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Abstract: Ensemble flood forecasts are an established tool to provide information about the
uncertainty of runoff predictions. However, their interpretation may not be straightforward, especially
when dealing with extreme events; therefore, the development of new tools to enhance their
understanding and visualization is necessary. Recently, the so-called “peak-box” approach has
been developed to help decision makers in the interpretation and verification of peak-flow forecasts,
receiving positive feedbacks within the hydrological community. However, this method has proven
to be limited when multiple peak-flow events occur within the forecast, being unable to separate close
discharge peaks. The aim of this paper is then to develop a new algorithm designed to accomplish this
task. To do so, we consider runoff probabilistic forecasts obtained with a coupled hydrometeorological
flood forecasting system formed by the high resolution meteorological Ensemble model COSMO-E
and the hydrological model PREVAH, for the small Verzasca basin, Switzerland, during October
and November 2018. The application of this new method, despite the limitation given by the small
sample size considered in this study, indicates a successful implementation: the new algorithm is
able to distinguish among different events and to provide sharper and more skillful forecasts, and its
verification yields slightly better timing estimations compared to the former approach.

Keywords: HEPS; flood forecast; peak-flow predictions; visual support; flood forecast uncertainty;
model uncertainty; COSMO; PREVAH; peak-box approach

1. Introduction

The prediction of hazardous floods triggered by severe precipitation events is an important
issue (e.g., [1]); especially for the Alpine region where the most severe events in Europe usually take
place [2], the forecasting value has been increasing. Indeed, major floods can produce great damage
both in terms of human and animal lives, as well as to the environment, economy, and infrastructures.
Furthermore, one of the effects of the recent global warming is increasing the frequency of severe
floods: Alfieri et al. (2015) [3] expected floods with current return periods longer than 100 years to
double in frequency in Europe in the next three decades. In addition, exploring different European
flood risk scenarios with a multi-model approach, Alfieri et al. (2018) [4] pointed out the accountability
of climate change as the main driver influencing future flood risk and the expected increase of flood
events’ frequency even for the most optimistic warming scenario of 1.5 ◦C (compared to pre-industrial
levels). Given the nature of the atmosphere as deterministic chaos [5], floods triggered by heavy
precipitation events should be forecast with methods able to reflect this limitation in atmospheric
predictability, and this is done through the employment of ensemble prediction systems (EPS or,
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for hydrological purposes, HEPS). These models provide an ensemble of river flow predictions for the
same forecast period, probabilistically assessing future river conditions [6], and are currently widely
applied to obtain hydrological forecasts (e.g., [7–9]). There is general agreement that the probabilistic
ensemble forecasting approach for flood warning purposes has added forecast value compared to
the previously adopted deterministic forecasts (e.g., many case studies reported in [10]). Ensemble
flood forecasts are affected by many sources of uncertainty [11,12], and the most important one is
related to the numerical weather prediction (NWP) forecasts’ input (especially regarding precipitation
estimations) [13–16]. When comparing the weight of this uncertainty contribution with that of a minor
source, related to the choice of different hydrological parameters (not shown here; the reader is referred
to [17]), the importance of the meteorological input is highlighted. In fact, with the high-resolution
forcing meteorological model we used, having an horizontal grid spacing of 2.2 km, the uncertainty
related to the meteorological forcing was found to be five times larger than the hydrological parameters’
one. Conversely, when using a coarser model with a 10 km horizontal grid spacing [13], the former
uncertainty component was found to be ten times larger than the latter. This result is mainly imputable
to a finer horizontal grid spacing of the forcing meteorological model, which leads the precipitation
predictions to outperform those of the coarser one significantly (e.g., [18,19]). Anyway, despite
these significant improvements, ensemble flood forecasts are still usually characterized by large
spread, especially in the case of extreme events; consequently, their interpretation may not be so
straightforward. A tool that has been developed to enhance the understanding of probabilistic runoff
forecasts is the “peak-box” approach [20], especially for decision-making and to guide forecasters in the
interpretation of ensemble peak-flow forecasts. Based on the peak magnitude and timing distributions
among the ensemble realizations, this visual tool has proven to be useful for flood peak estimation
[21,22], but still, it is limited for events characterized by multiple flood peaks. In fact, it is plausible
to observe multiple and close discharge peaks caused by intermittent storms (e.g., [23,24]), and the
peak-box is not able to separate them automatically in order to produce peak estimations related to
different events. For this reason, the open questions we want to address in this paper are:

Is it possible to develop a peak-box approach for detecting multiple flood peaks within
the same runoff ensemble forecast, and does it actually outperform the former method of
Zappa et al. (2013) [20]?

To achieve this goal, we adopted a flood forecasting system formed by COSMO-E (i.e., the
Ensemble version of COSMO model) as the forcing NWP and the hydrological model PREVAH
to produce runoff simulations on a small Alpine river catchment. These forecasts were used to
develop and test a more sophisticated peak-box algorithm, with the scope to distinguish and provide
interpretations of runoff events characterized by multiple peaks.

