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Abstract: Surface ozone (O3) is a harmful pollutant and effective strategies must be developed for its
reduction. In this study, the impact of meteorological factors on the annual O3 variability for South
Korea were analyzed. In addition, the regional differences of meteorological factors in six air quality
regions in South Korea (Seoul Metropolitan Area, SMA; Central region, CN; Honam, HN; Yeongnam,
YN; Gangwon, GW; Jeju, JJ) were compared. The analysis of ground observation data from 2001 to
2017 revealed that the long-term variability of O3 concentration in South Korea continuously increased
since 2001, and the upward trend in 2010 to 2017 (Period 2, PRD2) was 29.8% higher than that in
2001 to 2009 (Period 1, PRD1). This was because the meteorological conditions during PRD2 became
relatively favorable for high O3 concentrations compared to conditions during PRD1. In particular,
the increase in the solar radiation (SR) and maximum temperature (TMAX) and the decrease in the
precipitation (PRCP) and wind speed (WS) of South Korea in PRD2 were identified as the main causes
for the rise in O3 concentrations. When meteorological factors and O3 variability were compared
among the six air quality regions in South Korea during PRD1 and PRD2, significant differences were
observed. This indicated that different meteorological changes occurred in South Korea after 2010
due to the different topographical characteristics of each region; thus, O3 variability also changed
differently in each region. Interestingly, for the regions with almost similar meteorological changes
after 2010, the O3 concentration changed differently depending on the difference in the distribution
of emissions. These results indicate that the O3–meteorology relationship shows spatiotemporal
differences depending on the topographical and emission distribution characteristics of each area and
implies that it is necessary to fully consider such differences for efficient O3 reduction.
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1. Introduction

Surface ozone (O3) is one of the harmful air pollutants in the lower atmosphere [1,2]. High levels
of surface O3 pose serious risks to human health, especially the skin, eye irritation, and respiratory
system [3,4]. It also inhibits photosynthesis rates in plants and leads to reduced yields [5]. High levels
of O3 also cause economic losses, such as shortening the lifespan of industrial facilities due to the
strong oxidizing power of O3.

O3 is a secondary pollutant produced by photochemical reactions primarily associated with
nitrogen oxides (NOx) and volatile organic compounds (VOC) [6,7]. The chemistry for determining
the concentration of surface O3 is complicated because of the nonlinear relationships between O3 and
its precursors [8,9]. The production and/or loss of O3 is strongly affected by emissions [10,11], as well
as by meteorological factors like temperature, solar radiation, wind speed, and humidity [12–15].

The O3 concentration in South Korea (Korea, hereafter) has been steadily increasing despite the
efforts of the Korean government to reduce it [16]. The environmental standard for 8 h max O3 in Korea
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is 0.06 ppm, and it has been exceeded at all valid Korean stations in 2017. In addition, the increase
in O3 has become severe since the 2000s compared to other countries [17,18]. The O3 concentration
is mainly determined by the absolute amounts of VOCs and NOx, which are major precursors, and
the relative ratio between them [10,11]. It is known that the production and disappearance of O3 is
balanced through the reaction of O3-NO-NO2 photo stationary state, but the oxidation of VOC causes
NO2 production by alkyl-radical (RO2) and hydroxy-radical (HO2) to accumulate O3 [19]. According to
previous studies, Korea, with many industrial emission sources, is generally known as a VOC-limited
area [20]. Thus, the O3 concentration is mainly determined by the increase in VOC emissions or the
decrease in NOx emissions [10,11]. The O3 concentration, however, is not determined by emissions
alone [21,22]. For example, in the case of the Seoul Metropolitan Area (SMA), which has the country’s
highest population density, NOx (23% reduction in 2013 compared to 2005) and VOC (7% reduction in
2013 compared to 2005) emissions were reduced by initial comprehensive measures for the metropolitan
area, but the O3 concentration was not reduced. This suggests that elements other than the emissions
(e.g., meteorological factors) must be considered in analyzing the O3 concentration for Korea. Since the
mid-2000s, studies on the regional characteristics of meteorological factors, which have major impacts
on the O3 concentration, have been conducted in the United States and Europe [21,23,24]. In particular,
Camalier et al. [21] and Otero et al. [23] analyzed the regional major meteorological factors for O3

concentration using a statistics regression model. Other studies have also been conducted to examine
the effects of certain meteorological factors, such as regional wind pattern [19,20]. In Korea, however,
studies on the impacts of meteorological factors on the air quality in different regions are not sufficient
and there have only been a few case studies on areas with concentrated emission sources [25,26].

