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Abstract: With the great strides of China’s economic development, air pollution has become the norm
that is a cause of broad adverse influence in society. The spatiotemporal patterns of sulfur dioxide
(SO2) emissions are a prerequisite and an inherent characteristic for SO2 emissions to peak in China.
By exploratory spatial data analysis (ESDA) and econometric approaches, this study explores the
spatiotemporal characteristics of SO2 emissions and reveals how the socioeconomic determinants
influence the emissions in China’s 30 provinces from 1995 to 2015. The study first identifies the overall
space- and time-trend of regional SO2 emissions and then visualizes the spatiotemporal nexus between
SO2 emissions and socioeconomic determinants through the ESDA method. The determinants’ impacts
on the space–time variation of emissions are also confirmed and quantified through the dynamic
spatial panel data model that controls for both spatial and temporal dependence, thus enabling the
analysis to distinguish between the determinants’ long- and short-term spatial effects and leading
to richer and novel empirical findings. The study emphasizes close spatiotemporal relationships
between SO2 emissions and the socioeconomic determinants. China’s SO2 emissions variation
is the multifaceted result of urbanization, foreign direct investment, industrial structure change,
technological progress, and population in the short run, and it is highlighted that, in the long run,
the emissions are profoundly affected by industrial structure and technology.

Keywords: SO2 emissions; spatiotemporal characteristics; socioeconomic determinants; dynamics
spatial panel data model

1. Introduction

China has been the largest developing country in the world. Since the late 1980s, it has constantly
expanded its economic scale and maintained at least a 9% annual economic growth rate over three
decades [1,2]. In the meantime, considerable energy resource consumption has become a substantial
cost of such rapid development, and leads to a large amount of sulfur dioxide (SO2) emissions.
China has inevitably appeared as a big SO2 emitter as well as the largest energy consumer in the
world [3]. Despite being the second-largest economy, China has yet fulfilled its historical task, that
is, urbanization as well as industrialization [4]. Therefore, China confronts the challenge of curbing
atmospheric pollution emissions when maintaining rapid economic growth [5]. During the 12th
Five-Year Plan (2011–2015), the central government’s goal of SO2 abatement was an 8% decrease in
2015 compared with the emission level of 2010 [6].

In the atmosphere, SO2 can directly exacerbate heart disease, result in respiratory diseases in
humans, and cause acid rain after reaction with other elements [7]. Except for public health, SO2 also
exerts ecological and economic effects. Owing to the rapid urbanization and industrialization process,
many cities in China are affected by serious fog and haze pollution [8]. Sulfate stems from ambient
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SO2 and accounts for 20–35% of the atmosphere PM2.5, which leads to smog [9,10] and threatens the
eco-system and economic sustainability [11]. In 2008, the SO2 pollution-related agricultural losses
roughly reached $1.43 billion, which accounts for approximately 0.66% of the added agricultural output
value in China [12]. China’s SO2 emission level has already exceeded the levels of the United States
and summed OECD (Organization for Economic Cooperation and Development) countries [13]. It is
anticipated that in China, SO2 emissions would continually increase and reach 24–31 million tons
by 2020 [14]. Apparently, there is no time to delay for the SO2 mitigation under the circumstance of
sustainable development.

For many years, China has been the largest country of foreign capital inflow among developing
countries. The constantly injected foreign direct investment (FDI) prompts the advancements of
technology and management among domestic enterprises, economic development, and international
business/export trade [15]. Hence, environmental economics scholars start to focus on the influence of
FDI on pollution emissions and environmental quality in China (e.g., Wang and Jin [16], Bao et al. [17],
and Dean et al. [18]). Additionally, the Chinese government began to upgrade and promote the
optimization of the industrial structure since 2015 for the sake of emission-reduction and energy-saving.
The cross-industry transmission of production materials could influence the pollution emissions [19,20],
and China’s gradually updated industrial structure is expected to be beneficial for environment
in practice [21]. Furthermore, over decades, the local governments have been expanding urban
and suburb areas’ infrastructure construction, attempting to sprawl the cities [22–24], and China
is transforming from an agricultural country to a modernized one [25]. Currently, more than half
of the Chinese population already lives in urban areas [26]. Meanwhile, rapid urbanization and
related economic activities may promote soaring resource consumptions and air pollution emissions.
In sum, the relationships of SO2 emissions to FDI, industrial adjustment, and urbanization are worthy
of exploration, because a better understanding of such relationships provides a scientific basis to
coordinate the economic development and reduction of SO2 emissions.

Some recent studies focused on carbon and other kinds of pollution emissions issues [27–34],
whereas the studies that applied rigorous quantitative methods on the socioeconomic determinants
of SO2 emissions are still scarce. Several scholars tried to unfold the spatial pattern of China’s SO2

emission in their studies. Zhao et al. [35] examined the spatial variation and driving factors of
China’s industrial sulfur emissions and intensity from 2001 to 2014, and they found significant spatial
clustering patterns that drastically varied over space and time. Zhou et al. [36] studied the nexus
of SO2 emissions to economic development through the spatial panel data model and concluded an
inversely N-shaped environmental Kuznets curve. Yang et al. [37] examined the SO2 geographical
distributions through China’s 113 main cities and found the cities that were heavily polluted located
in the north, while cities of low pollution level mainly agglomerated in the south. Zhao et al. [38]
found that fossil fuel consumption is the major contributor of China’s SO2 discharge. Li et al. [39]
studied the spatial distribution of SO2 at China’s prefecture-level. According to their results, the cities
of lower SO2 concentrations clustered in the Pearl River Delta and Yangtze River Delta regions, because
there were less iron and steel manufactures, non-ferrous industries, and thermal power plants in
the regions. On the other hand, the cities with higher concentrations mainly located in the Loess
Plateau as well as the north plain. Giacomini and Granger [40] advocated the necessity of controlling
for spatial effects (e.g., spatial autocorrelation, spillover (cross-boundary) impacts) when examining
the socioeconomic activities’ influence on environmental quality. Anselin [41] also argued that it is
necessary to adopt the spatial measurement approaches in the environmental/resources economics
research on the regional level.

These initial explorations have preliminary investigated the spatial distributions and
socio-economic influential factors of SO2 emissions in China, yet scant researches to date have
identified the emissions’ space–time characteristic. In addition, socioeconomic factors’ space–time
effects on air pollution emissions have not been paid enough attention, and the effects need thorough
examination through a proper empirical framework/approach. To this end, this paper makes efforts
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to complement prior researches by investigating SO2 emissions’ spatiotemporal dynamics and the
determinant variables across Chinese provincial-level units through exploratory spatial data analysis
(ESDA), and the dynamic spatial econometric approach that organically condenses space-units’ spatial
and temporal dependence into the empirical specification. The analysis and findings would help
policymakers to promulgate effective policies to reinforce the SO2 abatement and air pollution control.

The present study’s major contribution is two-fold. First, the study identifies the evolvement of
SO2 emissions’ spatial distribution and association patterns over time in China using GIS techniques
and spatial statistics. Second, this study quantifies the socioeconomic–SO2 spatiotemporal nexus
through the recently improved dynamic spatial panel data model [42] that simultaneously integrates the
spatial externalities and temporal effects. In this way, the variables’ long- and short-term impacts on the
space–time dynamics of air pollution emissions are distinguished for the first time. Broadly speaking,
a better realization of SO2 emissions’ relation to socio-economic activities is helpful for figuring out the
potential factors of increasing sulfur emissions witnessed among Chinese provinces, how the factors
affect the emissions, and for further development of targeted policies for emission reduction.

The remainder of the paper is organized as follows. Section 2 describes the variable details, data
source, and methods employed within the study. Section 3 illustrates and explains the results derived
by the methods presented in Section 2, and then Section 4 further discusses the results and illustrates
the related theory as well as the mechanism. Section 5 sets out the conclusions and policy implications
drawn from the results and findings.