The manuscript is organized as follows: in Section 2, the methods, comprising the new peak-box
algorithm, are described; in Section 3, the results of the new method and a comparison with the former
approach are reported; in Section 4, the results are discussed; and in Section 5, the conclusions are
drawn. In addition, in Appendix A, an assessment of the quality of the forecasts considered is reported.

2. Methods

2.1. Flood Prediction Chain

The flood forecasting system considered for this study is formed by:

• COSMO-E (COnsortium for Small-scale MOdeling) as the forcing NWP system;
• PREVAH (precipitation-runoff-evapotranspiration HRU (i.e., hydrological response unit) model)

as the hydrological model.

COSMO-E is the operational high resolution limited area ensemble prediction system of,
e.g., MeteoSwiss (e.g., [19]). It uses the non-hydrostatic COSMO-2 model version (e.g., [18]), with a
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2.2 km horizontal grid spacing, has 21 ensemble members, and is run over the entire Alpine region
twice daily (at 00 and 12 UTC) up to a lead time of 120 h. The initial and boundary conditions of
COSMO-E are downscaled from the 51 member global ensemble model ECMWF EPS (e.g., [25]).
Especially important for our tasks is the precipitation forecast produced with hourly steps by the NWP
model, which is then spatially interpolated by the hydrological model over the catchment considered:
the spatially distributed meteorological data are averaged on defined sub-areas depending on different
altitude zones, which, for small basins as the one considered here, are identified with 100 m elevation
bands [26]. For a detailed description of the COSMO model and the physical parameterizations
adopted, the reader is referred to the last updated version of [27].

PREVAH is a semi-distributed hydrological catchment modeling system developed especially
to run simulations in mountainous environments. To generalize the local runoff generation behavior
over the entire basin considered, the 500 m2 grid points of PREVAH are aggregated to HRUs (which
represent a division of the basin into areas presenting similar hydrological behaviors). The reader is
referred to [28] for a detailed description of the model, its physics and parameterizations, and previous
work reviews. The initial setup and calibration of PREVAH for the study area considered relied on
previous works [29,30]. The calibration considered was thought to obtain more accurate predictions
during the peak phases and to give less importance to the baseflow phases (i.e., the so-called
“flood calibration”, based on peak-flow sensitive efficiency scores, and described in detail in [31,32]).
For PREVAH, a set of sensitive parameters was selected and randomly perturbed through a Monte
Carlo experiment to obtain 25 different sets of parameters as in [13]. The 25 hydrological parameter
sets we used represent the 1% subset of Monte Carlo realizations that performed best during the
calibration period 1996–2001 on the studied catchment.

After a complete run of the flood forecasting system, we obtained a number of realizations given
by the product of the ensemble members of COSMO-E and the number of parameter sets of PREVAH,
i.e., 525 runoff simulations, which had a lead time of 120 h.

2.2. Study Area and Period

The study area was the Verzasca basin (Figure 1), located in the southern Alps in the Canton
Ticino, Switzerland, which covers an area of 186 km2 and spans an elevation range between 490 and
2900 m a.s.l. This catchment is relatively little influenced by human activities, and the land use consists
of 30% forest, 25% shrub, 20% rocks, and 20% alpine pastures [29]. The choice of this basin was due to
its character of being relatively prone to flash floods. Its discharge regime consists mainly of snowmelt
during the hot season (spring and early summer) and of large rainfall events in autumn.

Figure 1. The Verzasca basin (in yellow). The runoff gauge, where discharge observations were
detected, is indicated with a red solid dot.
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The flood forecasting system was run from 2018-10-23 12:00 UTC to 2018-11-28 12:00 UTC, with the
exception of 2018-11-01 00:00 UTC (for technical reasons), obtaining a series of 72 different model
initializations (twice daily at 00 and 12 UTC), referred to as the full cases (which were considered to
assess the quality of the forecasts in Appendix A). However, for the purpose of the peak-box application
carried out, the subset of 35 initializations showing sufficiently large values of discharge to serve
our purpose, spanning from 2018-10-23 12:00 UTC to 2018-11-10 12:00 UTC, was selected and in the
following referred to as the high-flow cases. This period was particularly interesting because at the end
of October and beginning of November 2018, the Alpine region was affected by extreme rainfall and
flooding events caused by an intense cyclone formed over the Mediterranean sea (see the EUMETSAT
web page (https://www.eumetsat.int/website/home/Images/ImageLibrary/DAT_4169486.html) for
a detailed description).

To distinguish between low flow conditions and runoff events, we used the threshold Tlow = 23.1
m3s−1, which is the mean discharge value of the Verzasca basin, i.e., climatological value over the
period 1990–2016, which has been exceeded on 10% of the days within a year.