According to a recent study [26], the contribution of meteorological factors on O3 concentrations
over the SMA has increased since 2012. The study revealed that the meteorological conditions became
stable, which can be favorable for O3 increasing, but the results were for a specific region (SMA), and
the effects of other variables were not considered. As reported by Camalier et al. [21], the impact of
meteorological conditions on O3 concentration can be different regionally. In particular, meteorological
characteristics in Korea are different by region because it is surrounded by seas on three sides, has
very complex coastlines, and has mountainous terrains accounting for 70% of its land despite its small
area [27,28]. Therefore, for an in-depth understanding of the impact of meteorological conditions
on regional O3 concentrations in Korea, it is necessary to examine how the impact of meteorological
conditions differs by area and to understand major factors that determine the O3 concentration in
each area.

In this study, the regional differences in meteorological impacts on O3 in Korea were investigated.
The annual variations in O3 concentrations, emissions, and meteorological factors, from 2001 to
2017, were compared and the relationships were analyzed. This research focused on identifying the
predominant drivers determining O3 variability in different regions of Korea. The primary goal of this
study is to highlight the spatiotemporal differences of the impacts of meteorological variables on O3

concentrations in Korea.

2. Materials and Methods

2.1. Study Domain

Korea is located in the northeast part of Asia with continental climate features and has a complex
coastline and mountainous terrain, as shown in Figure 1a. Therefore, the influence of monsoons is
complicated by topographical differences, which presents a lot of precipitation in mountainous terrain
regions and high temperatures in the south regions. For more efficient air quality control, the Korean
Ministry of Environment divided the whole country into six air quality regions: SMA, Central region
(CN), Honam (HN), Yeongnam (YN), Gangwon (GW), and Jeju (JJ). The Korean capital, SMA, is located
in the northwest part of Korea (37.5◦ N, 126.9◦ E) and has significantly high emissions. CN is the
western central part of Korea, facing SMA to the north. HN is the southwest part of Korea, a leading
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agricultural area, with relatively low industrial development. YN is the southeastern part of Korea with
high emissions due to heavy traffic and industrial facilities. GW is a mountainous rural region located
in the northeast part of Korea and its air quality is frequently affected by pollutants transported from
upwind source regions (SMA and CN). JJ is an island region located in the southwestern part of Korea
and has the lowest emissions. Since these six air quality regions in Korea have different geographic
and topographical features, this study focuses on analyzing and comparing the O3 characteristics in
each region.
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2.2. Surface Measurements and Validation Data

In this study, surface observational data from the Air Quality Monitoring Station (AQMS) [29]
network operated by the National Institute of Environmental Research of Korea was used. Observed
O3 data in 2001–2017 were gathered from AQMS, and meteorological data were obtained from the
Automated Surface Observing System (ASOS) operated by the Korea Meteorological Administration
(KMA). The data from 340 AQMS (black circle) and 92 ASOS (red cross) sites were used and the
locations of the respective sites are shown in Figure 1a. To analyze the long-term trends of O3 in Korea
and compare the regional differences, 8 h max O3 concentrations were calculated at each AQMS site.
Invalid data (i.e., fraction of missing values > 25%) were excluded for a more objective analysis.

The factors affecting O3 concentration [21,30] were also calculated: average (92 ASOS sites) daily
maximum temperature (TMAX, units: ◦C), solar radiation duration (SR, units: hour), relative humidity
(RH, units: %), precipitation (PRCP, units: mm), and wind speed (WS, units: m/s). These factors were
then compared with 8 h max O3 data to identify the primary contributors to annual O3 concentrations
in Korea in 2001–2017. In addition, the annual emissions data (2001–2015) for NOx and VOC from the
national air pollutants emission service were used to compare the relative impacts of meteorological
conditions and emissions on inter-annual O3 variability in Korea. To understand the spatial distribution
of these emissions, the Clean Air Policy Support System (CAPSS) [31] data in 2015 provided by the
National Institute of Environmental Research (NIER) are presented in Figure 1b,c.

2.3. Long-Term Trend Analysis

The Kolmogorov–Zurbenco filter (KZ filter) [32] was used to investigate the long-term O3

variability in Korea. The KZ filter can analyze the long-term variability of air pollutants by extracting
long-term, seasonal, and short-term (white noise) variability components. It is a low-pass filter
that eliminates frequent phenomena by applying a moving average over a period, and this method
was applied to an O3 concentration time series to examine the component characteristics [33–35].
The parameters suggested by Wise and Comrie [13,14] were used for eliminating short-term fluctuation
and extracting long-term variability. The averaged (340 AQMS sites) daily 8 h max O3 data from
2001 to 2017 were used as the raw time series data for Korea. The KZ filter was also utilized in this
study to compare the long-term variability of meteorological factors (e.g., temperature, wind speed,
precipitation, and so on) with O3 concentration. The averaged (92 ASOS sites) daily data of each
meteorological factor from 2001 to 2017 were used as raw time series data.