2. Data and Methodology

2.1. Variables Selection and Data Resources

The following analysis adopted Chinese provincial panel data spanning from 1995 to 2015
(Taiwan is excluded owing to data unavailability) within the present study. The provincial data with
relatively longer intertemporal enabled the empirical analysis to capture more spatial heterogeneity
and temporal variations.

According to the subject, the following extended stochastic impacts by regression on
population, affluence, and technology (STIRPAT) model serves as the theoretical benchmark for
the regression analysis:

ln SO2 = α+ b1urb + b2 f di + b3stru + b4 ln POP + b5 ln EI + b6 ln GDP + b7(ln GDP)2 + ε, (1)

where stru, urb, and fdi refer to industrial structure, urbanization level, and foreign capital inflow,
respectively. lnGDP (gross domestic product (GDP) in logarithm) together with its’ quadratic term
(to capture the nonlinear environmental effects of GDP [43]) reflects the economic growth influence,
while lnPOP and lnEI refer to the impacts of population and technology on the environment, respectively.
The dependent variable lnSO2 represents the SO2 emissions (in logarithm) in this paper. ε is the
error term. Because the studies that discuss the effects of economic development and population
on SO2 emissions are saturated, this paper focused on the effects of industrial structure, technology,
urbanization, and FDI.

The definitions of industrial structure (stru), foreign capital inflow (fdi), urbanization level (urb),
economic growth (GDP), population (POP), and technological progress/energy efficiency (EI) [44] are
listed in Table 1. The author multiplied the stru, urb, and fdi by 100, and took the logarithm of the rest
of the indicators in the regression analysis (Section 4). In this case, the coefficients b1–b5 in Equation (1)
can be interpreted as the ecological elasticity [45]. It is worth noting that all the variables are with their
actual/raw values (not in logarithm) in the ESDA section (Section 3).

The SO2 emissions and standard coal consumptions (kg of coal equivalent) were collected from
the China Energy Statistical Yearbook. The secondary industry, tertiary output, as well as FDI can be
accessed from China City Statistical Yearbook in the EPS data bank. The per capita GDP, the urban,
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and total population were obtained from the China Statistical Yearbook. Table 1 lists definitions and
descriptive statistics of all variables.

Table 1. Definitions and descriptive statistics of the variables.

Variables Definition Mean Std. Dev. Min Max

lnSO2 SO2 emissions (tons) in logarithm 13.10 0.936 9.735 14.51

urb Proportion of population living in urban
area (%) 46.40 16.04 20.39 89.60

fdi Ratio of FDI to GDP (%) 2.986 3.181 0.001 21.19

stru The ratio of the tertiary industry to the
secondary industry (%) 95.36 42.40 403.79 49.70

lnPOP population size (10 thousand) in logarithm 8.127 0.770 6.176 9.292

lnEI energy intensity (tons of coal
equivalent/billion Yuan) in logarithm 9.715 0.511 8.706 11.27

lnGDP real per capita GDP (100 Yuan, in 1995
constant price) in logarithm 4.867 0.855 2.905 7.170

Note: Yuan is the unit of Renminbi (RMB), the official currency in China. SO2, sulfur dioxide; FDI, foreign direct
investment; GDP, gross domestic product.

2.2. ESDA

ESDA is regarded as the preliminary exploration before suggesting determinants to influence the
spatial phenomena, and prior to testifying more confirmatory empirical analysis—the spatial regression
model [46]. ESDA includes the techniques and steps of spatial data investigation—detecting and
visualizing distributions and patterns in terms of geography, as well as identifying spatial heterogeneity
forms, for example, regional/provincial regimes.

2.2.1. Global Spatial Autocorrelation

The most popular statistics measuring global spatial autocorrelation are Global Moran’s I
statistics [47] developed by Moran [48]. Global Moran’s I statistics give a formal indication of whether
the distribution pattern of a spatial index is clustered, random, or dispersed. The formula of the statistics

is seen as I =
N∑

i=1

N∑
i, j

wi j(xi − x)
(
x j − x

)
/(

∑
i

xi − x)2 N∑
i=1

N∑
i, j

wi j , −1 ≤ I ≤ 1, N = 30, where x = 1
N

N∑
i=1

xi;

x is the index of interest (SO2 emissions in this research); and wij is the element on the i-th row and
j-th column of the spatial weight matrix W. The significance of Moran’s I statistics is identified by
z-statistics, with the comparison of Moran’s I and its expectation as follows: Z = [I − E(I)]/

√
Var(I),

where E(I) = −(N − 1)−1, Var(I) =
N2w1+Nw2+3w2

0
w2

0(N
2−1)

− E2(I), w0 =
N∑

i=1

N∑
j=1

wi j, w1 = 1
2

N∑
i=1

N∑
j=1

(wi j + w ji)
2,

and w2 =
N∑

i=1

N∑
j=1

(wi + w j)
2. When I ≤ 0 significantly, the areas with the index of high values tend to

locate near the ones with the index of low values (HL clustering); when 0 ≤ I significantly, the spatial
units with the index of high values cluster together and vice versa (HH/LL clustering pattern).
This study applies Global Moran’s I statistics to explore the spatial association of overall SO2 emissions’
in China.

2.2.2. Local Spatial Agglomeration

The identification of local hot and cold spots that indicate clustering heterogeneity in one or
more provinces of the study area should be a basic consideration in the spatial pattern analysis [49].
A hot spot denotes the area of high value that is surrounded by other areas of high values (high–high),
and the cold spot denotes the low–low type of spatial association. Getis and Ord [50] developed the
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“Getis-Ord Gi*” statistics to detect and measure the local spatial clustering patterns: Gi∗ =
∑
i, j

wi jxi/
∑
i, j

xi ,

where xi > 0,∀i; wi j is the unstandardized spatial weight matrix with values between 0 and 1.
Ye and Wu [51] developed a spatiotemporal stability mapping of hot spots by overlaying hot

spots over time-points, and this work extends Anselin’s local indicators of spatial association (LISA)
significance map to spatiotemporal context. The present study follows Ye and Wu’s design [51],
whereas it applies the “Getis-Ord Gi*” statistics instead of using LISA to identify the local spatial
associations in the ESDA. This is because (a) the present study mainly focuses on the hot and cold spots,
but not on the outlier type; (b) Global Moran’s I statistics suggest that high–high/low–low, but not
high–low/low–high, is the main spatial clustering pattern (Table 2). Generally, the research enhances
the spatiotemporal stability mapping to overlay statistically significant local spatial agglomeration
(hot and cold spots) over years.

Table 2. Spatial autocorrelation of annual SO2 emissions.

Year 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005

Moran’s I 0.200 0.201 0.249 0.225 0.229 0.170 0.158 0.154 0.131 0.146 0.148
z-statistics 2.266 2.274 2.658 2.428 2.428 1.842 1.731 1.700 1.478 1.607 1.630

p-value 0.023 0.023 0.008 0.015 0.015 0.065 0.084 0.089 0.139 0.108 0.103

Year 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Moran’s I 0.148 0.165 0.166 0.148 0.116 0.230 0.222 0.226 0.208 0.210
z-statistics 1.629 1.775 1.789 1.626 1.335 2.380 2.309 2.339 2.184 2.206

p-value 0.103 0.076 0.074 0.104 0.182 0.017 0.021 0.019 0.029 0.027

2.3. Dynamic Spatial Panel Data Model

The spatial Durbin model (SDM), spatial lag model (SLM), and spatial error model (SEM) are
commonly used to fit the spatial data in the empirical analysis. The SLM presets a fixed ratio
of direct effects/spillover effects of all independent variables (indices of determinants, hereafter
the same) [52,53] (e.g., in Equation (1), effects of urb on local SO2

effects of urb on adjacent SO2
=

effects of f di on local SO2
effects of f di on adjacent SO2

=
effects of stru on local SO2

effects of stru e f f ects on adjacent SO2
. . .). Normally, such an assumption is over restricted and rather

impractical in empirical studies. The SEM suggests the independent variables do not exert any
spillover effects, which is not true according to the prior research [36] and econometric results in
Section 3.3. Besides, it is unable to convert the SEM into a dynamics spatial framework to capture the
potential spatiotemporal characteristics. Hence, following quantitative analysis adopts the dynamic
SDM to examine and verify the socioeconomic determinants’ (urb, fdi, stru, and so on) space–time
effects on sulfur emissions:

yt = γ0yt−1 + λ0Wyt + ρ0Wyt−1 + X1tβ0 + WX2tβ1 + c + αtlN + εt, (2)

where yt is an N × 1 column, the observations of the dependent variable (the indicator to be explained,
hereafter the same). N refers to the number of samples (provinces). β0 and β1 are k1 × 1 and k2 ×

