosols is poorly constrained
by empirical data, and to our knowledge, scavenging of micron-to sub-micron- sized aerosols has not
been experimentally examined for drop diameters outside of the 2–2.6 mm range. Therefore, new data
are necessary to validate the veracity of predictions by scavenging models for the range of bioaerosol
sizes observed in the atmosphere [22].

This study examined the efficiency at which two water drop sizes captured 0.2 to 2 µm aerosols
while descending through the atmosphere, with the specific objective of deriving data relevant for
understanding wet deposition processes of microorganisms and similarly sized particles. The drop
sizes (average equivalent diameters of 3.0 and 3.6 mm) used in these experiments are similar to
those typically observed in thunderstorms that form from melting ice particles [2]. The scavenging
efficiencies we derived provide the first empirical observations for aerosol sizes that are typical for most
bacteria [14] and fall within the “scavenging gap” [5]. We discuss the implications of our findings for
understanding wet scavenging of microbial bioaerosols in the atmosphere and how inverse modeling
may be used to estimate bioaerosol abundances in precipitating source clouds.

2. Materials and Methods

2.1. Site Description

The field site for this study is located at the Virginia Tech Transportation Institute Smart Road
Bridge (SRB) in Blacksburg, VA (USA). The location on the SRB where experiments were performed is
55 m above ground level. Further detail on the site is provided in Hanlon et al. [20].

2.2. Simulated Rain Events

Eight simulated rain events (SREs) were generated using two commercially available ~10 L
watering cans (Gardener’s Supply, # 06-341). The cans have interchangeable stainless-steel rose heads,
which were modified so that two size populations of water drops could be generated (the holes were
1.65 ± 0.02 mm and 1.04 ± 0.02 mm in diameter). Each watering can was cleaned using detergent and
rinsed thoroughly with deionized water. Prior to each experiment, the watering cans were flushed with
2 L of 0.22 µm-filtered deionized water to reduce contributions of contaminating cells and particles to
the measurements.
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Six liters of 0.22 µm-filtered deionized water was poured from the watering cans during each
experiment, and a total of ~1 L of each sample was successfully recovered ~2 m above ground in three
117 L galvanized cans (Home Depot, cat #001223296) that were lined with sterile polypropylene bags
(Fisher #01-830E, 122 cm × 94 cm). Each SRE was approximately the same duration (mean of 41 s).
After collection, the water was transferred to sterile 1-L Nalgene bottles (Nalgene #2187-0032) and
chilled on ice. Immediately after return to the laboratory (~4 h), the water samples were fixed by the
addition of formalin to a final concentration of 4% (v/v), stored at 4 ◦C, and processed within 30 days
of collection.

To determine the mean volumes of the drop populations, two of the SREs (7 and 8, watering
cans with 1.65 ± 0.02 mm and 1.04 ± 0.02 mm diameter holes, respectively) were collected in a dewar
containing liquid nitrogen [23] and processed as described previously [20]. Briefly, the frozen water
drops collected in the liquid nitrogen were recovered and placed into individual microcentrifuge tubes.
These drops were then thawed and their volume was determined using a micropipette [23].

Procedural blanks were prepared for each SRE and analyzed in parallel to assess the level of
background microbe and particle contamination associated with the measurements. The controls used
the same water source as the SREs but were poured directly into a bag-lined galvanized can, collected,
and analyzed.

2.3. Measurement of Ambient Particulate Matter

Two Plantower PMS7003 particle sensors and two Nova Fitness SD021 particle sensors were
positioned adjacent to where the SREs were deployed from the top of the bridge. Both sensors measure
particulate matter between 0.3 and 10 µm in diameter. Data were continuously collected during the
experiments, with the Plantower PMS7003 measuring ambient particulate matter (PM) ≤1, ≤2.5, and
≤10 µm in diameter, and the Nova Fitness SD021 measuring PM ≤ 2.5, and ≤10 µm. The particulate
matter data are expressed by weight (µg m−3).

