

Supplementary Material for Fine-Scale Columnar and Surface NO_x Concentrations Over South Korea: Comparison of Surface Monitors, TROPOMI, CMAQ and CAPSS Inventory

Hyun Cheol Kim ^{1,2,*}, Soontae Kim ^{3,*}, Sang-Hyun Lee ⁴, Byeong-Uk Kim ⁵ and Pius Lee ¹

¹ Air Resources Laboratory, National Oceanic and Atmospheric Administration, College Park, 20740, MD, USA; pius.lee@noaa.gov

 ² Cooperative Institute for Satellite Earth System Studies, University of Maryland, College Park, 20740, MD, USA;

- ³ Department of Environmental and Safety Engineering, Ajou University, 16499, Suwon, South Korea;
- ⁴ Department of Atmospheric Science, Kongju National University, 32588, Gongju, South Korea; sanghyun@kongju.ac.kr
- ⁵ Georgia Environmental Protection Division, Atlanta, 30354, GA, USA; Byeong.Kim@dnr.ga.gov
- * Correspondence: hyun.kim@noaa.gov (H.C.K.), soontaekim@ajou.ac.kr (S.K.)

Figure S1. Model performance evaluations for PM_{2.5}, O₃ and NO₂ concentration over South Korea. Black circles indicate surface observations, and blue lines indicate modeled concentrations.

NO2 VCD [May-Aug 2018]

NO₂ VCD [Sep-Dec 2018]

Figure S2. NO₂ column density distributions of TROPOMI, CMAQ and model biases (CMAQ-TROPOMI).

Figure S3 Comparisons of surface and columnar NO2 concentration during May-December 2018.

Surface NO₂ (AirKorea & Krig) Apr-Jun 2018

Surface NO₂ (AirKorea & Krig) Jul-Sep 2018

20.0 19.2 18.3 17.5 16.7 15.8 15.0 14.2 13.3 12.5 11.7 10.8 10.0 9.2 8.3 7.5 6.7 5.8 5.0 4.2 3.3 2.5 1.7 0.8 0.0 [ppb] (A) OBS (B) KRIG [ppb] (D) MODEL-KRIG (C) MODEL-OBS

Figure S4 Comparison of modeled and observed surface NO₂ concentration during January to March, April to June, July to September, and October to December, 2018.

Surface NO (AirKorea & Krig) Jul-Sep 2018

Figure S5 Comparison of modeled and observed surface NO concentration during January to March, April to June, July to September, and October to December, 2018.

Figure S6. Zoom-in of major points sources in Figure 7. Numbers indices point source IDs used in Figure7.

Figure S7. Seasonal variation of NO concentrations from AirKorea surface monitoring sites and CMAQ simulations.

NO Diurnal Variation

Figure S8. Diurnal variations of NO concentrations over urban, roadside and rural sites.

© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).