2.3. Observed Data

Runoff observations were employed to compare with forecasts output and to verify simulation
results. They were obtained from the gauging station present in Lavertezzo, Campiòi (red dot in
Figure 1), maintained by the Swiss Federal Office for Environment and supplying measurements at
10 min resolution, which were then hourly averaged.

2.4. Quality of the Runoff Predictions

The quality of the ensemble runoff forecasts is investigated in some detail in Appendix A; here, we
report the main findings. The main limitation of the analysis carried out was given by the small
sample size of model initializations considered, which restricted the general validity of the results.
The discharge predictions produced with the coupling of COSMO-E with PREVAH were revealed to
be highly skillful in detecting runoff events or rejecting non-events. There was, however, a general
tendency to systematically underestimate runoff’s magnitude in the specific Verzasca basin, due to a
miscalibration of the hydrological model in the catchment.

2.5. The Peak-Box Approach

Forecasts of flood events are usually characterized by a large ensemble spread; consequently, their
evaluation may be difficult. Therefore, a visual procedure to evaluate ensemble flood peak and flood
timing was developed by Zappa et al. (2013) [20], under the name of “peak-box”, with the purpose of
helping decision-making when forecasting flood events. In the following, we will refer to the procedure
developed in the paper as the “classic” (PBC) benchmark, against which the newly developed peak-box
algorithm for detecting multiple flood peaks (PBM) was tested. Firstly, we describe the structure of
PBC as developed in [20], followed by the description of PBM. For both approaches, the threshold
Tlow was adopted to discard the predicted peaks relative to low flow conditions and to keep those
producing useful information for flood forecasting purposes.

2.5.1. The Classic Peak-Box

When a decision-maker faces any flood forecast, the crucial question they should be able to answer
is: “How high and when is the flood expected?”. In fact, peak discharge p and peak timing t are the
most important information to have for planning flood relief measures [20]. Considering ensemble
forecasts, to answer this question, one has to take into account the entire distribution and relative
spread of the ensemble forecasts produced. This is the main reason behind the development of the
peak-box approach, which aims at visualizing forecast uncertainty related to peak-flow and which is
sketched in Figure 2, left panel. When plotting all ensemble generated discharge forecasts as a function
of time, the “peak-box representation” adds four elements:

https://www.eumetsat.int/website/home/Images/ImageLibrary/DAT_4169486.html
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1. the outer rectangle, called the “peak-box”, having the lower left coordinate set to (t0, p0),
i.e., the earliest time of peak-flow occurrence in any of the ensemble members, t0, the lowest
peak discharge, p0, and the upper right coordinate set to (t100, p100), i.e., conversely, the latest
time of peak-flow occurrence, t100, and the highest peak discharge, p100, among all the ensemble
members and for the entire forecast period;

2. the inner rectangle, the IQR box (i.e., interquartile range box), which has the lower left coordinate
set to (t25, p25), i.e., the 25% quartile of peak timing, t25, and discharge, p25, and the upper right
coordinate set to (t75, p75), i.e., the 75% quartile of peak timing, t75, and discharge, p75, among all
the ensemble members and for the entire forecast period;

3. the horizontal line, ranging from t0 to t100, representing the median of the peak discharge (p50) of
all members of the ensemble forecast;

4. the vertical line, ranging from p0 to p100, representing the median of the peak timing (t50) of all
members of the ensemble forecast.

Figure 2. Application of PBC to an ensemble of runoff simulations. Left panel: implementation of the
peak-box (grey solid lines and star) to a runoff forecast characterized by many members (sea-green
solid lines), for which the observed runoff is also reported (orange line), together with the predicted
peaks (small grey dots) and the observed peak (orange star). txx and pxx define the 0%, 25%, 50%,
75%, and 100% quartiles of the peak-flows, both on the x-axis, representing the time since forecast
initialization, and the y-axis, representing the peak discharge. Right panel: estimation of measures of
agreement from the peak-box. The geometric meaning of the two measures of agreement DTIME and
DPEAK is illustrated. See the text for further details. Adapted from [20].

Together with the peak-box, some metrics to quantify the forecast sharpness and to verify its
prediction were defined and are sketched in Figure 2, right panel. Since sharp forecasts increase
the confidence in decision-making compared to ensembles having a larger spread, it makes sense to
measure the peak-flow forecast sharpness through the results of the peak-box approach: considering the
ranges of peak timing and discharge obtained, we can measure peak-box and IQR-box sharpnesses as:

PBFULL = (p100 − p0) · (t100 − t0)
3.6
A

[mm] (1)

PBIQR = (p75 − p25) · (t75 − t25)
3.6
A

[mm] (2)

where the factor 3.6/A is a scaling parameter (A: catchment area in km2) used to obtain millimeters
of water depth and to compare results from different basins. Ensemble peak-flow estimations can
also be verified through the usage of the peak-box. One verification metric was introduced simply
by checking whether the observed peak fell inside or outside the boxes (i.e., adaptation of other well
known categorical verification metrics (e.g., [33])): if the observed peak fell outside the peak-box, it was
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labeled with a “miss”, if it fell inside the peak-box with a “hit”, and if even inside the IQR-box with an
“IQR-hit”. As another metric, we considered the peak ensemble median (t50, p50) as the best guess of
the forecast for predicting the true runoff peak (tobs, pobs): the definition of the scores in Equations (3)
and (4) permits estimating the level of agreement between the observation and the ensemble median
and, consequently, the accuracy of peak timing and discharge predictions.