2.4. Characterization of Microbial Cells and Particles

To enumerate DNA-containing cells, triplicate 10 mL samples from each SRE and control were
stained with a final concentration of 25× SYBRTM Gold (Life Technologies Corp., cat. no. S-11494) in
the dark for 15 min. The samples were then filtered onto black, 25 mm diameter 0.22 µm polycarbonate
Isopore™ filters (Millipore, cat. no. GTTP04700). A 4 µL drop of antifade (1:1 solution of glycerol and
PBS, 0.1% phenylenediamine) was added to each of the filters before coverslips were mounted. A Nikon
ECLIPSE Ni epifluorescence microscope was used to visualize and enumerate the DNA-containing
microbial cells in sixty random fields of view (FOV, area of 1.8 × 104 µm2) on each filter. NIS-Elements
Advanced Research software (Nikon, Inc., Tokyo, Japan) was used to automatically trace and measure
the cells in each FOV. Cells that were present as aggregates were not individually counted; each
aggregate was sized and considered a single particle [24].

For particle characterization, triplicate 10 mL samples from eight SREs and controls were filtered
onto white, 25 mm diameter 0.22 µm polycarbonate filters (GE Water & Process Technologies, cat. no.
K02CP02500) and sputter coated with gold palladium for 1.5 min [12]. Particles were visualized using
a Hitachi SU5000 Schottky Field-Emission scanning electron microscope under high vacuum mode.
Sixty random FOVs (69 µm2 each) from each filter were imaged at a voltage of 11–12 kV and the particle
area was traced and analyzed using ImageJ software [12,25]. Particles that appeared aggregated were
counted as a single particle [24].

Particle and cell area was used to calculate equivalent diameters according to the following
formula [24]:

Equivalent diameter =
√

(4 × area/π) (1)

Particle and cell concentration per SRE sample was calculated based on the average number of
objects per FOV, filtration area (226.9 mm2), and sample volume (10 mL). Particles and cells with
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equivalent diameters of 0.2 to 2 µm were binned into 10 categories of 0.2 µm increments. For each
size bin where the sample and control concentrations were significantly different, the mean number of
objects (particles or cells) per FOV in the controls were subtracted from the mean number of objects
per FOV in the samples. The binned number concentrations were used to estimate particle and cell
mass by assuming a particle density of 1.0 g cm−3 and cell density of 1.1 g cm−3 [26,27].

2.5. Ambient Particulate Size Distribution

The size distribution of ambient aerosols 0.2 to 2 µm in diameter was estimated by Equation (2) [28]:

n(r) = 0.05 × Φ × r−4 (2)

where n is the number of particles cm−3 of radius r (µm) andΦ is the volume of particles per unit volume
of air sampled. This equation is based on Junge’s power law [29] and creates size distribution curves that
have been shown to agree well with empirical measurements of aerosols with radii >0.05 µm [24,28,29].
PM10 measurements taken during each SRE (W) and the particle density estimated per unit volume (ρ)
were utilized in the calculation of Φ (Φ = W/ρ; [28]). The mass concentration distribution of ambient
particles was inferred from the number concentration distribution and assuming a density of 1.0 g
cm−3 [27]. Cell mass and number distribution was estimated from the ambient particle distribution,
the cell to particle ratio observed by bin in the 3.6 mm drops (Tables S1 and S2), and assuming a cell
density of 1.1 g cm−3 [26].

2.6. Calculation of Scavenging Efficiencies

The efficiency of drop scavenging was calculated according to Equation (3) [11]:

E = (2 × D × [PM]drop)/(3 × H × [PM]air) (3)

where E is the scavenging efficiency for a drop of diameter D, [PM]drop is mass concentration (µg m−3)
for particles of diameter d in the drop, H is the fall height of the drop, and [PM]air is the mass
concentration (µg m−3) of particulate matter of diameter d in the ambient air (Equation (2)).

