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Abstract: A numerical weather prediction and a rainfall-runoff model employed to evaluate
precipitation and flood forecast for the Imjin River (South and North Korea). The real-time
precipitation at point and catchment scales evaluated to select proper hydrological model to couple
with atmospheric model. As a major limitation of previous studies, temporal and spatial resolutions
of hydrological model are smaller than those of meteorological model. Here, through high resolution
of temporal (10 min) and spatial (1 km × 1 km), the optimal resolution determined. The results
showed Weather Research and Forecasting (WRF) model underestimated precipitation in point
and catchment assessment and its skill was relatively higher for catchment than point scale, as
illustrated by the lower Root Mean Square Error (RMSE) of 59.67, 160.48, 68.49 for the catchment
and 84.49, 212.80 and 91.53 for the point scale in the events 2002, 2007 and 2011, respectively. The
findings led to choose the semi-distributed hydrological model. The variations in temporal and
spatial resolutions illustrated accuracy decrease; additionally, the optimal spatial resolution obtained
at 8 km and temporal resolution did not affect the inherent inaccuracy of the results. Lead-time
variation demonstrated that lead-time dependency was almost negligible below 36 h. With reference
to this study, comparisons of model performance provided quantitative knowledge for understanding
credibility and restrictions of meteo-hydrological models.

Keywords: precipitation; meteorological forecast; WRF; NWP; meteo-hydrological models; real-time
flood

1. Introduction

One of the most expensive natural disasters is due to severe floods, which are often triggered
by heavy precipitation and increased by climate change and human activities [1]. The safety of
lives and properties is always threatened by the severe floods. Meteo-hydrological predictions are
important for providing early flood warnings and preventing or reducing flood damages [2,3]. The high
resolution Numerical Weather Prediction (NWP) models provided notable improvement in Quantitative
Precipitation Forecast (QPF). The QPF can be an alternative input data source for hydrological
predictions. Coupling the NWP and hydrological models connects the progress in meteorology
and hydrology to generate real-time flood forecasting. In one-way linking of meteorological and
hydrological models, the atmospheric model outputs were extracted and used as input data for
hydrological models. Although the application of the real-time precipitation of the NWP models
grew in real-time flood forecasting, there is a vital need regarding the evaluation of the real-time
precipitation forecast characteristics from NWP models.

As opposed to the increasing trend of the application of NWP models in coupling with hydrological
models, there is no study for selecting the suitable type of the hydrological model. Hydrological
model developments range from lumped to semi-distributed and fully distributed models. Within
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this wide range, the selection of the proper model for different purposes can be a difficult task, which
depends on user experience and feasibility [4]. Since hydrological models are sensitive to the input
data errors, for choosing a hydrological model for flood forecasting, the accuracy of the precipitation
which is vast from the pixel and subbasin to the catchment scale plays a major role. Evaluation of
point precipitation and the Mean Areal Precipitation (MAP) could lead to robust decision making in
the distributed (which uses the point precipitation data as input) and semi-distributed (which uses
the MAP as input) hydrological models. To clarify these aspects, the effect of precipitation errors on
forecast flow is reported in previous studies [5,6].

In the evaluation of meteorological models, it has been found that atmospheric models have
difficulty to forecast accurately their space-time evolution; therefore, atmospheric models predict the
occurrence of the rainfall better than the magnitude and location of rainfall [7,8]. There are several
errors in location, intensity and timing of the QPFs since the precise forecast of precipitation is one
of the limitations of NWP models. Generally, NWP models overforecast light (1 mm) to moderate (5
mm) precipitation; however, they underforecast heavy precipitation in the Middle Atlantic Region
(MAR) of the USA [9] as well as in the wet and high elevation areas of the Ovens catchment in
Australia [10]. The use of WRF model in Korean peninsula showed underestimation of the precipitation
amount [11]. There are many factors effected the quality of the QPF of the NWP models, the evaluation
of forecast precipitation values indicated that the accuracy of rainfall forecast varies with the spatial
resolution [12,13], temporal resolution [14,15] and lead-time [16,17] of meteorological models. The
flood warnings improved by increasing the spatial resolution of the Met Office Unified Model (UM) by
coupling high resolution rainfall forecast and Probability Distributed Model (PDM) in Carlisle city in
north-west England [18]. Moreover, the effect of forecasting lead-time on the accuracy of predicted
values showed that the accuracy of the predictions and the forecast capabilities significantly improved
by decreasing the forecasting lead-time [19]. The comparison of different lead-times for WRF model
forecast showed that increasing the lead-time caused the overestimation of rainfall in the Liujiang
River basin and decreased the forecast accuracy [20].

Previous studies simulated or forecasted stream flow using WRF model data that were forced
to the hydrological models [21,22]. Coupling WRF with Hydrological Model for Karst Environment
(HYMKE) in the Jordan River basin showed good agreement between forecasted stream flow and
measured stream flow [21]. In real-time meteo-hydrological studies, one limitation of previous studies
is that the time/spatial scale of the hydrological model is much finer than that of the meteorological
model. Furthermore, there are few studies in the literature about the quantification of real-time forecast
precipitation analysis. The last but not least. In coupled meteo-hydrological studies there is a lack
of literature for choosing proper hydrological model (lumped, semi- and fully-distributed) to couple
with the meteorological model. Therefore, finding a proper hydrological model to couple with the
meteorological model is still an open question.