DPEAK = |p50 − pobs| [m3s−1] (3)

DTIME = |t50 − tobs| [h] (4)

2.5.2. A New Algorithm for Multiple Peak-Flow Events

A critical limitation of PBC is its inability to interpret peak-flows when multiple peaks are
predicted from the same ensemble simulation. This was the reason that prompted us to develop a more
sophisticated algorithm able to provide reliable estimations for these kinds of situations. The procedure,
based on peaks’ detection and separation into groups related to different runoff events, involved the
application of the following steps, sketched in Figure 3:
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Figure 3. The steps of PBM for forecasting multiple peak-flow events for a specific forecast initialization.
The grey dots represent the peaks detected for the realization considered. Left panel: peaks detected
without the application of any filtering. Center panel: peaks detected with the condition of a certain
peak prominence, i.e., “important” peaks. Right panel: peaks detected and split into groups related to
different events (represented by different colors) for the entire pool of ensemble members, comprising
also the realization reported in the first two panels (notice the different discharge range covered by the
y-axis).

1. For every ensemble member, find all the runoff peaks (i.e., local maxima), excluding the first and
last hours of the forecast. The peaks were selected based on the concept of peak’s topographic
prominence: the prominence, defined as the minimum height necessary to descend to get from
the summit to any higher level terrain [34], is a measure of the independence of a peak. Its
application, when detecting the local maxima of a curve, permitted filtering out irrelevant and
noisy peaks. The higher the prominence, the more “important” the peak is considered. For our
purposes, within Python’s SciPy function scipy.signal.find_peaks (https://docs.scipy.org/
doc/scipy/reference/generated/scipy.signal.find_peaks.html), we set a value of prominence
of 1 for the first and last five hours of the forecast (since at the temporal extremes, some peaks
may be discarded when considering too large prominence values), a value of 2 in the case of
ensemble members whose discharge’s absolute maximum was below 100 m3 s−1, and a value
8 for all the rest. To visualize the effect of prominence on peak detection, we can compare the
left and the center panels of Figure 3: while on the left panel, the peaks found comprise many
negligible peaks, on the center panel, only the relevant peaks are kept through the application of
the aforementioned procedure.

2. Since the peak-box is thought to forecast high-flow events, to avoid low-flow conditions,
the threshold Tlow to reject exceptionally low peaks was applied to every realization. Furthermore,
if in the vicinity of a peak (i.e., in the temporal window of ±10 h around it), other peaks were
present, only the peak presenting the highest discharge would be kept.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.find_peaks.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.find_peaks.html
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3. Considering all the runoff realizations together, apply a K-means clustering [33,35] to the
peaks’ population to separate them into groups related to different peak-flow events (Figure
3, right panel). The variables on which the clustering was performed were the peak time of
occurrence and the scaled peak runoff. Scaling the peak discharge by a factor of 10 was applied in
order to enhance the weight of the time variable [36]. This was chosen because for the clustering
we aimed at, the scope was to split the peaks into groups related to events close, but distinct in
time. Since for a K-means clustering, the number of clusters into which we split the data must
be chosen in advance, we prescribed the number of groups into which the forecast peaks were
divided by extracting the rounded mean value of the number of peaks among all the ensemble
members. In a group, we allowed only one peak for each ensemble member: if more than one
was present, only the peak having the largest discharge value would be kept.

4. For every group found, apply the PBC procedure to construct the boxes and to calculate the
measures of sharpness. Concerning peak-flow verification, an additional condition was prescribed
due to the increased multiplicity of the observed peaks (which were identified with the application
of Steps 1 and 2 to the observed runoff time series): if more than one observation fell inside a
peak-box, the verification of the estimated peak was performed against the closest, both in time
and in runoff magnitude, observed peak. This condition was applied to both PBC and PBM
forecast verifications.