2.7. Application of the Scavenging Efficiencies to Rain Data

The capture cross-section of a droplet, namely E × π × D2/4 [21], was used to estimate the volume
of air scavenged by a drop (V) falling from a cloud-base height of B (in meters). This was calculated
according to Equation (4):

V = (π × D2)/(4 × E × B) (4)

The number of particles or cells removed from the air column below the cloud by a single drop
was estimated by multiplication of V by the number of ambient particles or cells m−3.

To assess the contribution of scavenging to the microbes deposited in rain at the surface, the
fraction of cells scavenged and that originated from the precipitating cloud was estimated using select
events from a two-year record of rainfall data from Baton Rouge, Louisiana [30]. Following Marshall
and Palmer’s [31] drop-size distributions derived from rain rates, 13 rain events were chosen for
the scavenging calculations, representing end members of rain rates (mean 2.8 mm h−1, n = 7; and
14.5 mm h−1, n = 6) that would be expected to contain drop sizes relevant to this study (average
equivalent diameter of 3.0 and 3.6 mm). The cloud-base heights for both subsets of storms ranged
from 100 to 1160 m above ground level, and the cell concentrations in the rain samples ranged from
8.45 × 104 to 1.3 × 106 cells L−1 [30]. Using Equation (2), the number of 1 µm bioaerosols (in cells
m−3) for each rain event was estimated based on the 24-h average PM10 records for Baton Rouge
(US Environmental Protection Agency daily records, https://www.epa.gov/outdoor-air-quality-data).
The estimated number of cells scavenged by each rain drop size was based on the cloud-base height for
each rain event, the capture cross-section of each raindrop, and the concentration of 1 µm bioaerosols

https://www.epa.gov/outdoor-air-quality-data
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(Equation (4)). The difference between the number of scavenged cells per liter of drops and the cell
density in each rain sample provides an estimate for the number of cells that originated from the cloud
(As compared to below-cloud).

2.8. Statistical Analyses

R Software Version 3.5.1 [32] was used for all statistical analyses. Differences between concentration,
volume, and efficiencies were determined using Student’s t-tests (base R). Analysis of variance (ANOVA)
was utilized to test the differences between measured and calculated ambient particle concentrations.
Scavenging efficiency models were produced and plotted with the ggplot2 package [33]. The models
were fit with the stat_smooth function using the linear model method and the y = x + x2 formula [34].

3. Results

3.1. Water Drop Volumes

Hundreds of drops generated from two dispensing cans with different hole sizes (1.04- and 1.65-mm
diameter) were recovered in liquid nitrogen from SRE 7 and 8 (Table 1). From these populations, the
volume of randomly selected drops from SRE 7 (n = 56) and SRE 8 (n = 52) was measured. Mean drop
volumes of 14.6 ± 1.6 µL and 25.0 ± 1.9 µL (± standard error of the mean) from the small and large
holes, respectively, in the dispensing cans were significantly different (t-test, p < 0.001). Assuming
a sphere, the drop volumes correspond to equivalent diameters of 3.0 ± 1.5 mm and 3.6 ± 1.5 mm
(Figure 1).
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or 1.04 mm) of the holes in the rose head. Boxes represent the interquartile range, with the middle
horizontal line indicating the median, and whiskers represent the minimum and maximum values.
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Table 1. Total particle, cell, and environmental data from simulated rain events. The total particles and cells scavenged (0.2 to 2 µm in diameter) are average
concentrations ± standard error of the mean, n = 3. (EDT: Eastern Daylight Time).