1 dimensional vectors of parameters. X1t and X2t are N × k1 and N × k2 dimensional matrixes of
independent variables, X1t is the matrix of all the independent variables, while the X2t is the matrix
of the variables of spillover effects. k1 and k2 equal the number of independent variables of X1t

and X2t. The subscripts t and t − 1 indicate the t and t − 1 years, respectively. β0 and β1 are k × 1
dimension coefficient vectors. W is the N × N dimension spatial weight matrix, which defines the
spatial arrangement of the spatial units (provinces). Considering that all the spatial units of analysis are
polygons and the simplicity of the provinces’ bordering situation, the spatial weight matrix for ESDA
and dynamic SDM is 0–1 specified: if the i-th and j-th (i and j represents 30 provinces of China, so 1 ≤ I
≤ 30 and 1 ≤ j ≤30) units share the same boundary, then the element on the i-th row and j-th column of
W is 1, elsewhere 0. W is normalized when estimating the coefficients of dynamic SDM. γ0, λ0, and ρ0
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are the parameters of yt − 1, Wyt, and Wyt − 1, reflecting the time lag, spatial lag, and spatiotemporal
effects of the dependent variable, respectively. εt is the N × 1 dimension vector of the error term with
equal variance. c = (c1 . . . cN)T refers to the individual effects that control for the heterogeneity of each
province, which does not change over time. As the provincial data are not randomly sampled from a
bigger population and the sample is relatively small (N = 30), fixed individual effects are more suitable
for the econometric model specification in this study [52,54]. αt is the time fixed effects and lN is an N
× 1 dimensional unit vector.

Equation (2) is the general specification of dynamic SDM. Specifically, if γ0 = 0 and ρ0 = 0,
Equations (3) and (4) can be deduced from Equation (2), respectively:

yt = λ0Wyt + ρ0Wyt−1 + X1tβ0 + WX2tβ1 + c + αtlN + εt, (3)

yt = γ0yt−1 + λ0Wyt + X1tβ0 + WX2tβ1 + c + αtlN + εt. (4)

The coefficients of SDM cannot reflect the independent variables’ impacts on the dependent
variable [52,55], because it incorporates the dependent variable’s spatial lag term on the right-hand
side. The independent variables’ direct and spillover effects need further calculation. For instance, one
can derive Equation (5) by rewriting Equation (2):

yt = (I − λ0W)−1(γ0I + ρ0W)yt−1 + (I − λ0W)−1(X1tβ0 + WX2tβ1) + (I − λ0W)−1εt. (5)

The partial derivatives matrix of expectation of yt to the kth independent variable of X from unit 1
to unit N at time t is seen as follows:

[
∂Ey
∂x1k

· · ·
∂Ey
∂xNk

]
t
=


∂Ey1
∂x1k

. . .
∂Ey1
∂xNk

...
. . .

...
∂EyN
∂xNk

· · ·
∂EyN
∂xNk


t

= (I − λ0W)−1[β0kI + β1kW], (6)

where (I − λ0W)−1 = I + λ0W + λ0
2W2 + λ0

3W3 + · · · . The expectation of the diagonal elements in
Equation (6) is defined to be the short-term direct effects, while the expectation of the off-diagonal
elements is defined as the short-term spillover (or indirect) effects [52]. The long-term direct and
spillover effects can similarly be defined by Equation (7):[

∂Ey
∂x1k

· · ·
∂Ey
∂xNk

]
= [(1− γ0)I − (λ0 + ρ0)W]−1[β0kI + β1kW]. (7)

The theoretical foundation of the following econometric analysis is the extended STIRPAT model
(Equation (1)). Owing to the incorporation of the quadratic term of lnGDP, the coefficients of lnGDP
and its quadratic term are meaningless in terms of economics. Therefore, lnGDP and its quadratic term
are only included in X, not in WX, then

yt = (lnSO2 1t, lnSO2 2t . . . lnSO2 Nt)T
,

X1t =


urb1t f di1t stru1t ln POP1t ln EI1t ln GDP1t (ln GDP1t)

2

urb2t f di2t stru2t ln POP2t ln EI2t ln GDP2t (ln GDP2t)
2

· · · · · · · · · · · · · · · · · · · · ·

urbNt f diNt struNt ln POPNt ln EINt ln GDPNt (ln GDPNt)
2

, and X2t =


urb1t f di1t stru1t ln POP1t ln EI1t
urb2t f di2t stru2t ln POP2t ln EI2t

· · · · · · · · · · · · · · ·

urbNt f diNt struNt ln POPNt ln EI1t

 in Equations (2)–(7).

The basic strategy for dynamic spatial model analysis (Section 3.3) consists of three steps: the
dynamic SDMs based on Equations (2)–(4) would be estimated at first. Then, the best model specification
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that can better fit the empirical data will be determined, and the independent variables’ direct and
spillover effects in the short and long run will be calculated according to the selected SDM, after which
the relevant elaboration will be made.

Global Moran’s I statistics, correlation coefficients of annual SO2 emissions, and dynamic SDM
estimation are obtained from STATA 15, while the data visualization/mapping are conducted via
ArcGIS 10.2.

3. Findings and Interpretation

3.1. Spatiotemporal Characteristics of SO2 Emissions

In order to illustrate the geographical distribution of China’s regional sulfur emissions intuitively,
natural breaks (Jenks) in ArcGIS are employed to divide the 31 provinces into five categories according
to their emissions’ level. Figure 1 illustrates that the spatial distribution of provincial SO2 emissions
(1995, 2005, and 2015) is likely to be subject to a certain pattern: (1) a lot of emissions activities cluster
in a few provinces; (2) provinces of higher emission level tend to agglomerate together, and so do the
provinces with lower emission level; and (3) the western areas tend to be less emission-intensified
compared with the northern regions, resulting in a more concentrated and unbalanced spatial pattern
of sulfur emissions.
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On the basis of the spatial distributing pattern of SO2 emissions shown by Figure 1,
the emissions concentration area can be divided into two parts, namely a north (mainly at/around the
Beijing–Tianjin–Hebei region) and a western emission zone. Sulfur emitting activities in the north
emission zone are rather more intensive, exhibiting a robust spatiotemporal evolving characteristic
over time.

Table 2 illustrates the sulfur emissions’ trend of global spatial autocorrelation during 1995–2015.
Most Moran’s I statistics are significant at the 10% level, suggesting the spatial clustering phenomenon
of SO2 emissions is not just intuitive, but substantial, and the HH or LL should be the main
clustering pattern.

Table 3 lists the SO2 emissions’ time-series correlation. It is clear that the current provincial
SO2 emission level highly depends on the levels of prior years. Such time-series dependence only
slightly decreases with the increase of the time interval. The space–time evolvement of SO2 emissions
and its determinants are worthy of scrutinizing, which will be carried out in the remaining analysis.
After observing the SO2 emissions’ geographical evolvement and time–series dependence, the following
analysis attempts to unfold the socioeconomic determinants behind the emissions dynamics.