In this study, high temporal and spatial resolution of the meteorological model provided an
opportunity to more deeply analyze and improve our understanding of the effect of lead-time, spatial
and temporal resolution variation on the performance of coupled meteo-hydrological models. The
aim of this study is to evaluate the real-time precipitation of the atmospheric model at the point and
catchment scales in order to select the proper hydrological model for coupling with an atmospheric
model. Moreover, the accuracy assessment of a coupled meteo-hydrological model is done for a
real-time system to find how the variations in spatial and temporal resolution and lead-time are
reflected in the precipitation and flood forecasting. To achieve this goal, a variety of tests were
conducted to quantify the accuracy of discharge and precipitation. This research provides details on
the maximum spatial and temporal resolutions and the lead-time required for reliable forecasts in a
real-time forecast system.
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2. Study Area and Data

Documents and analysis will entirely focus on the Imjin River, the seventh largest river in the
Korean peninsula, which passes through North and South Korea. The area and the length of this
domain are 8139 km2 and 273.5 km, respectively. The river originates in North Korea, heads from
the Hamgyeongnam-do Masikryoung Duryu mountain and flows from North to South passing the
demilitarized zone (DMZ), and joins the Han River and finally the Yellow Sea. The average annual
precipitation is approximately 1100 mm [23], and the topography varies from 155 m to 1570 m above
mean sea level. Since two-thirds of the Imjin River is located in North Korea, this river is considered
a transboundary river. Given that immediate access to data in Transboundary Rivers is hard due to
political boundaries and data reliability, Transboundary Rivers are always challenging for engineers
and model developers. Therefore, it was difficult to obtain the required information for the hydrological
model in the northern part of the basin. In addition, the study area includes 38 subbasins. The subbasins
and location of water level gauges are shown in Figure 1, which provides a broad depiction of the
study area.

Figure 1. (a) The location, subbasins, network and water level of the Imjin River basin, (b) rain gauge
stations in the event 2002, (c) rain gauge stations in the events 2007 and 2011 and (d) Digital Elevation
Model (DEM) of the Imjin River basin.
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Other applications of the flood forecasting system are greatly related to military operations. The
coupling of hydrological and meteorological models is done to enhance flood information analysis in
this important area. Heavy rainfall and repeated storms have been reported many times in South and
North Korea, especially during the summer and fall. The Imjin River has encountered various flood
events across several years. The extreme events are chosen for consideration in flood forecasting in the
Imjin River basin. The list of the investigated events is shown in Table 1.

Table 1. List of the investigated events in Imjin basin.

Case Number Event ID Event Period

1 2002 28 August–4 September 2002
2 2007 23 July–4 September 2007
3 2011 25 July–30 July 2011

In 2002, Typhoon Rusa ripped through South Korea in the Gangneung area between 31 August
and 1 September, affecting the eastern and southern parts of Korea with almost 900 mm of rainfall
in 30 h [24]. The typhoon caused the submergence of 9000 houses and killed 113 people. In 2007,
North Korea had heavy rain between 7–14 August and 18–20 September (caused by Typhoon Wipha).
Over seven days, approximately 500–700 mm of rainfall caused this flood in North Korea. Seoul also
experienced heavy flooding on 27 July 2011. In the case of fast growing densely populated cities such as
Seoul, flash floods of 536 mm of rainfall in three days resulted in 69 people reported as dead or missing
in the Gangnam area. Flood events in Imjin basin caused damages to the buildings, agricultural fields,
roads, water structures, military equipment and marine facilities. In Imjin basin the number of death
is 41, 4 and 37; number of the property damages is 14, 22 and 95 and total financial damages are
approximately 3,500,000, 800,000 and 1,400,000$ in the events 2002, 2007 and 2011, respectively [25].

These intense rainfall events led to hazardous floods and caused various damages in South and
North Korea. The floods were caused by torrential rainfall in this area and indicate the need for
integrated flood management, especially for two countries with different natural environments and
national defenses. In the Imjin basin for North Korea, there are more mountains and higher altitudes
by comparing with South Korea (Figure 1d). Therefore, the North and South Korea have different
natures in the Imjin basin. The differences between North and South Korea for average, maximum
and minimum temperature, precipitation and relative humidity are shown in the Table 2. It should be
noted that this data are provided by Global Telecommunication System (GTS) for South and North
Korea [26].

Table 2. Meteorological data information for South and North Korea in Imjin basin.

Meteorological Data South Korea North Korea

Average temperature (◦C) 12.1 8.7
Maximum temperature (◦C) 38.4 22.6
Minimum temperature (◦C) −20.2 −16.7

Precipitation (mm) 1361.8 1173.2
Relative humidity (%) 67.5 76.0

In this study, the meteo-hydrological components are coupled for real-time rainfall-runoff

forecasting procedures for the transboundary Imjin River. There are 66 rain gauges for the events
2007 and 2011 (Figure 1b) and 33 rain gauges for the event 2002 (Figure 1c), and there are three
meteorological stations in the Imjin basin. The number of rain gauges is changed after 2002 due to
the Gunnam flood control project which started in 2003.The observation data used in this study were
passed through a quality control procedure, which checked the values and filled missing values by
interpolating from nearby stations to complete the hourly data from all stations.
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3. Methodology

3.1. Meteorological Model of Weather Research and Forecasting (WRF)

The WRF model is a mesoscale NWP model designed for atmospheric and operational forecasting
research. The WRF includes two dynamical cores, data assimilation and software. The WRF model
applies to a wide range of meteorological issues at various scales. The application of the WRF model
as a mesoscale model for forecasting extreme events has been used worldwide. This model enables
researchers to conduct different atmospheric simulations, such as real data or idealized conditions, by
providing operational forecasting, including advances in physics, numeric and data assimilation. The
initial and boundary conditions were obtained using external sources, such as the static geographic
data provided by the USGS and MODIS data set and the gridded data provided by regional and global
models such as the North American Mesoscale Forecast system (NAM) and the Global Forecast System
(GFS) [27]. In summary, using the definitions of all computational grids, geogrid interpolates terrestrial,
time invariant fields, and then Ungrib extracts the meteorological fields from the GRIdded Binary
(GRIB) formatted files, and Metgrib horizontally interpolates the meteorological data to the simulation
domains. The Advanced Research WRF (ARW) solver uses time-splitting techniques to integrate the
fully compressible non-hydrostatic equations of motion. The Euler equations are in flux form and are
formulated using a terrain that follows mass vertical coordinates. Finally, time-split integration is
carried out using the second or third order Runge-Kutta method [27].