Simulated
Rain
Event

Date
(d/m/yy)

Start
Time
(EDT)

Total
Pour

Time (s)

Mean
Drop D
(mm)

Mean Particles
Drop−1

Mean
Cells

Drop−1
Air ◦C

Wind
Speed
m s−1

%
Relative

Humidity

PM10
µg m−3

PM2.5
µg m−3

PM1
µg m−3

1 1/8/17 1000 37 3.6 2.8 ± 0.85 × 104 46 ± 10 23 0.62 62
19.9 ± 2.6 18.2 ± 2.2 13.8 ± 0.72 1/8/17 1015 27 3.6 2.2 ± 0.19 × 104 44 ± 3 26 0.51

3 1/8/17 1024 34 3.6 4.5 ± 0.22 × 104 113 ± 31 26 0.72 62
18.6 ± 2.6 17.1 ± 2.2 14.9 ± 2.44 1/8/17 1040 57 3.0 3.2 ± 0.043 × 103 89 ± 4 26 0.72

5 1/8/17 1050 51 3.0 1.7 ± 0.33 × 104 106 ± 25 28 0.82 62
26.7 ± 6.7 24.6 ± 5.9 19.5 ± 6.16 1/8/17 1101 30 3.0 1.0 ± 0.21 × 104 54 ± 10 27 0.93

7 2/8/17 1042 34 3.6 ± 1.5 * 2.2 ± 0.85 × 104 88 ± 24 26 1.3 69
22.9 ± 3.4 20.6 ± 2.8 15.1 ± 1.28 2/8/17 1114 61 3.0 ± 1.5 * 8.8 ± 6.3 × 103 23 ± 8 27 1.6

* Droplet diameters determined following SRE collection.
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3.2. Ambient Particulate Size Distribution

Ambient PM10 concentrations measured during the experiments were not statistically different
(t-test, p > 0.05) and averaged 22 ± 4 µg m−3. Using this value and Equation (2), the number distribution
of particles m−3 was determined (Figure 2). The concentration of ambient particles and cells were
estimated from this distribution as described in Section 2.5 (Figure 2).
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(solid line) and microbial cells (dashed line). Standard error of the mean = ±10%, n = 4.

The PM10 mass concentration distribution (Figure 2) in the sampled air masses are consistent with
the Environmental Protection Agency Air Quality Index category “Good” and indicative of relatively
low anthropogenic emissions. Inferred biomass was highly similar across the size bins, but inferred cell
concentrations were highest for cells <1 µm in diameter. The estimated µg m−3 distribution (Figure 2)
was not statistically different (ANOVA, p = 0.99) from measured values of PM10, PM2.5, and PM1

sampled during the SREs (Figure S1). Based on these results, the calculated µg m−3 distribution was
used in the scavenging efficiency calculations.

3.3. Cell and Particle Scavenging

Based on data from the procedural controls and a limit of detection at 3-sigma, our method
allowed detection of 9.0 × 102 cells and 6.5 × 105 particles mL−1. The concentrations of particles (raw
mean 1.0 ± 0.18 × 106 mL−1) and cells (raw mean 2.0 ± 0.049 × 104 mL−1) in samples for the 3.6 mm
drops were above the level of detection and significantly different (t-test, p < 0.001) from the procedural
controls (background average 2.1 ± 1.1 × 102 cells and 3.5 ± 0.70 × 105 particles mL−1). For samples of
the 3.0 mm drops, the raw concentrations of cells (raw mean 1.3 ± 0.18 × 103 cells mL−1) were also
above the level of detection and significantly different from the background concentrations; however,
the particle data (raw mean 5.8 ± 1.1 × 105 particles mL−1) were only above the level of detection in the
0.6 to 0.8 and 1.4 to 1.6 µm diameter size bins. Background concentrations were subtracted from the
raw sample concentrations for all size bins that were above the level of detection (Figure 3).
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Particle abundance between individual size bins was significantly different based on drop size
(t-test, p < 0.01). The concentrations of 0.2 to 2 µm particles collected by the 3.0-and 3.6-mm drops
averaged 1.4 ± 0.42 × 105 and 7.3 ± 1.4 × 105 particles mL−1, respectively (Figure 3, Tables S1 and S2).
This equates to 1.0 ± 0.29 × 104 and 3.0 ± 0.55 × 104 particles scavenged per 3.0-or 3.6-mm drop (Table 1),
respectively, while descending 53 m in the atmosphere. Bulk samples of the 3.0-and 3.6-mm drops
contained 0.4 to 2 µm cells at average concentrations of 9.9 ± 2.7 × 102 and 1.8 ± 0.42 × 103 cells mL−1,
respectively (Figure 3, Tables S1 and S2). This corresponds to 68 ± 18 and 73 ± 17 cells scavenged per
3.0-or 3.6-mm drop, respectively, during the experiments.