3.2. Space–Time Nexus between SO2 Emissions and Its Socioeconomic Determinants

Local spatial patterns’ details can be masked by a bare discussion on global spatial autocorrelation.
Besides, economic activities are temporal in essence [56,57], which would significantly affect energy
consumption and pollution emissions. In order to cope with the issues, the author adopts the mapping
technique of space–time stability, to overlap significant spatial agglomerations (hot and cold spots)
on different time points (1995, 2005, and 2015). In this way, the spatiotemporal nexus between SO2

emissions and their socioeconomic factors can be visualized.
Figure 2 demonstrates five classes of sulfur’s space–time stability. A province is identified as “1, 0,

0”, if it was a significant hot/cold spot in 1995, but not in the latter two years. A province is labeled
“0, 1, 0” if it was a significant spot in 2005, but not in 1995 and 2015. Hence, the “0, 1, 1” pattern
suggests that a province unit remained a significant spot in latter two years, but not in 1995, and “1, 1,
1” suggests a province was a significant spot in all three years. Finally, if a province had never been a
significant spot in any year, it is labeled “0, 0, 0”. Following this manner, Figures 3–5 demonstrate
different categories of space–time stability of fdi, stru, and urb, respectively.

Six provincial units were the SO2 emissions significant hot/cold spots of different four classes,
mainly locating at/round the Beijing–Tianjin–Hebei region, which is also the area with more serious
air pollution (e.g., smog) in China. Regarding the FDI index, eleven provinces are reported in four
categories of significant spots that are mostly located in the north and the eastern coastal economic belt.
Significant spots of industrial adjustment index (stru) are identified in three provinces/municipalities
(Beijing, Tianjin, and Hainan) with three categories, while significant urbanization spots are identified
in the western areas and Beijing, Tianjin, and Shanghai.
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Table 3. Correlation coefficients of annual SO2 emissions.

Year 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

1995 1.00 - - - - - - - - - - - - - - - - - - - -
1996 1.00 1.00 - - - - - - - - - - - - - - - - - - -
1997 0.99 0.99 1.00 - - - - - - - - - - - - - - - - - -
1998 0.96 0.97 0.97 1.00 - - - - - - - - - - - - - - - - -
1999 0.95 0.95 0.94 0.96 1.00 - - - - - - - - - - - - - - - -
2000 0.89 0.90 0.91 0.94 0.93 1.00 - - - - - - - - - - - - - - -
2001 0.88 0.90 0.91 0.95 0.94 1.00 1.00 - - - - - - - - - - - - - -
2002 0.89 0.91 0.92 0.95 0.94 0.99 1.00 1.00 - - - - - - - - - - - - -
2003 0.87 0.88 0.91 0.93 0.92 0.96 0.96 0.98 1.00 - - - - - - - - - - - -
2004 0.85 0.87 0.90 0.92 0.92 0.95 0.96 0.97 0.99 1.00 - - - - - - - - - - -
2005 0.86 0.87 0.90 0.91 0.91 0.92 0.94 0.95 0.98 0.99 1.00 - - - - - - - - - -
2006 0.85 0.86 0.89 0.89 0.89 0.92 0.93 0.94 0.97 0.98 1.00 1.000 - - - - - - - - -
2007 0.83 0.84 0.88 0.88 0.89 0.91 0.92 0.94 0.97 0.99 1.00 1.00 1.00 - - - - - - - -
2008 0.83 0.84 0.88 0.88 0.88 0.89 0.91 0.92 0.96 0.98 0.99 1.00 1.00 1.00 - - - - - - -
2009 0.82 0.83 0.87 0.87 0.88 0.89 0.91 0.93 0.96 0.97 0.99 1.00 1.00 1.00 1.00 - - - - - -
2010 0.81 0.82 0.86 0.86 0.86 0.88 0.90 0.91 0.96 0.97 0.99 0.99 0.99 0.99 1.00 1.00 - - - - -
2011 0.82 0.83 0.87 0.87 0.86 0.83 0.86 0.88 0.91 0.92 0.95 0.95 0.95 0.96 0.96 0.95 1.00 - - - -
2012 0.81 0.82 0.86 0.85 0.84 0.81 0.83 0.86 0.90 0.91 0.94 0.94 0.95 0.95 0.95 0.94 1.00 1.00 - - -
2013 0.78 0.79 0.83 0.83 0.82 0.80 0.82 0.84 0.89 0.90 0.93 0.94 0.94 0.94 0.95 0.94 1.00 1.00 1.00 - -
2014 0.80 0.80 0.84 0.83 0.82 0.80 0.82 0.84 0.88 0.89 0.92 0.93 0.93 0.94 0.94 0.93 0.99 1.00 1.00 1.00 -
2015 0.80 0.80 0.84 0.83 0.82 0.79 0.81 0.84 0.88 0.89 0.92 0.93 0.93 0.94 0.94 0.93 0.99 1.00 1.00 1.00 1.00
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The spatiotemporal essences of these four different variables show few similarities, and it is
hard to notice any connection between SO2 emissions and the socioeconomic factors in terms of
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their spatial distribution and temporal evolvement through separate figures (Figures 2–5). Thus,
Figure 6 overlays significant hot and cold spots of four variables on a single map to demonstrate the
comprehensive emissions–determinates nexus in the space–time context. It is noteworthy that the SO2

emissions’ significant spots overlap its three determinant variables and the north and north central
regions have more provinces with hot/cold spots over the period. Moreover, Figure 6 also suggests
that FDI might have a stronger connection with the spatiotemporal distribution of SO2 emissions in
specific areas than urbanization and industrial structure, as SO2 and FDI share more coupled provincial
units. Specifically, Xinjiang and its neighbors (Xizang, Qinghai, and Gansu) are all characterized by
the low level of emissions, FDI, and urbanization; as such, Xinjiang should form a low–low spatial
agglomeration and be a significant cold spot of these three variables. The emission–FDI significant spots
can also be found at Shandong and Jiangsu provinces. Beijing is the capital city of China, which has
relatively high levels of urbanization and industrial structure development, but is surrounded by
Hebei, the emission-intensive and heavily polluted neighbor. Thus, Beijing is identified as the SO2, urb,
and stru significant spots.Atmosphere 2019, 10, x FOR PEER REVIEW 14 of 22 
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The preliminary analysis above indicates that urbanization, FDI, and industrial structure all
should have an evidently close connection with sulfur emissions in space–time extent. However,
the ESDA technique has limited capability of revealing the causal relationship between the dependent
and independent variables, plus it is unable to quantify the determinants’ impacts. Moreover, the data
generating process (DGP) is usually unknown in empirical studies. The application of sophisticated
statistical inferences and rigorous models can help us to fit the data and better describe the DGP.
Therefore, the next subsection further examines the spatiotemporal nexus based on the dynamic SDM
introduced in Section 2.3.
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3.3. Econometric Results and Interpretation

In the spatial econometric analysis, the negligence of the spatial autocorrelation can lead to
biased estimates [52]; in addition, the independent variables’ impacts on dependent variable could be
overestimated without the incorporation of the dynamic effects/series dependence [58]. Consequently,
it is necessary to control for both time-series dependence and spatial autocorrelation of the dependent
variable (lnSO2) within the quantitative empirical framework (dynamic SDM).

Table 4 depicts the coefficients estimated through maximum likelihood estimation [59] of
Equations (2)–(4). lnSO2 t − 1, WlnSO2 t − 1, and WlnSO2 t capture the time lag, spatial lag, and space–time
lag effects, respectively. Estimations of both γ0 and ρ0 are significant in all three models, suggesting
the incorporation of time lag and space–time lag effects is necessary for the empirical framework.
Therefore, Equation (2) is superior to Equation (3) and Equation (4), and the following analysis is
based on Equation (2). In Equation (2), the λ0 estimation is positive and significant, which means that
even with the inclusion of determinants’ spatial lag terms, the model should still control for emissions’
spatial association as well. This validates the Moran’s I statistics results of Table 2. The determinants’
parameters in Table 4 cannot be interpreted as the average response of SO2 emissions to its determinants,
because the dynamic SDM includes WlnSO2 t on the right-hand side, and, intrinsically, the partial
derivatives of lnSO2 t on the independent variables do not equal to their parameters. Instead,
the socioeconomic determinants’ direct and spillover effects need further calculation by plugging the
parameters (in Table 4, Equation (2)) into Equations (6) and (7); the results are listed in Table 5.