2.4. Anomaly Analysis

Anomaly analysis is commonly used in climate studies for examining the relative values of raw
data compared to the average by subtracting the average from raw values. In this study, the average
data of 30 years (1981–2010) were defined as the baseline climate, as proposed by KMA, and then the
yearly and monthly anomaly values for each meteorological factor were calculated:

anomalyx = x− climatex (1)

In this instance, a comparison between the anomaly values of each meteorological factor is difficult
because each meteorological factor has different data ranges. To address this problem, the difference in
the range of each meteorological factor was removed by dividing the anomaly of each meteorological
factor by the standard deviation of the factor. Based on this, the calculated normalized anomaly:

normalized anomalyx =
anomalyx

standard deviationx
(2)

was used for comparative analysis.
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3. Results and Discussion

3.1. Surface Ozone (O3) Variability in Korea from 2001 to 2017

Figure 2 illustrates the time series of the averaged (340 AQMS sites) surface O3 concentration in
Korea during the most recent seventeen-year period (2001–2017). The surface O3 indicated a clear
seasonal variation (Figure 2b) and its fluctuation magnitude gradually increased. The long-term O3

variability obtained from the KZ filter analysis indicated a clear upward trend (slope = +1.93 ppb year−1)
and the trend became steeper after 2010 (slope = +3.10 ppb year−1). The short-term O3 variability
(Figure 2d) did not show a noticeable trend compared to the long-term O3 variability. To further
examine the O3 trend in Korea, the frequency of high O3 in Korea in the 2000s was investigated.
The number of days was counted when the averaged surface O3 concentration (340 AQMS sites)
exceeded the Korean standard regulation level (8 h max O3 > 60 ppb). As seen in Figure 2e, the number
of high O3 days dramatically increased after 2010.
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variability, (c) long-term variability and (d) white noise, (e) and number of days with high
O3 concentration.

These results reveal that the annual O3 variability in the 2010s was different from that in the
2000s. However, the major factors that led to the different O3 variabilities for the two periods remain
unclear. Thus, additional analyses were conducted to find the causes for the discrepancy and their
relative contributions.

3.2. Contributions of Emissions and Meteorological Factors to Inter-Annual O3 Variability

Korea is generally known as a VOC-limited (sensitive) area [20]. In such an environment, the
O3 concentration is generally proportional to VOCs and inversely proportional to NOx. When the
annual average O3 concentration and the annual changes in the total emissions of VOCs and NOx
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in Korea, shown in Figure 3, were examined, the change in the annual average O3 concentration
showed a pattern similar to the long-term variability shown in Figure 2c. While the O3 concentration
(slope = +0.68 ppb year−1) and VOC emissions (slope = +16.5 kton year−1) steadily increased since
2001, NOx did not show any specific trend (Table 1). NOx decreased from 2004 to 2009 as energy
consumption decreased due to the emission reduction policy of the primary metropolitan air quality
management [36], but increased again after 2010. In general, the NOx reduction can cause an increase
in the O3 concentration in a VOC-limited environment [10,11]. Interestingly, the slope of O3 grew
1.9 times after 2010 compared to the 2000s when the NOx concentration was low. Moreover, the
explanatory power (coefficient of determination, R2) of the VOC emissions for O3 variability was as
high as 0.80 before 2010, but decreased by 33% to 0.54 after 2010. These results show that the O3

variability of Korea cannot be fully explained by the change in emissions alone after 2010.
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Figure 3. Annual O3 concentrations (red) and total emissions of VOC (black) and NOx (gray) which
are precursors of O3 (units: kton = 1000 ton).

Table 1. Correlation coefficients, coefficients of determination, and trends of O3 and precursors in
different periods.

R R2 Trend

2001–2015 2010–2015 2001–2015 2010–2015 2001–2015 2010–2015 Units

O3 0.68 1.26 (ppb year−1)
NOx −0.64 0.90 0.41 0.82 −17.99 22.42 (kton year−1)
VOC 0.89 0.74 0.80 0.54 16.50 23.50 (kton year−1)

Meanwhile, meteorological conditions are known to be major influence factors for O3 concentration
along with emissions [21,23,37]. In particular, the major meteorological factors include solar radiation
(SR), maximum temperature (TMAX), precipitation (PRCP), relative humidity (RH), and wind speed
(WS) [35]. O3, a photochemical product, generally shows a positive correlation with SR [38,39]. It also
exhibits a positive correlation with TMAX because active chemical reactions occur at high temperatures
due to the increased reactivity between precursors [15,21,40–42]. PRCP has a negative correlation with
O3 because it removes O3 and precursors (e.g., wash-out and wet deposition) [43]. RH has a negative
correlation with O3 because its increase causes an increase in the amount of wet deposition/scavenging
by the water vapor in the atmosphere [44,45]. Moreover, RH limits the generation of O3 through the
reaction of intermediate substances in the photochemical reaction related to O3 generation [46]. In the
case of WS, its decrease means a more stable atmospheric condition. As this becomes a favorable
condition for O3 generation in terms of photochemical reactions and transport, WS generally has a
negative correlation with O3 [47].