The scavenging efficiencies of particles and cells collected by the 3.6 mm drops showed an identical
trend, with minimum values observed for the smallest particle and cell diameters (Figure 4, Tables S1
and S2). The scavenging efficiencies of 3.6 mm drops for cells and particles with mean diameters 0.5 to
1.9 µm were not significantly different (p > 0.05) (Tables S1 and S2). Similarly, scavenging efficiencies of
3.0 mm drops were not significantly different between cells and particles within the 0.6 to 0.8 and 1.4 to
1.6 µm bins (p > 0.05) (Tables S1 and S2). Therefore, the particle and cell data were combined and fitted
to quadratic models to examine the difference in scavenging efficiencies between the 3.0-and 3.6-mm
drops (Figure 4). The highest scavenging efficiencies for both drop sizes were for the largest (2 µm)
particles, and the efficiency decreased exponentially with particle size. The efficiency at which 3.6 mm
drops scavenged particles in the 0.4 to 2 µm size range was ~twofold higher than the 3.0 mm drops.
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confidence intervals.

To explore the contribution of scavenged bioaerosols to cell concentrations in precipitation,
we used select events from a published precipitation dataset collected in Louisiana [30]. We assumed
the majority of bacterial-sized aerosols were 1 µm in diameter and used the corresponding modelled
scavenging efficiencies for 3.0-and 3.6-mm drops to infer source contributions from scavenging
versus the precipitating cloud (Table 2). Low intensity rain events are associated with smaller drops
(1 to 2 mm), whereas moderate to heavy rainfalls can produce larger drops (1 to 4 mm) [2]. Our analysis
implies higher scavenging of cell sizes within the scavenging gap range for larger drop sizes and rainfall
intensities. For example, calculations based on the lowest intensity rainfalls (2.8 mm h−1) suggest 27%
of cells in precipitation were scavenged by drops below the cloud, whereas higher intensity rainfalls
(14.5 mm h−1) had higher rates of scavenging (45%; Table 2). Nevertheless, our data and related
calculations imply that the majority of cells in these rain samples originated from the source cloud.

Table 2. Effect of drop size and rain intensity on cell scavenging. The proportion of cells in Louisiana
rain samples that were scavenged below-cloud (%S) or originated from the cloud (%C) were estimated
using the scavenging efficiencies in Figure 4. Rain data are from [29].

Drop Diameter
(mm)

Capture Cross
Section (mm2)

Scavenging
Efficiency (1 µm) Drops L−1

2.8 mm h−1 14.5 mm h−1

n = 7 n = 6

%S %C %S %C

3.6 5 × 10−1 5 × 10−2 4.8 × 104 36 64 45 55
3.0 2 × 10−1 3 × 10−2 6.8 × 104 27 73 33 67

4. Discussion

A number of phoretic forces are known to affect scavenging of particles within the scavenging
gap range. The negative surface charge possessed by bacterial cells could potentially influence drop
scavenging through electrophoresis [6]. Nonetheless, we observed no significant differences in drop
scavenging of microbial cells and particles with mean equivalent diameters of 0.5 to 1.9 µm (Figure 4).
Diffusiophoresis can occur during drop evaporation, with a higher concentration of water vapor
nearest the evaporating drop resulting in particle motion away from the drop [1]. Thermophoresis is
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also possible if there is a temperature gradient between the drop and the surrounding air. For example,
aerosols may be attracted toward an evaporating drop that becomes colder at its surface. However,
phoretic effects are generally thought to be negligible unless there is a steep temperature or gas gradient
(e.g., >1 ◦C difference between the drop surface and air temperature) [1,35]. Brownian diffusion may
also effect scavenging by bringing a particle into contact with a drop, and this random motion is
important for the scavenging of particles <0.2 µm in diameter [1]. For aerosol particles >2 µm in
diameter, chemical composition may affect scavenging rates; however, its effects may be negligible
for the particle sizes examined in this study [36]. Considering this, the most relevant scavenging
mechanism applicable to particles with equivalent diameters of 0.2 to 2 µm is interception.