Table 5 shows that in China, urbanization, FDI, and industrial structure all have statistically
significant influences on SO2 emissions. The formal definition of spillover effects here is the impacts
that a specific spatial unit exerts on its adjacent units [55]. In the short run, a 10% increase of FDI
level will, ceteris paribus, averagely result in a 0.11% increase of emissions in the adjacent provinces,
but would not have any significant influences on the emission level of the local province. In the long
run, FDI does not have either direct or spillover effects on SO2 emissions. Urbanization evidently has
negative impacts on the local and neighbor sulfur emission levels in the short run, which means the
urbanization development can temporarily reduce the SO2 emissions. By contrast, the urbanization
rate has no long-term influence on emissions. The industrial adjustment index is negatively related to
the local and neighbors SO2 emissions in the short run, while the index is only negatively related to the
local emissions in the long run. Besides, population- and energy-related technological advancement
(indicated by energy intensity, which is negatively correlated to the technological progress level [21])
also have significant long- and short-term influences on SO2 emissions. A 10% growth of population
would, ceteris paribus, averagely lead to a 2.75% and 5.41% temporal increase of emissions in the local
and all adjacent provinces, respectively, and eventually, it would lead to a 20.15% increase of local
emissions, but no significant change of neighbor emissions. As for the technological progress, its long-
and short-term impacts only work on local emissions, but not on emissions of adjacent provinces.
All else being equal, a 10% increase of technological progress level will averagely lead to 0.99% and
8.78% decreases of local emissions in the short and long run, respectively.

The dynamic SDM analysis above provides confirmative verification for the findings of ESDA in
Section 3.2. China’s SO2 emissions are significantly dependent on FDI, urbanization, and industrial
structure in the spatiotemporal context. Moreover, the sulfur emissions’ series dependence could
be explained by industrial structure, the population, as well as energy intensity, and these three
determinants have profound and eventual impacts on SO2 emissions in China.
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Table 4. Coefficients estimates of the dynamic spatial Durbin models.

Variables
Equation (2) Equation (3) Equation (4)

x Wx x Wx x Wx

lnSO2 t − 1 (γ0) 0.873 *** 0.862 ***
(35.99) (35.81)

WlnSO2 t − 1 (ρ0) −0.156 ** 0.243 ***
(−2.45) (2.60)

urb −0.004 ** −0.009 ** −0.013
***

−0.051
*** −0.004 * −0.008 *

(−2.01) (−2.18) (−3.51) (−7.59) (−1.65) (−1.88)

fdi 0.003 0.009 * −0.006 0.033 *** 0.003 0.009 *
(1.13) (1.76) (−1.28) (3.74) (1.10) (1.67)

stru −0.001
*** −0.001 ** −0.003

*** −0.003 ** −0.001
*** −0.001

(−3.06) (−2.01) (−5.99) (−2.40) (−2.73) (−1.47)

lnGDP 0.168 1.483 *** 0.205
(1.01) (5.47) (1.22)

(lnGDP)2 −0.020 * −0.100
*** −0.020 *

(−1.69) (−5.12) (−1.70)

lnPOP 0.255 * 0.460 ** 0.989 *** −0.318 0.270 ** 0.436 **
(1.93) (2.31) (4.55) (−0.96) (2.04) (2.17)

lnEI 0.101 ** −0.125 0.525 *** −0.083 0.098 ** −0.161
(2.23) (−1.11) (7.18) (−0.45) (2.15) (−1.43)

WlnSO2 t (λ0) 0.132 ** 0.074 0.057
(2.40) (1.07) (1.38)

Observations 600 600 600
Log-likelihood 203.020 −504.279 340.714

R2 0.881 0.645 0.891
N 30 30 30

Note: z-statistics in parentheses, *** p < 0.01, ** p < 0.05, * p < 0.1. lnSO2 is the dependent variable.

Table 5. Short- and long-term effects on SO2 emissions.

lnSO2

Direct
Effects

(Short-Term)

Spillover
Effects

(Short-Term)

Total Effects
(Short-Term)

Direct Effects
(Long-Term)

Spillover
Effects

(Long-Term)

Total Effects
(Long-Term)

urb −0.004 ** −0.011 ** −0.015 *** −0.032 −0.065 −0.097
(−2.15) (−2.34) (−3.07) (−1.57) (−0.26) (−0.38)

fdi 0.004 0.011 * 0.014 ** 0.024 0.068 0.092
(1.28) (1.88) (2.35) (0.94) (0.52) (0.69)

stru −0.001 *** −0.002 ** −0.003 *** −0.008 *** −0.009 −0.017
(−3.17) (−2.04) (−2.78) (−2.72) (−0.24) (−0.45)

lnPOP 0.275 ** 0.541 ** 0.817 *** 2.015 * 3.066 5.081
(2.10) (2.46) (3.31) (1.67) (0.23) (0.38)

lnEI 0.099 ** −0.124 −0.025 0.878 ** −0.967 −0.089
(2.24) (−0.94) (−0.18) (2.08) (−0.32) (−0.03)

Note: z-statistics in parentheses, *** p < 0.01, ** p < 0.05, * p < 0.1. The direct and spillover effects of lnGDP and
(lnGDP)2 are meaningless in terms of economics, so they are not reported in the table. Total effects = direct effects +
spillover effects.
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4. Discussion

As environmental sustainability and economic development (including urbanization, industrial
structure transformation, and international trade) are both critical issues for China’s sustainable
development. The focus on emission reduction motivates the discovery of the spatiotemporal
characteristics of SO2 emissions. Such explorations could help to develop a scientific foundation for
the targeted decomposition of regional emissions, for a better understanding of the mechanisms of
cross-region compensation, as well as for region-specific sustainable development. The ESDA results
reveal that despite the distinct SO2 emission levels in different years, overall, the clustering pattern
had been stable. Similar to the findings in Zhao et al. [35], the emission-intensive provinces mainly
agglomerate at/near the Beijing–Tianjin–Hebei region (Figures 1 and 6), which is in correspondence with
the serious pollution of fog and haze in this region. Such a high-pollution and emissions phenomenon
around the Beijing–Tianjin–Hebei region is closely related to the high proportion of the polluting
heavy industry and the relative hysteresis of the tertiary industry development, especially in Hebei
province [39]. Shandong and Jiangsu provinces form emission–FDI significant spots owing to their
high level of foreign trade openness and emissions. Other than that, the capital city Beijing and
municipality Tianjin have high urbanization levels and advanced industrial composition; meanwhile,
they are surrounded by many pollution and emission enterprises from near areas. Thus, these two
cities are identified as urb– and stru–emission significant spots.

China’s provincial SO2 emissions are found to have significant autocorrelation (Table 2), which is
in line with similar previous studies [35,36]. Atmospheric pollutants, especially the emission type,
are usually characterized by spatial dependence/diffusions, because adjacent provinces may be
the mimics of each other’s socio-economic and environmental policies. Thus, the emissions’ level
could be affected by neighbors’ emissions and economic activities including foreign investment
promotion, the layout of industrial structure, urban infrastructure, and technological development [5].
China’s central government assigns the annual national achievements of pollution reduction and
economic growth at the provincial and prefectural levels. The evaluation of such achievements is
carried out among provinces and cities. The competition in economic growth and environmental
production inevitably arise between provinces/cities for local governors’ political performance. If a
specific local government adopts a strict pollution discharge standard, its neighboring provinces
are likely to imitate and implement a similar standard on their own emissions reduction. On the
contrary, if the local government takes the development as the primary task and set out a series of loose
regulations on pollution emissions, the adjacent provinces are likely to adopt similar loose regulations
in order to compete in terms of economic growth. Therefore, such “demonstration effects” should be
responsible for the autocorrelation of SO2 emissions found in Section 3 [60].