The weather in Korea exhibits distinct seasonal variabilities [48] and the correlations between
O3 and meteorological factors must be examined from a perspective of long-term variability without
the effects of seasonal and daily cycles. To this end, the KZ filter, a method of extracting long-term
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O3 variability, was applied to the major meteorological factors. As each meteorological factor has a
different long-term variability range, the data ranges were normalized as follows:

normalized long term variablex =
long term variablex

mean o f long term variablex
(3)

The normalized long-term variables were compared with the long-term variability of O3 as shown
in Figure 4, and the long-term variability trends of O3 and meteorological factors are shown in Table 2.Atmosphere 2020, 11, x FOR PEER REVIEW 7 of 17 
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Figure 4. Long-term variability of O3 (black) and meteorological factors, which maximum temperature
(TMAX) (red), solar radiation (SR) (yellow), precipitation (PRCP) (blue), wind speed (WS) (green)
and relative humidity (RH) (sky blue) using KZ filters. The meteorological factors are normalized
for comparison.

Table 2. Long-term variability trends of O3 and meteorological factors in different periods.

Variables 2001–2017 2001–2009 2010–2017 Units

O3 0.76 0.70 1.13 (ppb year−1)
TMAX 3.81 3.08 24.91 (10−2 ◦C year−1)

SR 2.31 −6.87 11.41 (10−2 h year−1)
PRCP −7.43 −8.26 −35.89 (10−2 mm year−1)

WS −1.17 −0.36 −4.33 (10−2 ms−1 year−1)
RH 7.85 4.06 44.38 (10−2% year−1)

PRCP with a negative correlation with O3 exhibited a clear downward trend after 2010
(slope = −35.89 × 10−2 mm year−1) while SR with a positive correlation with O3 showed an upward
trend after 2010 (slope = +11.41 × 10−2 h year−1). Since 2001, TMAX increased by +0.038 ◦C year−1

due to global warming but rose steeply by +0.25 ◦C year−1 after 2010. WS clearly decreased after 2010.
RH, with a relatively small variability, slightly increased after 2010. Such trends in the meteorological
factors after 2010, especially the increasing trends of TMAX and SR and the decreasing trends of PRCP
and WS, may have directly affected the generation and extinction of O3. Thus, it can be estimated
that the influence of meteorological factors on the O3 concentration in Korea has increased after 2010.
Therefore, in the next section, changes in the correlations between meteorological factors and O3 before
and after 2010 are compared and analyzed in a quantitative manner.
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3.3. Impact of Varying Meteorological Conditions on Annual O3 Changes in Korea

As shown in Section 3.2, the counts of high-O3 days increased (58.8%) sharply after 2010,
revealing the possibility of an amplified impact of meteorological factors on O3 concentrations in
Korea. In addition, the standard normal homogeneity test (SNHT), which is the method of change
point detection of annual O3 time series, from 2001 to 2017, confirmed statistically significant shifts
around 2010 at the 95% confidence level (Supplementary Figure S1). Therefore, to further analyze the
annually different meteorological impacts, we compared the impacts of the meteorological variables
on the O3 concentrations in Korea during the two separated periods, which is period 1 (2001–2009,
PRD1) and period 2 (2010–2017, PRD2).