The parametrization of the precipitation in NWP models is a very important factor. The WRF
model contains various microphysics schemes including the cumulus scheme and microphysics
scheme. There have been numerous studies of the WRF model in Korea, but the performance of the
different WRF schemes in heavy rainfall has not been comprehensibly studied. Among them, two
studies evaluated the mentioned schemes in Korea. According to the findings of Hong, the cumulus
parameterization scheme based on convective instability is responsible for producing heavy rainfall
over the central United States, whereas it plays a less dominant role in the heavy rainfall in the Korean
peninsula [28]. According to the study done by [29] for simulating heavy rainfall using WRF model
over the Korean peninsula it was found that WDM6 microphysical scheme simulated best the vertical
structure of heavy rain [29]. Since our study is focused on the extreme rainfall and flood events,
the WDM6 microphysical scheme was chosen for the present study. We did not consider a cumulus
scheme. Furthermore, the microphysics scheme of our numerical setup is WDM6. Normally, a cumulus
scheme is not consider in the high resolution (1 km) simulation because no cumulus scheme means that
cloud was resolved within high resolution grid. Moreover, WDM6 has stable performance in rainfall
simulation, although WDM6 tends to underestimate the rainfall. In the present study, the WRF version
3.5.1 was used for real-time forecasting of the meteorological data by using the WRF Double-Moment
6-Class (WDM6) microphysical scheme. The global meteorological reanalysis datasets were used in
the study NCEP Final Analysis (FNL; National Centers for Environmental Prediction) for the initial
condition (IC) and boundary condition (BC) of the WRF model. The resolution is 1 × 1 degree grids.
On the meteorological side, the WRF model covered Korea and the surrounding region with a high
temporal and spatial resolution. The WRF model is configured on a Mercator projection with 400 × 400
× 40 grid points and high resolution of 1 km × 1 km.

3.2. Hydrological Model: Sejong University Rainfall Runoff Model (SURR)

To find the proper hydrological model, the assessment of the forecasted precipitation for rain
gauge stations and MAP are done using individual forecasts and the mean of the forecast data (Figure 2).
The quality of forecast precipitation can be analyzed by comparing the values with observation data.
For this purpose, precipitation analysis can be done by the average ensemble method using equal
weighting to the members, which are lagged by 6 h.
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Figure 2. The flowchart of the hydrological model selection procedure.

This approach included forecast averages from multiple lead-times, which were then compared
with observed data. The methodology used to compare the observation and with the average of the
real-time ensemble forecast data is depicted in Figure 3. The Root Mean Square Error (RMSE) is used
for the comparison between real-time forecast data and the observed data. The RMSE is one of the
most widely used approaches for verification, and it evaluates the average magnitude of real-time
forecast errors. The outcomes from this analysis are provided in the Results section (please refer to
Section 4.2), and the findings resulted in the selection of the semi-distributed hydrological model that
is described as follows.

Figure 3. The schematic construction of real-time forecast of the WRF model.

The SURR was developed by the Water Resource and GIS Laboratory, Sejong University [30]. The
model was developed based on the event-oriented storage function model [31]. The SURR model
is a semi-distributed continuous rainfall runoff model that improved the estimation of hydrological
components such as potential evapotranspiration, surface flow, lateral flow and groundwater flow
using physical foundations. This model was developed to illustrate the complicated and nonlinear
relationship between rainfall and runoff in combination with natural components, such as soil
moisture condition and land use. The SURR model requires the input data as MAP and Mean Areal
Evapotranspiration (MAE) for each of the sub-catchments. The SURR model can be driven by either
observed or forecasted precipitation data. The FAO Penman-Monteith method was chosen as the
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method by which evapotranspiration was estimated from meteorological data. The evapotranspiration
is calculated using the FAO Penman-Monteith formula. The FAO PM method is recommended as a
standard method for estimating evapotranspiration (ET). The FAO PM method can be expressed as
Equation (1):

ET =
0.408∆(Rn −G) + γ 900

T+273 u2(es − ea)

∆ + γ(1 + 0.34u2)
, (1)

where ET is the evapotranspiration [mm day−1], Rn is the net radiation at the crop surface [MJ m−2

day−1], G is the soil heat flux density, which is relatively small for daily and 10-day periods [MJ m−2

day−1], T is the mean daily air temperature at a height of 2 m [◦C], u2 is the wind speed at a height
of 2 m [m s−1], es is the saturation vapor pressure [KPa], ea is the actual vapor pressure [KPa], es-ea
is the saturation vapor pressure deficit [KPa], ∆ is the slope vapor pressure curve [KPa ◦C−1] and γ

is the psychrometric constant [KPa ◦C−1]. The meteorological data are used to calculate the ET and
then the Thiessen polygons are used by GIS to estimate the MAE for each sub-basin. The rainfall and
evapotranspiration data have hourly temporal resolutions, which were spatially interpolated by the
Thiessen polygons method using GIS.

Hydrological model parameters and formulation affect the ability of the hydrological model to
simulate the streamflow. Therefore, as an initial assessment, the calibration and verification of the
hydrological model could be done using historical data to determine the stability of the model. In
the SURR model, there are two types of incorporated parameters, which include the subjective and
objective parameters. The subjective parameters can be estimated based on the basin characteristics
using GIS while the objective parameters are computed in the model calibration process. The subjective
and the objective parameters of the SURR model are presented in Table 3.

Table 3. The subjective and objective parameters in the Sejong University Rainfall Runoff (SURR) model.