The dynamic spatial econometric results not only verified, but also quantified the spatiotemporal
nexus of the socioeconomic factors to SO2 emissions. The pollution haven hypothesis (PHH) can
explain the adverse (positive value) effects of FDI on emissions. The PHH suggests that developed
countries’ multinational enterprises, particularly the energy- and pollution-intensive ones, are likely to
relocate their business and industries to developing countries owing to the incentives of profits and
relatively loose environmental law in these developing countries. Therefore, PHH vividly denotes
the less developed countries as a “pollution haven”, if they have lower environmental standards
than the necessary level of efficient foreign capital and investment inflow. In this way, such a low
barrier of international trade would be environment-deteriorating in China—the provinces with
relatively loosen environmental regulations and higher openness of international trade may have
been attracting less environment-friendly foreign companies, resulting in considerable pollution
emissions [61]. Interestingly, FDI only exerts (short-term) spatial spillover effects on SO2 emissions,
but no direct effects. China’s FDI mainly agglomerates at the developed southeast coast economic
belt (Figure 6), where stricter regulation, highly advanced-technology, and experienced management
exist [35]. Therefore, these areas are able to minimize the FDI’s environmental adverse impact, so that
the FDI does not evidently affect the local emissions.
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Urbanization’s beneficial effects for the SO2 abatement can be reflected by the modernization
theory [62,63]. The urbanization process inevitably consumes more energies and thus generates more
pollutants owing to the demand for building materials for constructing new and upgrading old public
infrastructures [22]. However, improvements in urbanization level and urban density could also
result in an upgrade on the efficiency of public infrastructure’s utilization, such as public transport,
which decreases energy consumption and pollution emissions [24,64]. Urbanization also means more
advanced and modernized ways of energy consumption. The replacement of inefficient solid fuels by
advanced energy utilization enables urban industries and residents to lower the energy consumption
and pollution emission levels [65,66]. Moreover, urbanization can promote environmental quality via
economies of scale in environmental protection and services of sanitation [67].

The upgrade and optimization (transfer of secondary to tertiary industry) of industrial structure
can lead to a reduction of SO2 emissions in local and neighbor provinces of China, because the
pollution intensities are distinct in different industries. The secondary industry is the segment of the
economy that processes the raw materials (from primary industry) into products and commodities for
its consumers, and the secondary industry is also known as the manufacturing industry. The tertiary
industry is the economic sector that provides services to the consumers, consisting of a range of
businesses, such as entertaining institutions, schools, finance companies, research and development
(R&D) departments, and catering services. It is also known as the tertiary/service industry. Given the
industries’ production patterns, the secondary industry is more materiel- and energy-consuming,
and thus more pollution-intensive. As for the tertiary industry, it is knowledge- and service-intensive,
and thus less polluting. Specifically, in China, industrial sectors (mainly in the secondary industry),
including the construction sector, are the major source of emissions, accounting for 84% of the total
energy-related emissions in 2014 [68]. The industrial sectors’ SO2 emissions make up over 80% of
China’s total sulfur emission [69]. On the other hand, the tertiary industry is composed of less-polluting
services and light manufacturing sectors. The industrial composition’s effects are long-lasting because
the structure varies with economic development all along. At the initial stage, because of the pursuit of
industrialization, production resources and capital in primary industry (agricultural sectors) transfer
to secondary industry, particularly the heavy industry, which boosts pollution emissions. When it
comes to the middle and late stage, the demand of higher efficiency and lower emission causes a shift
from the emission-intensive secondary industry towards the knowledge-intensive tertiary industry,
so the process reduces the emissions’ amount [20,70]. During 2004–2014, the secondary industry ratio
had been decreasing in developed Chinese provinces, and had first increased and then decreased in
the developing provinces. China’s recently implemented industrial upgrading reform ought to be
responsible for such changes [36].

Technological progress is found to be effective on SO2 abatement in China, which is in line with
findings of Zhou et al. [36], Dinda et al. [71], and Ge et al. [26]. According to the facts in China,
the reason for the environmental-beneficial effects of technological advancement (a decline of energy
intensity) is three-fold: exhaust-gas emission reduction’s upgrade, for example, the end-of-pipe
abatement technology; the promotion of energy industrialization; and surging investment in new
energy industries [6,72]. REN21 Global Status Report [73] reveals that China has been developing
large amounts of new energies that are more sustainable and cleaner, such as hydropower, solar power,
biofuels, and wind power. Highly advanced technology tend to be the primary cause that leads to
environmental quality improvement in the long term [74]; this can also be seen from the absolute
value of lnEI in Table 5. Theoretically, highly advanced technology is usually characterized by efficient
utilization of energy and materials during continuous economic growth, which saves more natural
resource and reduces the burden on environmental protection of economic activities. The incidentally
allowed renewable energies to emerge during technological advancement to enable a country to recycle
and reuse the production materials more efficiently, so that they can reserve more natural resources
and reduce the emissions [36]. A comparable empirical study also found technological progress to be a
major contributor to SO2 abatement in Germany and Netherlands [75].
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Different from FDI, technological progress only has direct effects that only influence local SO2

emissions, as geographic boundaries can hinder technology’s spatial-spillovers [76,77]. Without a
doubt, public sectors’ R&D activities can transmit through the Internet and multimedia, although the
information networks cannot utterly replace the physical communications (e.g., seminars, researcher
exchange, field trips, science facilities, and paper documentation). Moreover, monopoly profits
are incentives for companies to establish a technological barrier that is effective for removing other
competing firms [77], so the technology is found to be non-effective on neighboring provinces’ emissions.

As mentioned above, previous work (Zhou et al. [36], Zhao et al. [35], Zhao et al. [38],
Dinda et al. [71], Ge et al. [26], and Rui et al. [39]) also detected significant effects of technology
and industrial composition on pollution emissions. However, they ignore these factors’ short-term
effects because the application of the traditional static panel model is unable to account for both spatial
and series dependence (the DGP’s inherent spatial and temporal characteristics) in the empirical
framework, which could lead to biased results [78].

In general, the interprovincial cooperation, imitation, and competition should account for
the emissions’ autocorrelation and socioeconomic activities’ spillover effects. Considering China’s
continuous industrial structure upgrade and high-speed developing technology, the fundamental
driving factors of SO2 emissions’ reduction can be categorized into two types: economic structural and
technological progress—a similar opinion can be found in Dinda [19].

5. Conclusions

China’s rapid economic growth is accompanied by soaring energy consumption and pollution
emissions; as a result, the country has become one of the largest SO2 emitters in the world. At such a
juncture, a clear and precise understanding of the spatiotemporal patterns of China’s SO2 emissions
is essential and crucial. Relevant knowledge can constitute a practical framework for policymakers
at different administrative levels to achieve the SO2 abatement task and design a mechanism of
abatement’s cross-region compensation in China.

The empirical results offer new findings and novel insights into the spatiotemporal dimensions
of China’s SO2 emissions and the socioeconomic factors spanning from 1995 to 2015. The main
conclusions are summarized as follows.

The ESDA reveals that SO2 emissions and their socioeconomic factors went through a stable and
evident spatial clustering pattern during the study period. Spatial externalities of emissions exist across
different provincial areas, namely the variation of provincial SO2 emissions influence not only the local
provinces, but also the adjacent provinces’ emissions. Several kinds of significant spots are recognized
through the mapping technique, suggesting that significant spots of emissions generally overlay well
with the influencing factors’ significant spots, and this result reflects the fact that there is a close
space–time nexus of SO2 emissions to these factors (FDI, industrial composition, and urbanization).