Drop scavenging of particles in the scavenging gap size range (Figure 4) occurs at much higher
efficiencies than the model predictions of Quérel et al. [22] and Slinn [3] (Figure S2). The scavenging
efficiencies derived for the 3.0 and 3.6 mm drops were at least an order of magnitude greater than
those predicted in the DESCAM model (Figure S2; DEtailed SCavening Model, [11,22]). For example,
the DESCAM model efficiency for 0.81 µm diameter particles is 9.30 × 10−4 for 3.25 mm drops,
whereas observed efficiencies for 3.0 and 3.6 mm drops are 2 × 10−2 and 4 × 10−2, respectively
(Figure S2) [22]. The empirically derived drop scavenging efficiencies are also ~600-fold higher than
those for 3.6 mm drops using the interception term from the Slinn model (Figure S2) [37]. This is
consistent with previous studies that have observed scavenging efficiencies for particles within the
scavenging gap one to five orders of magnitude greater than efficiencies predicted using the Slinn
model [7,10,37,38]. Volken and Schumann [39] and Chate and Pranesha [10] suggest that some of the
mechanisms neglected in current models (e.g., phoretic forces and the growth of hygroscopic aerosol
particles) may explain the discrepancies. Nevertheless, attempts to incorporate parameters that may be
relevant (i.e., thermophoresis, diffusiophoresis, and electric forces) have not improved the predictive
value of models for particles within the scavenging gap [10].

Rain drops in many precipitation events are 1 to 3 mm in diameter, with larger drops typically
forming from melting ice particles produced by convective storms [2,31]. The drop diameters
(3.0 and 3.6 mm) examined in this study are relevant for low to moderately intense rainfall rates in the
range of 2.5–25 mm h−1 [31,40]. There have been few empirical data available on scavenging within
the scavenging gap by drops of known diameters. For example, our results generally agree with those
measured during natural rainfall events [6,7]; however, the lack of drop diameter data makes direct
comparisons difficult. Also notable is the work of Pranesha and Kamra [41], who examined large
water drops (3.6, 4.2, and 4.8 mm diameter) and the scavenging of particles 1.9 to 6.4 µm diameter.
The scavenging efficiency they found for 3.6 mm drops of 1.9 µm diameter particles (~3 × 10−1) is
similar to our estimate (2 × 10−1; Figure S2). Although below-cloud scavenging of bacterial and fungal
bioaerosols has been studied previously [20], there have been no measurements of drop scavenging
efficiencies for particles that are representative of bacterial cell sizes <2 µm.