We are aware that this last condition was not a proper objective criterion. However, with the
scope of the present paper being to check whether PBM shows significant improvement compared
to PBC and since with PBC, only the highest observation was considered, verifying the prediction
against only the nearest observation was justified in this case. For any subsequent purposes beyond
this work, this limitation shall be accounted for. Both PBC and PBM were applied to the high-flow
cases’ set of model initializations. Given the increased multiplicity of peaks obtained with PBM, both
in terms of observations and forecasts, it was clear that the hit/miss score developed for PBC could not
give reliable results in this case. For this reason a new score, referred to in the following as HPB, was
defined for both the methods as the number of hit peaks (i.e., observed peaks falling inside a peak-box)
divided by the total number of observed peaks within a forecast:

HPB =
number of hit peaks

number of observed peaks
(5)

The Python script developed following this procedure is freely available at the GitHub repository:
https://github.com/agiord/peakbox.

The application of both the approaches was carried out with the runoff ensemble forecast
comprising just the 21 meteorological medians out of the 525 model predictions. The meteorological
medians were calculated from those realizations sharing the same COSMO-E member, but employing
different hydrological parameters sets. This was done firstly to save computational resources that such
a larger ensemble would demand, but also since the effect of the hydrological uncertainty was only to
change the magnitude of the predicted discharge peaks slightly, leaving their timings unperturbed (at
least for the cases treated here). For this reason, we assumed that applying the method to the reduced
ensemble instead of the full ensemble did not lead to a significant loss of information.

3. Results

In this section, the results pertaining to the application of the newly developed peak-box approach
PBM for detecting multiple peak-flows and a comparison with the classic approach PBC are reported.

The results of the application of the peak-box approach to four different model initialization times
are reported in Figure 4. Panels (a), (b), and (c) pertain to the forecast of the main runoff event in
the period considered. This event was particularly relevant since it was characterized by two main
discharge phases, separated by a short period with lower runoff (approximately around the night of 29

https://github.com/agiord/peakbox
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October); consequently, it perfectly served to test the new method. Panel (d) pertains to the forecast of
a minor isolated event. For each initialization, PBC produced always one peak-box (by definition),
which should predict the highest observed peak within the forecast. However, this was not always the
case: e.g., in Panel (c), PBC’s estimation is found to be closer, both in terms of timing and magnitude,
to the second highest observed peak. Furthermore, the presence of many observed peaks within the
same forecast led to the production of wide PBC boxes. This is the case of Panel (b), where the box
resulting from the distribution of the peaks related to four different observations spans almost four
days of the forecast, thus producing a peak estimation, totally missing sharpness. PBC was confirmed
to produce reliable and sharp forecasts in the case of singular runoff events, as is the case in Panel (d).

Figure 4. The application of the peak-box approach to a set of four model initializations. For every
model initialization (a–d), the resulting ensemble flood forecast, pertaining only to the 21 meteorological
medians, is shown with thin sea-green solid lines; the observed discharge is indicated with an orange
solid line; while the detected peaks (ti, pi), from which relative peak-boxes are constructed, are reported
with small solid dots. The plots are divided into two parts: the upper panels pertain to the application
of PBC, in grey solid lines, while the lower panels of PBM are in multiple colored solid lines. Every
peak-box forecast contains the peak-box (outer rectangle), the IQR-box (inner rectangle), and the
median estimations of peak timing and discharge (vertical and horizontal solid lines). The crossing
between these two lines in (t50, p50) represents the most probable peak estimation for every peak-box
and is highlighted with a star. The orange stars represent the observed peaks (detected with the same
procedure used for the detection of predicted peaks). The legend reported in panel (a) extends also to
the other panels.

Focusing now on PBM forecasts, the new algorithm always produced more than one box for
forecasts characterized by multiple runoff events (Panels (a), (b), and (c)). The generally sharper
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peak-boxes produced with PBM successfully distinguished among the main events, if they were not
excessively too close in time (as is the case of the first two observed peaks in Panel (a) or the last
two in Panel (c)). The ability of the peak-boxes to hit the observed events depended on the spread of
the ensemble forecast: e.g., in Panels (b) and (c), at the beginning of the forecasts, the spread is too
small to produce a correct peak estimation for the first event, while, at later lead times characterized
by sufficient spread, PBM produces skillful peak-boxes (i.e., hitting the observations) more easily.
However, for the former cases, it was relevant that PBM was able to recognize the presence of peak
events, producing their corresponding (but unskillful) peak-boxes. Finally, PBM was also able to
reduce correctly to PBC when just one runoff event was present within the forecast (Panel (d)): the
peak-box forecast produced with PBM matched perfectly the one obtained with PBC, both in terms of
the sharpness of the box and peak median.