The econometric empirical analysis is theoretically based on the extended STIRPAT model
(Equation (1)) and embeds a dynamics spatial Durbin model to quantify the spatiotemporal nexus
in a confirmatory way. Spatial externality plays an important role because the factors’ spillovers
significantly contribute to the space- and time-dynamics of China’s SO2 emissions. An increase in
population or FDI increases the SO2 emissions. By contrast, the urbanization progress, industrial
structure upgrade, and technological advancement can all improve the efficiency of SO2 abatement.
The urbanization progress only reduces local and adjacent provinces’ SO2 emissions in the short run,
whereas the technological advancement and optimization of industrial composition exert both short-
and long-term reducing effects. In other words, the technological advancement and industrial structure
update have long-lasting and profound influences on China’s SO2 emissions. Their differences lie in
the short-term influence, owing to “demonstration effects”, the industrial composition affects not only
local emissions, but also the emissions of neighboring provinces, while the technological progress only
influences local emissions owing to geographical barriers.
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The study also provides a reference value. China’s policymakers should advocate the optimization
of industrial structure and improvement of energy-related technology, which can practically constitute
a more thorough and effective way of SO2 abatement. On the other hand, the decision-maker is
also urged to curb and then give up the traditional energy- and emission-intensive industries and
resource-consuming developing way, and to exchange the immediate interests (e.g., foreign capital
inflow with low environmental standards) for securing the long-term sustainable purpose.

As merely 30 Chinese provincial units and 21 years’ time points are analyzed in this paper,
owing to the data availability, further studies are expected to adopt less aggregate spatial elements
(i.e., prefecture-level, even county-level data) and longer time points to capture more spatial
and temporal characteristics. In addition, the issues not covered by this paper, such as the
inequality/convergence of SO2 and other pollution emissions, should be addressed from both regional
and industry perspectives.

Funding: This research was funded by Lingnan (University) College Fund (0219000088).

Acknowledgments: I would like to thank the anonymous referees for their review, comments, and
valuable suggestions.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Wang, S.; Fang, C.; Ma, H.; Wang, Y.; Qin, J. Spatial differences and multi-mechanism of carbon footprint
based on GWR model in provincial China. J. Geogr. Sci. 2014, 24, 612–630. [CrossRef]

2. Wang, S.; Fang, C.; Wang, Y.; Huang, Y.; Ma, H. Quantifying the relationship between urban development
intensity and carbon dioxide emissions using a panel data analysis. Ecol. Indic. 2015, 49, 121–131. [CrossRef]

3. Wang, Q.; Zhou, P.; Shen, N.; Wang, S. Measuring carbon dioxide emission performance in Chinese provinces:
A parametric approach. Renew. Sustain. Energy Rev. 2013, 21, 324–330. [CrossRef]

4. Zhao, Y.; Wang, S. The Relationship between Urbanization, Economic Growth and Energy Consumption in
China: An Econometric Perspective Analysis. Sustainability 2015, 7, 5609–5627. [CrossRef]

5. Wang, S.; Zhou, C.; Li, G.; Feng, K. CO2, economic growth, and energy consumption in China’s provinces:
Investigating the spatiotemporal and econometric characteristics of China’s CO2 emissions. Ecol. Indic. 2016,
69, 184–195. [CrossRef]

6. Wang, Y.; Han, R.; Kubota, J. Is there an Environmental Kuznets Curve for SO2 emissions? A semi-parametric
panel data analysis for China. Renew. Sustain. Energy Rev. 2016, 54, 1182–1188. [CrossRef]

7. Boningari, T.; Smirniotis, P.G. Impact of nitrogen oxides on the environment and human health: Mn-based
materials for the NOx abatement. Curr. Opin. Chem. Eng. 2016, 13, 133–141. [CrossRef]

8. Cheng, Z.; Li, L.; Liu, J. Identifying the spatial effects and driving factors of urban PM2.5 pollution in China.
Ecol. Indic. 2017, 82, 61–75. [CrossRef]

9. Schreifels, J.J.; Fu, Y.; Wilson, E.J. Sulfur dioxide control in China: Policy evolution during the 10th and 11th
Five-year Plans and lessons for the future. Energy Policy 2012, 48, 779–789. [CrossRef]

10. Pui, D.Y.; Chen, S.-C.; Zuo, Z. PM 2.5 in China: Measurements, sources, visibility and health effects,
and mitigation. Particuology 2014, 13, 1–26. [CrossRef]

11. Su, S.; Li, B.; Cui, S.; Tao, S. Sulfur Dioxide Emissions from Combustion in China: From 1990 to 2007.
Environ. Sci. Technol. 2011, 45, 8403–8410. [CrossRef] [PubMed]

12. Wei, J.; Guo, X.; Marinova, D.; Fan, J. Industrial SO2 pollution and agricultural losses in China: Evidence
from heavy air polluters. J. Clean. Prod. 2014, 64, 404–413. [CrossRef]

13. Liu, C.; Hong, T.; Li, H.; Wang, L. From club convergence of per capita industrial pollutant emissions to
industrial transfer effects: An empirical study across 285 cities in China. Energy Policy 2018, 121, 300–313.
[CrossRef]

14. Xu, Y.; Masui, T. Local air pollutant emission reduction and ancillary carbon benefits of SO2 control policies:
Application of AIM/CGE model to China. Eur. J. Oper. Res. 2009, 198, 315–325. [CrossRef]

15. Cheung, K.-Y.; Lin, P. Spillover effects of FDI on innovation in China: Evidence from the provincial data.
China Econ. Rev. 2004, 15, 25–44. [CrossRef]

http://dx.doi.org/10.1007/s11442-014-1109-z
http://dx.doi.org/10.1016/j.ecolind.2014.10.004
http://dx.doi.org/10.1016/j.rser.2012.12.061
http://dx.doi.org/10.3390/su7055609
http://dx.doi.org/10.1016/j.ecolind.2016.04.022
http://dx.doi.org/10.1016/j.rser.2015.10.143
http://dx.doi.org/10.1016/j.coche.2016.09.004
http://dx.doi.org/10.1016/j.ecolind.2017.06.043
http://dx.doi.org/10.1016/j.enpol.2012.06.015
http://dx.doi.org/10.1016/j.partic.2013.11.001
http://dx.doi.org/10.1021/es201656f
http://www.ncbi.nlm.nih.gov/pubmed/21851093
http://dx.doi.org/10.1016/j.jclepro.2013.10.027
http://dx.doi.org/10.1016/j.enpol.2018.06.039
http://dx.doi.org/10.1016/j.ejor.2008.07.048
http://dx.doi.org/10.1016/S1043-951X(03)00027-0


Atmosphere 2019, 10, 534 20 of 22

16. Wang, H.; Jin, Y. Industrial Ownership and Environmental Performance: Evidence from China; The World Bank:
Washington, DC, USA, 2002.

17. Bao, Q.; Chen, Y.; Song, L. Foreign direct investment and environmental pollution in China: A simultaneous
equations estimation. Environ. Dev. Econ. 2011, 16, 71–92. [CrossRef]

18. Dean, J.M.; Lovely, M.E.; Wang, H. Are Foreign Investors Attracted to Weak Environmental Regulations? Evaluating
the Evidence from China; The World Bank: Washington, DC, USA, 2005.

19. Dinda, S. Environmental Kuznets Curve Hypothesis: A Survey. Ecol. Econ. 2004, 49, 431–455. [CrossRef]
20. Stern, D.I. The Rise and Fall of the Environmental Kuznets Curve. World Dev. 2004, 32, 1419–1439. [CrossRef]
21. Zhou, Z. The Underground Economy and Carbon Dioxide (CO2) Emissions in China. Sustainability 2019, 11,

2802. [CrossRef]
22. Cole, M.A.; Neumayer, E. Examining the Impact of Demographic Factors on Air Pollution. Popul. Environ.