3.3.1. Annual Changes in the Meteorological Conditions Affecting O3

To analyze changes in the correlations between O3 and meteorological factors before and after
2010, Pearson’s correlation coefficients (R) between the annual average O3 concentration and TMAX,
SR, RH, PRCP, and WS during PRD1 and PRD2 were calculated. Figure 5 shows the differences
in the R values (PRD2–PRD1) of the two periods. While the correlations between O3 and each
meteorological factor were not statistically significant during PRD1, TMAX, SR, PRCP, WS, and RH
showed statistically significant correlations with O3 during PRD2. Moreover, the correlations with
all the meteorological factors were higher during PRD2 than during PRD1. This result indicates
that the impacts of meteorological factors on the O3 concentration increased after 2010. SR, in
particular, exhibited opposite trends in its correlation with O3 during PRD1 and PRD2 and showed
the highest difference in the R value (PRD2–PRD1) between the two periods (+1.30). As shown
in Figure 4, SR showed a decreasing trend and thus a negative correlation with O3 during PRD1
(R = −0.41), but it exhibited an increasing trend and thus a positive correlation with O3 during PRD2
(R = 0.89). These results imply that SR had the largest contribution to the differences in the impacts of
meteorological conditions on O3 concentration between the two periods. In addition, the increase in
the long-term variability of TMAX after 2010 has been remarkable due to the increase in SR along with
global warming (Table 2). For this reason, the estimated R value of TMAX during PRD2 exhibited a
significant positive correlation with O3.
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In contrast to the results of SR, the negative correlation of WS most significantly increased during
PRD2 compared to during PRD1 (−0.70). It appears that the decrease in R value during PRD2 was due
to the increase in the O3 concentration caused by the clear wind speed decrease after 2010 (Figure 4).
This result agrees with the results of previous studies that explained the stagnant atmosphere and
the increase in the concentrations of air pollutants due to the recent decrease in the wind speed
around Korea [25,49]. As for PRCP, the decreasing trend in long-term variability has been reinforced
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after 2010 and thus its negative correlation with O3 increased during PRD2. Meanwhile, RH had
no clear long-term variability characteristics and exhibited a relatively low correlation with O3 and
showed statistically insignificant results during the entire period. The correlations between all the
meteorological factors, except RH, and O3 clearly increased during PRD2 compared to PRD1, and
the explanatory power expressed by the coefficient of determination also increased by 67–96% for
all the factors, except RH (Table 3). These results confirm that the increase of O3 in Korea has been
closely related to changes in the variability of each meteorological factor after 2010. To support the
correlation analysis results, we conducted a multiple linear regression analysis. For the analysis, O3

was set as a dependent variable and the meteorological factors (TMAX, SR, RH, PRCP, WS) were set
as independent variables. The results from the regression analysis also implied that the explanatory
power and significance level increased notably after 2010 (Supplementary Tables S1 and S2). Especially,
SR and WS, which showed the largest correlation difference between PRD1 and PRD2, were selected
as significant predictors from the regression, supporting the correlation analysis results in this study.

Table 3. Coefficients of determination of O3 and meteorological factors in different periods (the rate of
change is presented only when the correlation coefficient in Figure 5 is statistically significant in the
95% confidence interval of the Pearson’s correlation coefficient.

PRD1 PRD2 Difference Rate of Change

TMAX 0.17 0.75 0.58 (+77%)
SR 0.17 0.79 0.62 (+78%)
RH 0.00 0.02 0.02 -

PRCP 0.22 0.67 0.45 (+67%)
WS 0.03 0.77 0.74 (+96%)

3.3.2. Causes of the Increase in the O3–Meteorology Relationship after 2010

The analysis results in Section 3.3.1 established that the correlations between O3 and meteorological
factors (TMAX, SR, PRCP, and WS) have increased after 2010. To identify the causes of this increase in
correlations, the differences in the anomaly (normalized) value of each meteorological factor between
the two periods (PRD1 and PRD2) were calculated for every month and compared. As shown in
Figure 6, the anomalous differences (PRD2–PRD1) of WS exhibited negative values throughout the year.
In addition, TMAX and SR (PRCP) exhibited positive (negative) values throughout May to September.
Positive values of RH were exhibited in summer and autumn, but the fluctuations in the absolute
value of RH before normalization were insignificant (Figure 2). Interestingly, the major meteorological
factors, except RH, maintained the signal with a positive correlation for O3 production from May to
September. This period is identical to the O3 season monitored by the Ministry of Environment due to
the occurrence of high O3 concentrations [15,50]. The increase in TMAX and SR and the decrease in
PRCP during PRD2 were mostly concentrated during the period when high O3 concentrations occurred
and can well explain the increase in the impact of meteorological conditions on the O3 concentration in
Korea after 2010. This, however, provides a limited explanation on the cause of the increase in the
O3–meteorology relationship after 2010 and cannot provide a fundamental explanation on the cause of
the differences in the variability of each meteorological factor between PRD1 and PRD2. Thus, further
analysis is required.
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Figure 6. Normalized monthly anomalies (PRD2–PRD1) of meteorological factors, with TMAX (red),
SR (yellow), RH (sky blue), PRCP (blue) and WS (green) (January, JAN; February, FEB; March, MAR;
April, APR; May, MAY; Jun, JUN; July, JUL; August, AUG; September, SEP; October, OCT; November,
NOV; December, DEC; Annual, ANN).