Subjective Parameters Definition Unit Estimation Method

AKM Subbasin area km2 GIS
SLP Mean slope of the subbasin m/m GIS

Z Depth of soil layer m GIS
SAT Rate of water content at saturation mm/mm GIS
FC Rate of water content at field capacity mm/mm GIS
WP Rate of water content at wilting point mm/mm GIS
KS Saturated hydraulic conductivity mm/h GIS

CN2 Runoff curve number under AMC II - GIS

Objective Parameters

LHILL Mean slope length m Calibration
SURLAG Surface runoff lag coefficient h Calibration
LAGSB Lag time of the subbasin h Calibration

LATLAG Lateral flow lag coefficient h Calibration
SEPLAG Delay time for water percolating h Calibration
GWLAG Delay time for aquifer recharge h Calibration

ALPHA_BF Baseflow recession constant - Calibration

AQMIN Threshold water level in shallow
aquifer for baseflow mm Calibration

Ksb K coefficient of the subbasin hPsb Calibration
Psb P coefficient of the subbasin - Calibration
Kch K coefficient of the channel sPsb Calibration
Pch P coefficient of the channel - Calibration

For rainfall runoff simulation, the sensitive parameters of the SURR model are Pch, Psb, Ksb and
Kch. The calibration and verification events used in this study are provided in Table 4. The SURR
model was calibrated for the Imjin basin using the observed rainfall and streamflow, and the optimized
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parameters resulted in good agreement between the observed and simulated streamflow during the
verification periods.

Table 4. The calibration and verification periods for SURR model simulations.

Case Number Event ID Event Period

1 Calibration 23 July–3 September 2007
2 Calibration 1 July– 22 August 2008
3 Verification 21 June–4 August 2009
4 Verification 9 July–20 August 2010
5 Verification 16 June–2 August 2011
6 Verification 31 July–13 September 2012

The efficiency criteria used in this study are presented in Table 5. These criteria include the Root
Mean Square Error (RMSE), Nash-Sutcliffe Efficiency (NSE) by [32], Correlation and Relative Error in
Volume (REV).

Table 5. Statistical measures used to evaluate model performances.

Index Formula Range Ideal Value

Root Mean Square Error (RMSE) RMSE =

√∑N
i=1(Oi−Si)

2

N
(0,∞) 0

Nash-Sutcliffe Efficiency (NSE) NSE = 1−
∑N

i=1(Oi−Si)
2∑N

i=1(Oi−O)
2 (−∞,1) 1

Correlation Correlation =
∑N

i=1(Oi−O)(Si−S)√∑N
i=1(Oi−O)

2 ∑N
i=1(Si−S)

2 (−1,1) 1

Relative Error in Volume (REV) REV =
∑

Si−
∑

Oi∑
Oi

× 100 (−∞,∞) 0

Mean Relative Error (MRE) MRE = 1
N

N∑
i=1

Si−Oi
Oi

(−∞,∞) 0

Bias Bias = 1
N

N∑
i=1

Oi − Si (0,∞) 0

Note: Oi: Observed streamflow; Si: Simulated streamflow; O: Average of observed streamflow; S: Average of
simulated streamflow.

The statistical analyses of the SURR model simulations for the calibration and verification events
are shown in Table 6.

Table 6. Statistical analysis of simulated flow for calibration and verification periods in SURR model.

Error
Measurement

Calibration Period
23 July–3 September 2007

Calibration Period
1 July–22 August 2008

Verification Period
21 June–4 August 2009

Gunnam Jeonkuk Jeogseong Gunnam Jeonkuk Jeogseong Gunnam Jeonkuk Jeogseong

RMSE 629.36 182.87 864.82 599.13 139.52 609.68 632.18 196.79 766.87
Nash 0.69 0.78 0.71 0.70 0.83 0.79 0.57 0.85 0.79

Correlation 0.85 0.95 0.91 0.82 0.97 0.93 0.84 0.96 0.92
REV −0.48 −0.12 −0.52 0.37 0.03 0.08 0.16 −0.22 0.03

Error
Measurement

Verification Period
9 July–20 August 2010

Verification Period
16 June–2 August 2011

Verification Period
31 July–13 September 2012

Gunnam Jeonkuk Jeogseong Gunnam Jeonkuk Jeogseong Gunnam Jeonkuk Jeogseong

RMSE 702.59 263.35 779.22 621.33 220.18 704.99 688.67 77.19 616.71
Nash 0.62 0.71 0.67 0.71 0.89 0.85 0.59 0.78 0.66

Correlation 0.63 0.92 0.84 0.84 0.97 0.93 0.62 0.95 0.81
REV 0.23 −0.34 −0.07 −0.09 −0.19 −0.11 −0.28 −0.20 −0.05
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The RMSE, NSE, Correlation and REV are used to compare the simulated and observed stream
flow in calibration and verification periods. For the sake of the brevity, the results of the calibration
and verification are shown for the 2008 and 2012 events for Jeonkuk station (Figure 4). A detailed
description of the SURR model is reported in [30,33].

Figure 4. The results of the calibration (a) Event 2008 and verification (b) event 2012 of the SURR model
in Gunnam, Jeonkuk and Jeogseong stations.

3.3. Accuracy Assessment

In this research, the results were obtained based on a one-way coupling methodology that connected
the SURR and WRF models. To further investigate the accuracy of the coupled meteo-hydrological
models, it is essential to use a methodology that quantifies the errors of the coupled system. As
mentioned before, this study does not focus on the errors related to the hydrological model performance;
therefore, the overall procedure consists of quantifying the accuracy of the precipitation analysis, the
spatial and temporal resolution and the variation in lead-time using statistical measures.