3.1. Forecast Sharpness

A comprehensive comparison between boxes’ sharpness of the two approaches including all
the high-flow cases is offered in Figure 5. Overall, PBM tended to produce sharper forecasts than
PBC, both in terms of PBFULL and PBIQR. The mean values of both sharpness metrics were almost
three times smaller than the mean values related to the PBC boxes. Furthermore, almost for all the
cases where PBM created just one box, the values of peak-box sharpness of the two methods resulted
in being equal, representing the correct reduction of PBM to PBC. Generally, the sharpness of PBM
forecasts did not seem to be influenced by forecast lead time: as can be seen by the dot size distribution
in Figure 5, many times, the sharpest peak forecast within the same initialization is not related to the
first occurring peak-box.
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Figure 5. Measures of sharpness for the peak-box, PBFULL (upper panel), and the IQR-box, PBIQR

(lower panel), for both PBC (grey diamonds) and PBM (red dots), for every forecast initialization of
the high-flow cases. The size of the PBM dots refers to different lead times within the same forecast
initialization: the larger the size of the dot, the later the lead time when the peak-box is placed.
The mean values of PBFULL and PBIQR are shown with horizontal dashed lines, grey for PBC and red
for PBM.

3.2. Events’ Detection

The HPB values reported in Figure 6 reveal PBM to perform always better or equal to PBC in
detecting the observed peaks, resulting in mean HPB values of 0.52 for PBM and 0.41 for PBC. This
means that PBM was able to detect half of the observed peaks successfully, while PBC just 40%.
Concerning IQR-box hits (not shown in the chart), PBM successfully detected 20% of the observed
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peaks, while PBC only 17%. On the other hand, PBM produced also a larger amount of misses than
PBC (empty boxes in Figure 6). PBM outperformed PBC, in terms of HPB, especially in about the
first half of the high-flow cases, which were the forecasts capturing the highest runoff events and
characterized by multiple peak-flows (as in Figure 4, Panels (a), (b), and (c)). During about the second
half of the forecasts, PBM performed equally to PBC in many cases, with the observed peaks being
lower in magnitude and their amount being decreased, if not even reduced to just one peak per forecast
(as the case of Figure 4, Panel (d)).

Figure 6. Hit and miss observed peaks on the high-flow cases peak-boxes. On the upper part of the
plot, the hit score HPB is shown as a bar plot both for PBC (in blue) and PBM (in red), together with the
resulting mean values (dashed horizontal lines). On the lower part of the plot, for every initialization,
all the missed and hit observations are reported (white and black stars, respectively), which are ordered
from bottom to top with increasing lead time of occurrence. Together, the corresponding approach
that detected them is shown (red boxes for PBM, blue boxes for PBC), as well as the amount of peak
boxes that did not detect any event (empty red and blue boxes in the upper part of the lower plot).
The cases in which both blue and red empty boxes are obtained correspond to the occasions in which
PBM reduces to PBC, and both miss the observation, so the empty boxes of the two methods result in
being exactly equal and occurring at the same lead time.

3.3. Peak Median Verification

The median in timing and peak magnitude was considered, within the predicted peaks of the
same box, as the best estimation of an event, and it was the object of the verification metrics DPEAK
and DTIME. The outcomes of these metrics, both for PBC and PBM, are summarized in Figure 7.
The verification values reported, both for discharge and timing, included just the skillful cases (i.e.,
when an observed peak was detected inside a peak-box). Concerning DPEAK, we see that on average,
the performance of PBM was very similar to PBC (i.e., the horizontal dashed lines on the upper panel
are superposed). Concerning DTIME, PBM predicted on average peak timings closer to the observed
peaks of slightly less than two hours with respect to PBC. In four cases, PBM predicted perfect peak
timing estimations (i.e., DPEAK = 0 h). Similarly to what was obtained for the sharpness metrics, also
for the verification metrics, there was no significant dependence of the forecast quality with lead time.
In fact, the dot size distributions depicted in Figure 7 reveal that the peak-box estimation producing the
lowest DPEAK and DTIME, in those cases with more than one peak-box, is often not the first produced
within the same forecast. The comparison between PBM and PBC for predicting better or equal timing
and/or peak estimations, considering all the boxes produced by PBM and at least one box produced
by PBM, is shown in Table 1. PBM performed better than PBC in producing at least one skillful box
for 66% of the times. Concerning the estimations of at least one skillful value of discharge and timing
within the formed boxes, PBM performed better than PBC respectively in 69% and 81% of the cases.
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Figure 7. As in Figure 5, but for measures of peak verification DPEAK (upper panel) and timing
verification DTIME (lower panel). The black thin dotted horizontal line in the lower panel indicates the
value DTIME = 0 h.

Table 1. Amount of PBM forecasts performing better than or equal to PBC (in terms of DPEAK and
DTIME) within the group of skillful forecasts of the high-flow cases. They are reported considering
the performance of all PBM boxes together (upper row) and of at least one PBM box (lower row) per
forecast, separately for peak timing and discharge, as well as for both peak metrics together.

DPEAK DT IME DPEAK and DT IME

PBM ≥ PBC for all the boxes 56% 66% 38%
PBM ≥ PBC for at least 1 box 69% 81% 66%

4. Discussion

In the following section, the results found concerning the assessment of the new PBM algorithm
are discussed.