Wei and Moon [42] suggested that the development of the Western North Pacific Subtropical
High (WNPSH) in summer may increase surface O3 concentration by reducing precipitation in Korea.
During the high O3 seasons of the PRD2 period, the average of the positive anomalies of WNPSH
was 2.5 times higher compared to PRD1 (Supplementary Table S3). This suggests that the decrease in
precipitation in Korea after 2010 is significantly related to the development of WNPSH. As precipitation
has significant negative correlations with SR and TMAX in atmospheric dynamics, the variability of
these factors can also be explained by the impact of WNPSH. Moreover, the development of WNPSH
is highly related to the significant decrease in the east–west wind field of Korea [51]. Thus, it is likely
to have contributed to the decreasing WS in Korea after 2010. It is also likely that the variability of each
meteorological factor during PRD2 compared to PRD1 was directly or indirectly affected by large scale
circulation. This, however, needs to be analyzed further because there are various factors that affect
the variability of meteorological conditions.

3.3.3. Regional Differences on the Impact of Meteorological Conditions on O3 Variability

The differences among meteorological factors between PRD1 and PRD2 examined above
represented the average results across Korea. Thus, the regional differences and regional characteristics
could not be analyzed. There are significant regional differences in terms of meteorological conditions
due to the topographic effect because Korea has very complex coastlines and most of its land is
composed of mountainous terrains. Therefore, it was expected that there would also be regional
differences in terms of the impact of meteorological conditions on the O3 concentration. Therefore,
O3 variability before and after 2010 as well as the impact of meteorological conditions on O3 variability
were closely examined for each of the six air quality regions of Korea.

Table 4 shows the correlation coefficients between the O3 concentration and each meteorological
factor by region for each period (PRD1 and PRD2). Figure 7 shows the color-coded differences in the
correlation coefficients between PRD1 and PRD2 (PRD2–PRD1) by region. “National” in Table 4 and
Figure 7 mean the same value as “DIFF” in Figure 5. Table 4 shows that all the meteorological factors
except RH exhibited higher correlation coefficients during PRD2 compared to PRD1 and they showed
statistically significant results in most of the regions except JJ. The correlation coefficients between
the O3 concentration and SR/TMAX exhibited a clear increase in positive correlation during PRD2
compared to PRD1 in all regions except JJ, while PRCP showed a clear increase in negative correlation
in all regions except JJ.
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Table 4. Annual correlation coefficients between O3 and meteorological factors in different air quality
regions (Seoul Metropolitan Area, SMA; Central region, CN; Honam, HN; Yeongnam, YN; Gangwon,
GW; Jeju, JJ) and different periods (statistically significant R values in the 95% confidence interval of
the Pearson’s correlation coefficient are marked with *).

TMAX SR RH PRCP WS

PRD1 PRD2 PRD1 PRD2 PRD1 PRD2 PRD1 PRD2 PRD1 PRD2

SMA 0.24 0.88 * −0.22 0.95 * 0.35 −0.59 * 0.13 −0.90 * 0.60 * −0.08
CN 0.02 0.78 * 0.01 0.91 * −0.20 0.20 −0.43 −0.76 * −0.01 −0.89 *
HN 0.56* 0.89 * −0.36 0.85 * −0.09 0.47 −0.36 −0.77 * −0.58 * −0.92 *
YN 0.59* 0.80 * −0.44 0.90 * 0.12 −0.13 −0.46 −0.65 * 0.34 −0.70 *
GW 0.18 0.83 * −0.36 0.61 * 0.07 −0.34 −0.09 −0.62 * −0.16 −0.66 *

JJ −0.03 −0.03 −0.45 0.06 −0.47 −0.51 * 0.13 −0.10 −0.62 * −0.04
National 0.41 0.87 * −0.41 0.89 * 0.06 0.14 −0.47 −0.82 * −0.18 −0.88 *

The differences in the correlations between O3 and SR/TMAX/PRCP between the periods
(PRD2–PRD1) were similar in all regions except JJ. Also, RH exhibited different results by region.
There are large regional differences in RH because it is affected by a combination of meteorological
conditions, such as atmospheric stability, cloud, and precipitation, as well as the amount of water
vapor and temperature. Therefore, although it did not show a significant correlation with O3 on
average, statistically significant correlation changes could be confirmed in some regions. When the
O3–RH correlation change of SMA was examined (Table 4), the negative correlation was reinforced
during PRD2. This appears to be because RH was reduced in SMA during PRD2 and thus, the O3

concentration increased due to the decrease in wet deposition. JJ, an island region located in the
south-west of Korea, was the only region that exhibited a clear negative correlation with O3 during
the entire period due to its high annual RH. Moreover, JJ showed a statistically significant negative
correlation during PRD2 as the correlation was slightly reinforced. As for the O3–WS correlation, the
negative correlation was reinforced during PRD2 compared to PRD1 in all regions except SMA and JJ.
In SMA, a positive correlation between O3 and WS was observed during PRD1 (0.60), but no significant
correlation was observed during PRD2. This result is analyzed in detail in the next section.