The precipitation is the most important output of meteorological models used for
meteo-hydrological applications since the performance of coupled meteo-hydrological models is
dependent on the accuracy of forecasted precipitation. Therefore, it is necessary to establish a
methodology to analyze the real-time forecast data. Point precipitation analysis provided a comparison
between the observed precipitation at rain gauge stations and the values that were forecast for each
place. Furthermore, the areal average values of precipitation were calculated by Thiesen polygons
at the catchment scale using the observed precipitation at the rain gauge stations versus the high
resolution of the meteorological model forecast data. The accuracy assessment of variations in spatial
resolution (1, 2, 4, 8, 12, 16 and 20 km), temporal resolution (10, 20, 30 and 60 min) and lead-time (12,
24, 36, 48, 60 and 72 h) can be performed by evaluating the precipitation and analyzing the discharge.
The correlation, bias and RMSE can be used to show the level of agreement between the observed
and forecasted values and the accuracy variation for the abovementioned items, respectively. In this
study, we considered each factor separately for example in spatial resolution analysis the temporal
resolution of 10 min and forecast lead-time of 72 h are fixed and comparison is done by changing the
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spatial resolutions. In temporal resolution analysis, the spatial resolution of 1 km × 1 km and forecast
lead-time of 72 h were fixed and the evaluations are done for four different temporal resolutions.
Accordingly, for the forecast lead-time analysis, the spatial resolution of 1 km × 1 km and temporal
resolution of 10 min were fixed and then the evaluations were done for various forecast lead-times.

According to the results of this analysis, the optimal spatial and temporal resolution and lead-time
can be chosen to be used in the time series analysis of forecast flood. Evaluation techniques have been
reviewed using a variety of gauge and forecasted data in the SURR and coupled SURR-WRF models.
With these different types of comparisons, it is possible to establish the quality of each component.
Comparisons of simulated, observed and forecast stream flow can be done using statistical indexes
to quantify the accuracy assessments. The efficiency criteria used in this study are presented and
evaluated (Table 5). These criteria include the NSE, Mean Relative Error (MRE) and REV. These indexes
provide more information on the systematic and dynamic errors present in the model results.

4. Results and Analysis

4.1. Point Precipitation Assessment

In coupled meteo-hydrological models, for real-time flood forecasting, the error related to the
rainfall forecasts overcomes the other sources of error. In this part, the attention is focused solely on
the meteorological model. Observed precipitation has a complicated nature, which makes it difficult to
use for atmospheric validation, but it could be a useful tool for detecting precipitation errors, such as
those caused by the position, timing and strength of the events. The amount of precipitation produced
by the atmospheric model is compared with rain gauges to diagnose the forecast errors. Due to
the high resolution of the WRF model in this study, the error related to locating different stations in
the same model grid cell with different observations is eliminated. This analysis is applied for spot
measured rainfall in observation stations and for real-time forecasted data from the WRF model at the
mentioned locations.

In this method, each observation is compared with a single corresponding mean forecast data from
the same time. Precipitation analysis at the point scale shows that the skill of the NWP precipitation
forecasts varies considerably between rain gauge stations. The results of the point precipitation
assessment at the 33 stations for the 2002 event and the 66 stations for the 2007 and 2011 events
indicated that the WRF model does not forecast the rainfall well. Further investigation is conducted to
compare the total, minimum, maximum and underestimation of observed and forecast rainfall for the
duration of the events (Table 7).

Table 7. Statistics of point precipitation analysis.

Events
2002 2007 2011

Observation WRF Observation WRF Observation WRF∑
(mm) 10125 5813 32129 25446 33516 11818

Min (mm) 179 98 278 247 233 127
Max (mm) 405 282 907 599 790 253

Underestimation (%) 94.0 84.8 100

The scatter plot of observed and forecast precipitation showed that the WRF model less accurately
captures the precipitation accurately in all events. In the present study, the WRF as a NWP model has
the limitation of underestimating the precipitation in this study area (Figure 5).
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Figure 5. Scatter plot of observed and forecast precipitation for the events of 2002, 2007 and 2011.

The comparison of the accumulated rainfall in each station is drawn to indicate the variation of
the observed and forecast rainfall in all events (Figure 6).

Figure 6. Cont.
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Figure 6. Comparison of the accumulated observed and forecast precipitation for the events (a) 2002,
(b) 2007 and (c) 2011.

4.2. Spatial Distribution of MAP

To have a general view of the meteorological models’ performance, it is of great necessity to
evaluate the NWP model performance at the catchment scale. The figures demonstrate the spatial
patterns of MAP, which were obtained by the observed and forecasted precipitation for each subbasin
in the Imjin watershed. The observation-based MAPs were calculated using observed precipitation,
while the forecast MAPs were obtained from the WRF model. The differences can be detected in the
intensities of the observed data and the WRF model data in the whole area. In the flood event of 2002,
there is an increasing pattern in the observed data in most of the southern region; however, the WRF
model results indicated a decreasing N-S gradient and an increasing pattern in the center region. The
results related to the 2007 event showed a positive northbound and southbound gradient of areal
precipitation in the observed and forecasted data, respectively. In the 2011 event, the observed and
WRF data had an increasing pattern of rainfall from North to South while the WRF results included
an underestimation for the MAP. Taken together, at the catchment scale, the WRF model predicted
the general rainfall pattern well; however, it had some significant underestimation with respect to the
observations (Figure 7).

Figure 7. Accumulated MAP in the Imjin basin for the 2002, 2007 and 2011 events (i.e., from left to
right); (a) observation and (b) WRF model forecast precipitation.
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The results of the MAP assessment showed that the WRF model had underestimated the MAPs
by 84.2, 78.9 and 97.4% for the 2002, 2007 and 2011 events, respectively (Table 8).

Table 8. Statistics of MAP analysis for 38 subbasins.

Events
2002 2007 2011

Observation WRF Observation WRF Observation WRF∑
(mm) 11100 6796 19041 14623 17445 6710

Min (mm) 197 133 299 159 293 53
Max (mm) 351 264 642 450 743 219

Underestimation (%) 97.37 78.9 100

The results of MAP analysis for 38 subbasins exhibited that the WRF model had better performance
for the 2002 event, with a lower RMSE of 122 than the higher RMSE of 159 and 304 for the 2007 and 2011
events, respectively (Table 9). Overall, the spatial averaging of rainfall over the catchment reduces the
errors compared to point analysis. The accuracy assessment for the comparison of forecast precipitation
and MAP indicated that significant differences can be expected for distributed and semi-distributed
hydrological models. According to the findings, the semi-distributed hydrological model may be a
better choice for this study. For the SURR model, as a semi-distributed hydrological model used in this
study, better forecast stream flow can be expected as a result of the lower RMSE in MAP than that from
the point precipitation accuracy assessment.