4.1. Forecast Sharpness and Peak Median Verification

Overall, PBM produced sharper forecasts than PBC, mainly because PBC considered the
distribution of just the absolute maxima among the ensemble forecasts to produce a peak-box, while
PBM took into account the entire distribution of the local maxima among the different runoff members.
Consequently, when PBM split all the peaks found in different temporal clusters, the spread of a
single peak-box produced through PBM resulted in being significantly smaller than PBC’s outcome,
especially concerning peak timing uncertainty. Concerning the verification of the predicted peak
medians, the lack of enhancement of PBM’s peak magnitude estimations compared to PBC was
imputable to the model itself. In fact, the forecasts showed a general tendency to underforecast river
runoff in the Verzasca basin, thus leading to an underestimation of the peak magnitude of about 26
m3 s−1 when compared to the observed events. This was demonstrated in previous studies, where a
generally better peak timing estimation and an underestimation of peak discharge were found when
applying PBC for the same modeling chain we used on the Verzasca basin [37]. The independence
found in PBM’s peak forecast sharpness and median verification from lead time was in contrast to
what was found by the authors formulating the PBC approach. Zappa et al. (2013) [20], in fact, detected
a significant drop in forecast sharpness for longer lead times when applying PBC to the Verzasca basin.
The reason for this may be found in the enhancement of the grid spacing of the forcing meteorological
model adopted: while in [20], the meteorological driving model was COSMO-LEPS (i.e., COSMO
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Limited area EPS), we used the much better resolved COSMO-E, which was found to be superior to its
predecessor in predicting precipitation events [37]. Unfortunately, a direct comparison between the
resulting lead time evolving spreads of the two models could not be made, so we hypothesized that
COSMO-LEPS’s resulting spread was significantly larger for the longest lead times, causing the drop
in PBC’s sharpness and median verification quality detected.

4.2. Events’ Detection

Concerning the ability for events’ detection, PBM resulted in being a more skillful method than
PBC and produced more than one peak hit within the same forecast when needed, even if also a
larger amount of unskillful boxes was produced by PBM. Furthermore, the smaller amount of misses
obtained with PBC was imputable to the lack of sharpness of this method, and not to its actual ability
to produce less unskillful and more reliable forecasts. In fact, it was clear that in the extreme case of
a peak-box extending for the entire 120 h of the forecast (i.e., a forecast totally missing sharpness),
the highest event would always be captured. The general inability to detect events taking place in
the first 24 to 48 h of the forecast successfully was due to the smaller amount of spread presented in
the short range by COSMO-E’s precipitation forecasts [19]. In fact, this NWP forcing model’s feature
remained also after the propagation through PREVAH, as can be seen from Figure 8: during the first
phase of the forecast, the spread resulted in being much smaller than the median runoff value, then it
progressively increased, reaching the maximum around Day 4 of the forecast, and then, it intermittently
decreased during the last hours of the prediction.

Figure 8. Runoff median (sea-green line) and (q90 − q10) spread median (purple line) as a function
of forecast lead time. The medians are calculated over all the runoff realizations for the high-flow
cases’ set. Both curves are obtained with a moving average method with a temporal window of 5 h.
The spread (q90 − q10) was considered instead of the total spread in order to filter out the ensemble
members producing the most extreme values.

4.3. Limitations

It is clear that the major limitation of the present study was the limited amount of simulations
considered. For a full assessment, this is clearly not enough. However, for a “fit-for purpose”
study, i.e., to demonstrate the new method’s characteristics and potential, it is sufficient. For this
reason, a much wider application of PBM to different periods of the year, different catchments, and
with different flood forecasting systems is recommended to check its reliability in different settings,
to identify possible defects, and to further improve it. Furthermore, a decisive improvement of the
algorithm would be to make it fully objective, without the influence of any arbitrary choice the end-user
should make. In fact, the definition of the prominence parameter to detect the relevant runoff peaks is
based on the best subjective estimations obtained from the few available forecasts. A wider application
of PBM could compensate also for this, producing a more general setting of peak prominence.
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5. Conclusions

Predicting peak-flow events accurately, caused by heavy rainfalls, for the application of flood
relief measures, is extremely important. A statistical and visual method to accomplish this task is the
“peak-box” approach [20], which turned out to lack reliability when multiple runoff peaks were present
within the forecast. For this reason, a new algorithm, able to produce peak forecasts distinguishing
among different peak-flow events within the same forecast, was designed and tested in this work.
To do so, a flood forecasting system, formed by the high resolution meteorological 21 member ensemble
model COSMO-E and the semi-distributed hydrological model PREVAH, was run in the small Verzasca
basin (186 km2), Switzerland, during October and November 2018. The ensemble flood forecasts
obtained in this way were used to produce peak-flow estimations through the application of both the
former peak-box method and the newly developed one. The latter proved to distinguish correctly
among multiple events, to provide sharper and more skillful forecasts than the former approach, and to
estimate the peak timings slightly better. A wider application of this newly developed method should
be carried out adopting different modeling chains, in different basins, and for a much larger sample of
model initializations, in order also to improve its robustness and to further increase the objectivity of
the criteria used to design it.
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The following abbreviations are used in this manuscript:

COSMO COnsortium for Small-scale MOdeling
D-PHASE Demonstration of Probabilistic Hydrological and Atmospheric Simulation of Flood Events
ECMWF European Centre for Medium-range Weather Forecasts
EPS Ensemble prediction system
HEPS Hydrological ensemble prediction system
IQR Interquartile range
MAP Mesoscale Alpine Programme
NWP Numerical weather prediction
PBC Peak-box classic
PBM Peak-box multipeak
PREVAH Precipitation-runoff-evapotranspiration HRU model
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Appendix A. Quality of the Forecasts

In this Appendix, we summarize the results of the verification of the ensemble runoff forecasts
during the full cases’ set of model initializations. Forecast verification is the process of assessing
the quality of the forecasts [33]. The verification tools we decided to apply are usually adopted for
hydrological ensemble forecasts (e.g., [38]) and are described in detail in [33]. It is clear that the
main limitation of this analysis was the very small sample size of only slightly more than a month of
simulations considered. This is an important issue and must be taken into account since the verification
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tools adopted need fairly large datasets to provide significant information on the performance of the
forecast [38].

Figure A1 reports the ROCa (Receiver Operating Characteristic area) [39] time evolution for
different runoff thresholds. The forecasts performed well at detecting events and rejecting non-events
(ROCa values were always quite close to the perfect forecast value of one). Overall, there was a time
dependent increase in forecast quality. This was a confirmation of the results obtained in previous
studies [20,37], indicating that the modeling chain formed by coupling COSMO-E with PREVAH
provided useful runoff forecasts for decision-makers in the Verzasca basin.

Figure A1. Evolution of ROCa with lead time depending on the discharge threshold considering the
full cases’ set of model initializations. On the right side, the orange boxplots report the numbers of
observations exceeding each threshold, which are distributed over the 120 forecast lead times. The black
horizontal dashed lines represent the minimum value for which the forecast is still useful for decision
makers [40]. The curves are obtained with a moving average method with a 10 h temporal window,
applied to smooth out short term fluctuations (this is why the first ten hours of every ROCa time series
are missing). In fact, the fluctuations obtained for shorter time periods are another indicator of the
limited sample size considered.

Figure A2 reports the reliability diagrams [41] for the full runoff ensemble forecasts and four
different thresholds. The forecasts treated were always clearly affected by an unconditional bias
causing a persistent underforecasting situation for the Verzasca basin, while conditional biases were not
detected. In fact, with the observed relative frequencies always being larger than the respective forecast
probabilities, the modeling chain was seen to underpredict the discharge clearly (systematic bias).
On the other hand, the slopes of the regression lines (purple solid lines) did not deviate consistently
from that of the perfect reliability line (black solid 1:1 line), implying the absence of significant
conditional biases. The presence of this negative bias was mainly imputable to a model miscalibration
on the particular Verzasca basin itself rather than to the general behavior of the modeling chain adopted,
and this was confirmed by the results and comparison of many previous studies [8,9,37,42–44]. This
model miscalibration affecting the Verzasca basin has never been fixed after the initial setup performed
during the large MAP D-PHASE campaign [45,46], which involved many different catchments in the
Alps. The miscalibration has never been corrected because it would have led to a subsequent inability
to compare the newest results with all the previous studies. Generally, for these kinds of unconditional
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biases, a recalibration of the model on the catchment considered could enhance the reliability of the
forecasts and reduce the biases consistently; moreover, also a post-processing step on hydrological
ensemble forecasts could be the right way to obtain significantly improved results [47]. The worst
forecast reliability estimation was obtained for those events exceeding the lowest runoff threshold.
This was imputable to the specific calibration considered for the hydrological model. In fact, we used
a calibration expected to give accurate runoff estimations during the peak phases [31], performing
consequently worse for levels of discharge near base flow conditions.

Figure A2. Reliability diagrams of runoff ensemble forecasts for various discharge thresholds, eleven
different forecast probability classes, and all lead times aggregated (i.e., 120 forecast hours). On the
x-axis, the forecast probability is reported; on the y-axis, the observed relative frequency. The solid
black diagonal line indicates the perfect reliability condition; the no-skill line and the no-resolution
(no-res) line (i.e., observed climatology value) are also indicated with black dashed lines. The purple
solid lines represent the linear regression obtained from the observed relative frequency distribution.
The sea-green area represents the portion of the plot for which forecasts contribute positively to the
skill. The subplots on the upper left of each panel report the refinement distribution, i.e., the relative
frequency of events in the classes.
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