Based on the drop population sizes tested in this study, scavenging efficiency increases with drop
diameter (Figure 4). This relationship has been observed previously [42–44], but it is not consistent
with all studies. For example, Pranesha and Kamra [41] observed a decrease in collection efficiency of
particle diameters 1.9 to 6.4 µm with increasing drop size (3.6–4.8 mm). The Slinn model also predicts
a decrease in collection efficiency with increasing drop size [37]. However, Hampl et al. [44] found
that collection efficiency increased with increasing drop diameter (1.44 to 5.08 mm) for silver chloride
aerosols with average diameters of 0.366 µm. The experimental data of Beard et al. [42] for scavenging
of 0.38 to 4.4 µm particles by 0.28 to 1.24 mm drops also demonstrated increased efficiency with drop
size. Furthermore, there were no discernable differences in the experimental collection efficiencies
measured by Quérel et al. [22] for 2.0 to 2.62 mm drops, suggesting little to no difference between
drop sizes. This collection of contrary results, generated under a variety of experimental conditions
(e.g., temperature, relative humidity, drop charge, aerosol composition and diameter), makes clear the
complexity of this phenomenon and need for future studies that examine scavenging under controlled
experimental conditions [4,38].
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In addition to improving understanding of bioaerosol removal by descending rain drops in the
atmosphere, information about the scavenging process can be used to assess the fraction of particles
in rain that originated from the source cloud. We used data on microbial cell concentrations from
Louisiana rain [30] and the scavenging behaviors documented in this study to infer that the majority
(55% to 73%) of 1 µm microbes in low to moderate rainfall intensity events originated from within the
cloud (Table 2). When compared to low intensity rainfall, moderately intense rainfall produces larger
drop sizes, which tend to be more efficient at scavenging below-cloud aerosols (Figure 4). Our results
are consistent with recent observations showing the fungal composition of rain correlated with lower
altitude characteristics of storms, whereas the smaller-sized bacteria assemblages correlated with
macroscale drivers that implied nonlocal sources [45]. It should be noted our calculations have ignored
the contribution of microbial aerosols within the cloud that are subject to scavenging as drops descend
through the cloud. As such, we are likely overestimating the fraction of aerosols that are sourced from
the wet phase of a cloud. Furthermore, since we did not consider the progressive reduction of aerosol
concentration during each storm, the total aerosols scavenged per rain event are likely overestimated.

Various studies have leveraged the scavenging gap in attempts to estimate the concentration
of particles and microbial cells in cloud water based on precipitation data [19,30,46]. If, however,
the contribution of below-cloud scavenging is much larger than currently appreciated, then the
cloud contribution of particles and cells will be overestimated [19,46] and assumptions inherent to
aerosol transport models [14,47] may be flawed. For example, the particle transport model utilized by
Burrows et al. [48] incorporated Slinn model scavenging efficiencies on microbial-sized particles [49],
which are roughly three orders of magnitude lower than the values we obtained (Figure S2). Hence,
improved understanding of droplet scavenging efficiency for particles with diameters of 0.2 to 2 µm
would allow atmospheric residence time estimates for microbial aerosols to be constrained with
greater confidence.

5. Conclusions

Although we did not determine the composition of microorganisms or particles present in the air
masses sampled, our results (Figure 4) indicate that microbial aerosol composition was less important
than their equivalent diameter. Therefore, we speculate that altering the microbial species that compose
the bioaerosols would not have a perceptible effect on scavenging. These experimental results are
consistent with the limited number of data available from empirical studies (e.g., [41]), documenting
order of magnitude discrepancies between experimentally-derived scavenging efficiencies and those
widely used in simulation models [22,37]. Intrinsically, the assumptions on which a number of
microphysical models are based severely underestimate PM2.5 deposition flux for wet processes.
New observations of rain scavenging over a broader range of drop diameters would improve
understanding of how precipitation that deposits microorganisms entrained in cloud water droplets
affects aerosol distributions in the air masses underlying precipitating clouds, and controls removal of
atmospheric particles that have important consequences on public health. To our knowledge, no studies
have considered scavenging processes for submicron aerosols over the entire range of drop diameters
found in rain (0.5–5 mm) [2]. Future investigations that examine the effect of environmental conditions
(e.g., temperature and relative humidity), aerosol composition, and a wider range of drop sizes could
lend valuable insight into the wet deposition process for aerosol sizes within the scavenging gap.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4433/11/1/80/s1,
Figure S1: Comparison of measured (particle sensor data) with computed (Equation (2)) PM1, PM2.5-1, and
PM10-2.5 values across all SREs, Figure S2: Comparison of the scavenging efficiencies derived in this study with
published and modeled values, Table S1: Drop volumes, Table S2: Scavenging efficiencies from all replicates.
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