Table 9. Precipitation assessment for individual and mean forecast real-time data.

Forecast Data Precipitation
Analysis Error Measurement 2002 2007 2011

Individual forecast
Point assessment RMSE 84.49 212.80 91.53
MAP assessment RMSE 59.67 160.48 68.49

- Error reduction (%) 29.38 24.59 25.17

Mean forecast
Point assessment RMSE 150.42 169.52 355.39
MAP assessment RMSE 121.67 158.80 303.58

- Error reduction (%) 19.11 6.32 14.59

4.3. Spatial Resolution Assessment

It is necessary to assess the spatial resolution effect on the accuracy of coupling the WRF model with
the SURR model. Theoretically, higher resolution modeling with better mathematical characterization
of physical processes is expected to lead to more accurate forecasts. The WRF model feeds the whole
domain of study with a dense spatial resolution. By comparing the spatial resolutions in this study,
the results implied that the hypothesis stating higher spatial resolution data have better accuracy is
demonstrated by the clear trend of the increasing error percentage with the decreasing spatial resolution
in the WRF model. The presentation of the results starts with the evaluation of MAP correlation, the
bias of observed and forecast data and the RMSE of streamflow analysis. The recommended minimum
spatial resolution is a factor related to the complexity of the study area. The complex terrain and
mountainous areas require higher resolutions. The MAP correlation and bias between observed and
forecast data are illustrated in Figure 8.

The bias evaluates the difference between the mean of the forecast and observation data, and the
correlation illustrates the linear relation among the forecast and observation data. The results indicated
that, by decreasing the spatial resolution, the bias increased, and the correlation coefficient decreased
for all events. Further analysis led to evaluate the effect of the variation in spatial resolution on the
real-time flood forecasting to choose the optimal resolution for coupling the WRF model with the
SURR model. To examine the effects of spatial resolution variation on streamflow, the observed and
forecasted flows are compared for different spatial resolutions. Increasing the spatial resolution of the
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meteorological models yielded improvements in the forecasted streamflow (Figure 9). It is determined
that the spatial resolutions lower than 8 km did not affect the inherent inaccuracy of the flood forecasts
in all events, while after that, the error increased to a higher level for all events. It can be concluded
that the WRF model is more likely to resolve physical procedures at higher spatial resolutions.

Figure 8. The bias and correlation assessment for the different spatial resolutions in events 2002, 2007
and 2011.

Figure 9. Comparison of forecast flow RMSE for different spatial resolutions in events 2002, 2007
and 2011.

4.4. Temporal Resolution Assessment

The comparison of variations in temporal resolution of the WRF model forecast with observations
for MAP correlation, bias and discharge analysis are indicated in Figures 10 and 11. In addition, as is
seen, the accuracy assessment of temporal resolution showed that the performance did not change
much by increasing the temporal resolution. The accuracy assessment is implemented to check the
temporal resolution variation for 10, 20, 30 and 60 min data.
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Figure 10. The bias and correlation assessment for the different temporal resolutions of events 2002,
2007 and 2011.

Figure 11. Error measurement of different temporal resolutions of events 2002, 2007 and 2011.

The results of the bias evaluation for the MAP indicated that the bias did not change significantly
for the different temporal resolutions. However, for the 2011 event, the bias is higher than the other
events, and this could be related to the underestimation by the WRF model. The results of the MAP
assessment in the previous sections (Table 8) showed underestimations of 97.4%, 84.2% and 78.9% for
the 2011, 2002 and 2007 events, respectively. The results of the MAP correlation assessment showed that
the correlation did not vary significantly for the three events. The findings of the RMSE assessment for
flood forecasting illustrated that the temporal resolution variation did not affect the RMSE significantly.
Generally, results of MAP correlation and bias, along with error measurement of forecast discharge by
RMSE, did not vary for different temporal resolutions in all events.

4.5. Lead-Time Variation Assessment

Lead-time is a key factor in the NWP model forecasts since the skills of the models vary significantly
with the forecast lead-time. In general, the forecast skill decreases with the increase in lead-time, which
is related to higher uncertainty in forecast data. In fact, the NWP models underpin many statistical and
hybrid techniques and typically use global-scale models to provide boundary conditions. Accordingly,
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NWP models are influenced by spin-up effect, which results in deficiencies during the first few hours
of the forecast lead-times. The error measurement of each lead-time (L) is given by Equation (2):

RMSEL =

√
1
N

∑(
Qt+L − Q̂t+L

)2
, L = 12, 24, 36, 48, 60, 72 h (2)

where N is the number of discharges, Q̂t is the forecasted discharge at time t obtained by the coupled
SURR and WRF model, Qt is the observed streamflow, and L is the lead-time. The summations are
for all forecasts, which are the forecast time t belonging to all events. Further analysis compared the
performance of the WRF model and the coupled SURR-WRF models with different lead-times. The
results showed that the error measurements deviated with changes in lead-time. The accuracy of the
model results depended on the forecast lead-time. This indicated that real-time forecasting systems
performed better with short forecast lead-times than with longer ones. The results of the observed and
forecast rainfall comparison using a scatterplot indicated the over- and underestimation of the forecast
rainfall for different lead-time intervals (Figure 12).

Figure 12. Observed and forecasted rainfall for lead-times (a) 0–12 h, (b) 13–24 h (c) 12–36 h (d) 37–48h,
(e) 49–60 h, (f) 61–72 h of all the events.
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The ensemble forecasts of the WRF model results had higher correlation and lower bias for
lead-times less than 36 h (Table 10).