3.3.4. Major Drivers for the Strengthened Impact of Meteorological Conditions on O3 after 2010

As examined above, SR, TMAX, and PRCP exhibited increased correlations with O3 in all regions
except JJ after 2010 (PRD2), but RH and WS showed significant regional differences. Thus, for
the analysis of such regional differences, the changes in meteorological factors (PRD2–PRD1) were



Atmosphere 2020, 11, 74 12 of 17

examined by region quantitatively and the regional differences in the major meteorological factors that
affected O3 after 2010 were identified.

The differences in each meteorological factor were calculated by region using anomaly analysis.
The normalized anomalies for the high O3 season (i.e., May to September) are shown in Figure 8.
Moreover, O3 trends by region/period are additionally presented in Figure 9 to show the differences
for each meteorological factor (PRD2–PRD1) by region as well as the impacts of the differences in
the variability of each meteorological factor by region on the O3 trend of each region. Figure 8g
shows the averaged results of the differences in the anomalies of each meteorological factor between
PRD1 and PRD2 during the high O3 season. The results are the same as the averaged values from
May to September in Figure 6. It should be noted that as the results of Figure 8 are the normalized
results obtained from the division of each meteorological factor by the standard deviation, regional
comparisons for the same factors are possible but it is not possible to compare the absolute impacts of
each factor. The results of Figure 8g show that TMAX and SR increased while PRCP and WS decreased
during PRD2 compared to PRD1. This accounts for the strengthened O3 upward trend in Korea after
2010 (Figure 9).
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Changes in anomalies by meteorological factor, however, are different by region. For example,
SMA exhibited a clear increase in WS during PRD2 compared to PRD1 in contrast to the other regions
(Figure 8a). This appears to have caused the O3–WS correlation during PRD2 to be significantly lower
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compared to the other regions, except JJ, as shown in Table 4. WS in Korea was reduced during
PRD2 on average, but WS increased in SMA. This WS increase in SMA offset the O3 concentration
increase caused by the increase in TMAX and SR and the decrease in PRCP. This explains why there
was no significant change in the O3 trend in SMA after 2010 (Figure 9). In GW, on the other hand, O3

increased very slightly after 2010 even though meteorological changes favorable to the increase in O3

concentration (the increase in TMAX and SR and the decrease in RH, PRCP, and WS) occurred during
PRD2. Since GW is located in the downwind area of SMA, the O3 concentration was significantly
affected by O3 transport from SMA [52]. As no significant O3 change occurred in SMA after 2010, GW,
a receptor area, also did not show a significant O3 change. Moreover, as GW is a region with low
pollutant emissions, the O3 increase was limited despite the meteorological conditions favorable to O3

generation during PRD2. For these reasons, no clear change in the O3 trend occurred in SMA and GW
during PRD1 and PRD2.

Meanwhile, the rise in O3 concentration in JJ decreased during PRD2, unlike in other regions
(Figure 9). Although the meteorological conditions in JJ became favorable to O3 generation after
2010 due to the increase in TMAX and SR and the decrease in PRCP and WS, a very clear increase
in RH occurred, causing a decrease in O3 on average. To further examine the impact of RH on
the O3 concentration in JJ, the water vapor pressure (hPa) measurement data (ASOS) was analyzed.
The increase in the annual water vapor pressure in JJ after 2010 (PRD2) (+0.16 hPa year−1) was 3.9
times higher compared to the average of the other regions, and the average water vapor pressure was
also 25% higher. It is known that the increase in the water vapor quantity generally contributes to the
generation of clouds and decreases the O3 concentration through wet deposition [44,53]. Therefore,
it can be presumed that the O3 reduction in JJ after 2010 was dominated by the effect of increased
water vapor.

Unlike SMA and JJ, the increase in O3 during PRD2 was significant in the CN, HN, and YN
regions. When the meteorological conditions of CN and HN were compared (Figure 8), HN was
found to provide more favorable conditions for O3 generation but the upward trend in O3 was higher
in CN (Figure 1), with more pollutant emissions. In the same manner, although the meteorological
conditions in GW were more favorable to O3 increasing than YN, the O3 increasing was higher in
YN with more emissions. These results confirm that the impacts of meteorological conditions can be
different depending on the distribution of pollutant emissions, especially NOx and VOC, which are the
major precursors of O3.

These results strongly suggest that the major meteorological factors that caused the increase in
O3 in Korea after 2010 exhibited clear differences by region and that even the same meteorological
changes can have different impacts on the O3 concentration depending on the difference in emissions.
Moreover, these results show that the impact of meteorological conditions on the O3 concentration is
not always constant and may vary depending on the time and space. In particular, they show that the
impact of meteorological conditions on O3 variability can be clearly different by region depending on
their distinct topographical characteristics and the differences in the distribution of emissions, even in
small countries such as Korea (109th largest in the world).