Table 10. The relative bias and correlation assessments for different lead times.

Lead Time
(hr)

Event 2002 Event 2007 Event 2011

Relative Bias Correlation Relative Bias Correlation Relative Bias Correlation

0–12 65.00 0.11 32.00 0.17 54.00 0.04
13–24 34.00 0.16 22.00 0.42 52.00 0.27
25–36 60.00 0.20 27.00 0.37 59.00 0.38
37–48 67.00 0.15 33.00 0.35 61.00 0.18
49–60 76.00 0.12 40.00 0.30 64.00 0.17
61–72 93.00 0.03 43.00 0.11 78.00 0.09

The discharge error measurement indicated that longer lead-times had lower accuracy as indicated
by the increasing RMSE values. Accuracy assessments of lead-time variation demonstrated that
lead-time dependency was almost negligible below the 36 h lead-time in the 2002, 2011 and 2007 events
(Figure 13).

Figure 13. Comparison of RMSE of forecast flow for different lead-times in events 2002, 2007 and 2011.

4.6. Time Series Analysis

As previously described, a spatial resolution of 8 km, a temporal resolution of 60 min and a
lead-time of 36 h were chosen for coupling the SURR and WRF models in the Imjin basin. Therefore,
the time series analysis and the plots of forecast streamflow were created for the abovementioned
spatial resolutions, temporal resolutions and lead-times. The accuracy of a streamflow forecast system
is dependent upon how well the coupled models are able to make precise results. Consequently, to
refuse or agree with the qualification of the model results is vital to establish accuracy measurements.
The accuracy of a prediction is evaluated by comparing the observed, simulated and forecasted values.
The simulation estimates conducted with the observation MAP and MAE are illustrated as the SURR
model input; however, the forecast obtained with the ultra-fine scale, real-time meteorological data
from the WRF model are used as the input to drive the SURR model. For the accuracy assessment of
the coupled system, statistical error measures are used to describe the average deviations and compare
the skill of hydrologic simulations and forecasts produced from the different inputs with observed
streamflow. There are some efficiency criteria, such as NSE, MRE and REV, that are frequently used in
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hydrologic modeling assessments. The Jeonkok has no observation data for the 2002 event. The results
of error measurements for the 2002, 2007 and 2011 events illustrated that the coupling system of the
two models caused a decrease in the NSE and an increase in the error measurement indexes before and
after linking the models (Table 11).

Table 11. Results of statistical error measurements in Imjin basin.

Index
Gunnam Station Jeonkok Station Jeogseong Station

SURR SURR-WRF SURR SURR-WRF SURR SURR-WRF

Event 2002

NSE 0.26 −18.00 - - 0.68 −19.84
MRE −0.09 −0.95 - - −0.25 0.80
REV 0.16 0.70 - - 0.03 0.53

Index
Gunnam Station Jeonkok Station Jeogseong Station

SURR SURR-WRF SURR SURR-WRF SURR SURR-WRF

Event 2007

NSE 0.69 −4.57 0.78 −6.63 0.71 −10.00
MRE −0.58 −0.60 −0.06 −0.77 −0.69 −0.78
REV −0.48 −0.57 −0.12 −0.22 −0.52 −0.54

Event 2011

NSE 0.80 −0.47 0.81 −0.87 0.90 −1.06
MRE −0.49 −0.79 −0.63 −0.67 −0.06 −0.56
REV −0.08 −0.59 −0.34 −0.73 −0.45 −0.60

Within the NSE range set between 1 (i.e., the ideal value) and negative infinity, values lower
than zero indicate that the mean value of the observed streamflow could have better estimate than
the model provides. According to the calibration and verification of the SURR model, the results of
the streamflow simulations are reasonable and stable with NSEs close to 1; however, for the coupled
SURR-WRF model, the NSE decreased dramatically. Here, it should be noted that the calibration of the
SURR model parameters is done based on the rain gauge data and observed streamflow, while for
real-time flood forecasting by the SURR-WRF coupled system, the real-time precipitation is forecasted
using the WRF model. Therefore, the significant differences in NSE and the increases in the error
measurement indexes for the SURR and coupled SURR-WRF models are related to the various sources
of precipitation used as inputs for the hydrological model.

The performances of the SURR model in simulating the streamflow along with the SURR-WRF
coupled model in forecasting the streamflow at the Gunnam, Jeonkok and Jeogseong stations in the
2002, 2007 and 2011 events are presented in Figure 14. The observed stream flow (black curve) is drawn
to show the SURR model verification. The red curve indicates the forecast stream flow in the coupled
SURR-WRF model, while the solid black curve shows the simulated streamflow using the observed
meteorological data. The coupled SURR-WRF model is composed of the observed precipitation until
the onset of the forecast time, and it continues using the WRF data to a 36 h forecast lead-time. The
combinations of observed and real-time WRF data are used to drive the hydrological model. The
observed and real-time forecast precipitations are shown separately in the upper and lower panels
of Figure 14, respectively. This procedure is repeated for the next 6 hours to the end of the forecast
time. Due to space limitation, briefly, one stream flow forecast is shown with relevant precipitation to
indicate the real-time forecast discharge variation over time.
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Figure 14. Cont.
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Figure 14. Comparison of simulated, observed and forecasted flow for (a) 2002, (b) 2007 and (c)
2011 events.

Interestingly, considering the runoff, the amplitudes of the simulated and observed peaks are
quite similar in the SURR model simulation, while the amplitudes forecasted by the WRF model are
different. This can be explained as the result of the two sources of precipitation, which are basically
different. The spatial and temporal variation in the rainfall characteristics were not captured well by
the WRF model in the real-time forecast data. In general, it is shown that the NWP models forecast less
intermittent precipitation than indicated by the observed precipitation rates. Due to the precipitation
parameterization, most of the schemes used in the NWP models have deviations in the forecasted
runoff hydrographs with respect to timing and amplitude compared to the measured runoff. Typically,
the forecast floods underestimated the peak floods, and the forecasted flood errors are related to the
inaccuracies in the real-time forecasted rainfall. Considering all real-time forecast cases from the start
of the forecasting time until the end of the forecasting time, on average, it can be concluded that
hydrological forecasts based on meteorological model inputs were able to reproduce the shape and the
timing of the calculated stream flow fairly well. However, the underestimation of the WRF model
precipitation was noticeably affected by the real-time forecast discharge in all events.

5. Discussion

The combination of the NWP models and the hydrological models to generate the flood forecasting
is a great topic to study in water related studies. According to the recent studies on coupled
meteo-hydrological models, it is necessary to diagnose and evaluate models to more robustly clarify
where the models have weaknesses and need improvement. In meteo-hydrological studies, the
choosing of the proper hydrological model for coupling with the meteorological model is still an
open question. Assessment of the hydrological model selection can be done based on the accuracy
of the meteorological model forecast in point and catchment scale. Evaluation of point precipitation
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and the Mean Areal Precipitation (MAP) could lead to robust decision making in the distributed
(which uses the point precipitation data as input) and semi-distributed (which uses the MAP as input)
hydrological models. The first objective of this study is to find proper hydrological model to couple
with a meteorological model. In order to find the proper hydrological model, the assessment of the
forecasted precipitation for rain gauge stations and MAP are done using individual forecasts and the
mean of the forecast data.

There are many factors effected the accuracy of the precipitation forecast such as NWP model
parametrization, schemes, spin-up time, spatial and temporal resolutions and forecast lead-time. In
meteo-hydrological studies, it is clear that the variations in spatial and temporal resolutions as well
as in the lead-time of the precipitation forecasts lead to notable differences in the accuracy of flood
forecasting. However, it is not yet clarified at which spatial and temporal resolution and lead-time
the runoff is forecasted with rational accuracy. In this study, many analyses have been carried out
to assess the ability of meteorological and hydrological models to provide hydrological predictions
through the estimation of the errors associated with each model. The aim of the present study was to
compare the different factors related to the coupling of rainfall runoff forecasting and meteorological
systems; additionally, a real-time case study was used to quantify the accuracy assessment of each
component. The results of real-time coupled SURR and WRF models highlighted the relative strengths
and limitations of the models. The system accuracy assessment was composed of meteorological and
hydrological model efficiency.

The results of point precipitation analysis and the spatial distribution of MAP generally indicated
that the WRF model produced less accurate precipitation than the observed precipitation rates. The
WRF model with high spatial resolution eliminated the error related to locating different stations in the
same model grid cell with different observations. The point precipitation analysis showed that the
skill of the WRF model varied considerably between rain gauge stations. This might be related to the
precipitation parameterization schemes used in the WRF model. The catchment-scale assessment of
the WRF model performance by MAP demonstrated the WRF model underestimated the MAP for the
events. The hydrological model used in this study benefitted from lower RMSE values in MAP than in
point precipitation.

The hypothesis that higher spatial and temporal resolution data have better accuracy is supported
in this study; however, based on the findings, the temporal resolution did not have much of a negative
effect on the inherent inaccuracy of the data. In general, the results indicated that the real-time
forecasting system performed better with short forecasting lead-times than longer ones. During this
time, the effects of the initial conditions, spin up, regional characteristics and warm-up time were
removed; thus, the results became more reliable. The coupled model performance for all events
resulted in runoff peaks of coupled results in cases where time and height were in agreement; however,
there was not a good fit with the simulated peaks compared to the observations. The results of the
accuracy assessments indicated a decrease in NSE and an increase in error measurement indexes after
linking the models. Although the results of the coupled SURR-WRF models have underestimation,
available forecast data, especially in a transboundary river such as the Imjin basin, are preferred over
completely ignoring future events of interest.

Providing valuable information for flood forecast using the NWP models as the sources of the
rainfall forecast and coupling with the hydrological models, can be considered as the credibility of the
coupled meteo-hydrological models. The information provided by these kinds of models such as flood
forecasting, can be of great importance for water resources managements, providing early warnings to
reduce the flood damages. On the other hand, the restrictions of the coupled meteo-hydrological models
can be linked to the uncertainties in flood forecasting. For the flood forecasting in meteo-hydrological
studies each model component has its own source of producing errors spread from the atmospheric
conditions to rainfall forecasts and the rainfall to runoff predictions. The results of the NWP models
forecasts have uncertainties and contain biases. Moreover, the uncertainties in flood forecasting could
be related to the fact that the hydrological model calibration is done with rain gauge data and observed
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streamflow; however, the coupled meteo-hydrological model uses the forecast rainfall as the input
data to run the model. These are different sources of rainfall were used as input for the hydrological
models. Therefore, it could be expected that the hydrological response in forecasting the streamflow
would not match the simulated streamflow very well.

6. Conclusions and Recommendations

The main conclusions of this study are listed below:

1. The WRF model underestimated the precipitation in this study area in the point and
catchment assessments.

2. Comparing the results of the point and catchment scale indicated that the WRF model had
better performance for the catchment-scale assessment. These findings led to the selection of the
semi-distributed hydrological model.

3. It was determined that spatial resolutions lower than 8 km did not affect the inherent inaccuracy
of the flood forecasts in all events.

4. The findings of the RMSE assessment for flood forecasting illustrated that variations in temporal
resolution did not affect the RMSE significantly.

5. The skill of the WRF model’s real-time forecasts varied significantly with forecast lead-time.
Lead-time variation demonstrated that lead-time dependency was almost negligible below 36 h.

6. In addition, the QPF is the most important factor driving the hydrological models in coupled
studies; therefore, improvements that focus on the QPF post-processing are proposed. Since the
lead-time of forecasting is an important factor in real-time flood forecasting, future studies should
also focus on potentially improving the lead-time of flood forecasting.
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