4. Summary and Discussion

In this study, changes in the O3 concentration in South Korea and the impact of meteorological
conditions on such changes were examined from 2001 to 2017. For the analysis, the O3 concentration
(sourced from AQMS), TMAX, SR, RH, PRCP, and WS (sourced from ASOS) measurement data for
South Korea’s six air quality regions were used. The long-term variability of O3 was analyzed by
removing the seasonal and short-term variabilities of O3 using the KZ filter. It was confirmed that
the long-term variability of the O3 concentration (29.8%) and the occurrence of high-concentration
days (58.8%) rapidly increased in South Korea after 2010. During the same period, the emissions of
the major precursors of O3 did not show rapid changes favorable to O3 generation, but the long-term
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variability of the meteorological factors TMAX, SR, PRCP, and WS, exhibited clear changes in trends
toward conditions favorable to O3 generation.

To examine the increase in the impact of meteorological conditions on the O3 concentration in
South Korea after 2010 in detail, the period from 2001 to 2009 was defined as PRD1 and the period from
2010 to 2017 as PRD2, and the analysis results for each period were compared. The classification of this
period was reflected by significant SNHT results at the 95% confidence level. When the correlation
coefficients between the O3 concentrations and each meteorological factor were analyzed by period, it
was found that the correlations between O3 and all meteorological factors, except RH, increased and
were statistically significant during PRD2, thereby confirming that the meteorological factors were
related to the increasing trend of O3 after 2010. SR and TMAX exhibited positive correlations with O3,
while WS and PRCP exhibited negative correlations with O3. These results agree with the impacts of
each meteorological factor on O3 reported by previous studies. Especially, SR exhibited the largest
increase in correlation with O3 concentration after 2010, followed by WS, TMAX, and PRCP. However,
it should be noted that generalizing those findings could be risky because they are based only on a
simple statistical analysis. Additional comparative studies using different methods need to be followed
to verify the findings in this study.

When the monthly average anomalies of meteorological factors were analyzed, it was found that
the differences in the anomalies of TMAX, SR, and PRCP between PRD1 and PRD2 were concentrated
in the high-O3 season (May to September). This shows that the change in the O3 trend after 2010 could
be caused by the meteorological changes in the O3 season, and such changes could also be explained
by the impact of the variability of the Western North Pacific Subtropical High.

When changes in the correlations between O3 and meteorological factors after 2010 were analyzed
by region, it was found that TMAX, SR, and PRCP, which are meteorological factors related to large-scale
circulation, were strengthened toward conditions favorable to O3 generation in all regions. In contrast,
WS and RH showed different changes in their correlations with O3 by region. WS exhibited decreasing
trends in most of the regions, but increased in SMA; therefore, the O3 trend of SMA contrasted with the
other regions. The O3 trend of GW located downwind of SMA exhibited similar characteristics to SMA.
In JJ, an island located in the south-west of South Korea with different climatological characteristics,
the O3 upward trend was found to decrease during PRD2 due to the dominant increase in RH after
2010. Meanwhile, in the regions of YN and GW as well as CN and HN, changes in meteorological
factors were similar during PRD2 as compared to PRD1, but their impacts on the change in O3

concentration were different. These results revealed that the impact of meteorological changes on
the O3 concentration could be large in regions with high emissions and suggested that the impact of
meteorological conditions on O3 concentration varied depending on the time and geography.

In this study, the national background O3 observation data were excluded to analyze the
spatiotemporal characteristics of long-term variability of photochemically produced O3 and its
association with meteorological factors in Korea. However, a comprehensive understanding of the
variability of surface O3 on the national scale should be accompanied by a discussion of long-term
pollution transportation and the potential for background O3 inflow from the free and upper troposphere.
Gaudel et al. [54] found that the eastern Mediterranean surface O3 in the mid-latitude region was
predominantly influenced by O3 subsidence from the troposphere due to synoptic meteorological
characteristics, which was consistent with previous studies [55,56]. However, tropospheric ozone in
Korea and Japan, located in the mid-latitude of East Asia, showed a decreasing trend so, it was inferred
that the impact on surface O3 would be relatively insignificant [57,58]. Nevertheless, the background
O3 concentration in eastern China was high in the free troposphere during spring and summer,
suggesting the possibility of transportation [53]. To address these issues, a more comprehensive study
that considers not only surface O3 variability but also tropospheric background O3 variability and
long-range transport of atmospheric boundary pollutants from East Asia should be conducted, and it
would be our following research.
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In recent studies on future scenarios, TMAX and SR are predicted to increase due to the warming
of East Asia and the variability of PRCP and WS in mid-latitudes is predicted to be very large.
The variability of meteorological factors vary by region and their impacts on O3 may also vary by
region. Therefore, the results of this study can be used to establish more realistic reduction policies.
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