2004, 26, 5–21. [CrossRef]
23. Parikh, J.; Shukla, V. Urbanization, energy use and greenhouse effects in economic development.

Glob. Environ. Chang. 1995, 5, 87–103. [CrossRef]
24. Chen, H.; Jia, B.; Lau, S. Sustainable urban form for Chinese compact cities: Challenges of a rapid urbanized

economy. Habitat Int. 2008, 32, 28–40. [CrossRef]
25. Yue, W.; Liu, Y.; Fan, P.; Ye, X.; Wu, C. Assessing spatial pattern of urban thermal environment in Shanghai,

China. Stoch. Environ. Res. Risk Assess. 2012, 26, 899–911. [CrossRef]
26. Ge, X.; Zhou, Z.; Zhou, Y.; Ye, X.; Liu, S. A Spatial Panel Data Analysis of Economic Growth, Urbanization,

and NOx Emissions in China. Int. J. Environ. Res. Public Heal. 2018, 15, 725. [CrossRef] [PubMed]
27. Zhou, Y.; Fu, J.; Kong, Y.; Wu, R. How Foreign Direct Investment Influences Carbon Emissions, Based on the

Empirical Analysis of Chinese Urban Data. Sustainability 2018, 10, 2163. [CrossRef]
28. Riti, J.S.; Song, D.; Shu, Y.; Kamah, M. Decoupling CO2 emission and economic growth in China: Is there

consistency in estimation results in analyzing environmental Kuznets curve? J. Clean. Prod. 2017, 166,
1448–1461. [CrossRef]

29. Mahmood, H.; Furqan, M.; Bagais, O. Environmental accounting of financial development and foreign
investment: Spatial analyses of East Asia. Sustainability 2019, 11, 13. [CrossRef]

30. Koçak, E.; Ulucak, Z.S. The effect of energy R&D expenditures on CO2 emission reduction: Estimation of the
STIRPAT model for OECD countries. Environ. Sci. Pollut. Res. 2019, 26, 14328–14338.

31. Gong, X.; Mi, J.; Yang, R.; Sun, R. Chinese National Air Protection Policy Development: A Policy Network
Theory Analysis. Int. J. Environ. Res. Public Heal. 2018, 15, 2257. [CrossRef]

32. Gong, X.; Mi, J.; Wei, C.; Yang, R. Measuring Environmental and Economic Performance of Air Pollution
Control for Province-Level Areas in China. Int. J. Environ. Res. Public Heal. 2019, 16, 1378. [CrossRef]

33. Ding, Y.; Zhang, M.; Chen, S.; Wang, W.; Nie, R. The environmental Kuznets curve for PM2.5 pollution in
Beijing-Tianjin-Hebei region of China: A spatial panel data approach. J. Clean. Prod. 2019, 220, 984–994.
[CrossRef]

34. Chen, X.; Yi, G.; Liu, J.; Liu, X.; Chen, Y. Evaluating Economic Growth, Industrial Structure, and Water
Quality of the Xiangjiang River Basin in China Based on a Spatial Econometric Approach. Int. J. Environ. Res.
Public Heal. 2018, 15, 2095. [CrossRef] [PubMed]

35. Zhao, X.; Deng, C.; Huang, X.; Kwan, M.-P. Driving forces and the spatial patterns of industrial sulfur dioxide
discharge in China. Sci. Total. Environ. 2017, 577, 279–288. [CrossRef] [PubMed]

36. Zhou, Z.; Ye, X.; Ge, X. The Impacts of Technical Progress on Sulfur Dioxide Kuznets Curve in China:
A Spatial Panel Data Approach. Sustainability 2017, 9, 674. [CrossRef]

37. Yang, X.; Wang, S.; Zhang, W.; Zhan, D.; Li, J. The impact of anthropogenic emissions and meteorological
conditions on the spatial variation of ambient SO2 concentrations: A panel study of 113 Chinese cities.
Sci. Total. Environ. 2017, 584, 318–328. [CrossRef] [PubMed]

38. Zhao, H.; Guo, S.; Zhao, H. Impacts of GDP, Fossil Fuel Energy Consumption, Energy Consumption Intensity,
and Economic Structure on SO2 Emissions: A Multi-Variate Panel Data Model Analysis on Selected Chinese
Provinces. Sustainability 2018, 10, 657. [CrossRef]

39. Li, R.; Fu, H.; Cui, L.; Li, J.; Wu, Y.; Meng, Y.; Wang, Y.; Chen, J. The spatiotemporal variation and key factors
of SO2 in 336 cities across China. J. Clean. Prod. 2019, 210, 602–611. [CrossRef]

40. Giacomini, R.; Granger, C.W. Aggregation of space-time processes. J. Econ. 2004, 118, 7–26. [CrossRef]

http://dx.doi.org/10.1017/S1355770X10000380
http://dx.doi.org/10.1016/j.ecolecon.2004.02.011
http://dx.doi.org/10.1016/j.worlddev.2004.03.004
http://dx.doi.org/10.3390/su11102802
http://dx.doi.org/10.1023/B:POEN.0000039950.85422.eb
http://dx.doi.org/10.1016/0959-3780(95)00015-G
http://dx.doi.org/10.1016/j.habitatint.2007.06.005
http://dx.doi.org/10.1007/s00477-012-0638-1
http://dx.doi.org/10.3390/ijerph15040725
http://www.ncbi.nlm.nih.gov/pubmed/29641500
http://dx.doi.org/10.3390/su10072163
http://dx.doi.org/10.1016/j.jclepro.2017.08.117
http://dx.doi.org/10.3390/su11010013
http://dx.doi.org/10.3390/ijerph15102257
http://dx.doi.org/10.3390/ijerph16081378
http://dx.doi.org/10.1016/j.jclepro.2019.02.229
http://dx.doi.org/10.3390/ijerph15102095
http://www.ncbi.nlm.nih.gov/pubmed/30257427
http://dx.doi.org/10.1016/j.scitotenv.2016.10.183
http://www.ncbi.nlm.nih.gov/pubmed/27823826
http://dx.doi.org/10.3390/su9040674
http://dx.doi.org/10.1016/j.scitotenv.2016.12.145
http://www.ncbi.nlm.nih.gov/pubmed/28040215
http://dx.doi.org/10.3390/su10030657
http://dx.doi.org/10.1016/j.jclepro.2018.11.062
http://dx.doi.org/10.1016/S0304-4076(03)00132-5


Atmosphere 2019, 10, 534 21 of 22

41. Anselin, L. Spatial Effects in Econometric Practice in Environmental and Resource Economics. Am. J.
Agric. Econ. 2001, 83, 705–710. [CrossRef]

42. Belotti, F.; Hughes, G.; Mortari, A.P. Spatial Panel-data Models Using Stata. Stata J. Promot. Commun.
Stat. Stata 2017, 17, 139–180. [CrossRef]

43. Grossman, G.M.; Krueger, A.B. Economic Growth and the Environment. Q. J. Econ. 1995, 110, 353–377.
[CrossRef]

44. Martínez-Zarzoso, I.; Bengochea-Morancho, A.; Morales-Lage, R. The impact of population on CO2 emissions:
Evidence from European countries. Environ. Resour. Econ. 2007, 38, 497–512. [CrossRef]

45. York, R.; Rosa, E.A.; Dietz, T. STIRPAT, IPAT and ImPACT: Analytic tools for unpacking the driving forces of
environmental impacts. Ecol. Econ. 2003, 46, 351–365. [CrossRef]

46. Anselin, L.; Syabri, I.; Kho, Y. GeoDa: An Introduction to Spatial Data Analysis. Geogr. Anal. 2006, 38, 5–22.
[CrossRef]

47. Yu, D.; Wei, Y.D. Spatial data analysis of regional development in Greater Beijing, China, in a GIS environment.
Pap. Reg. Sci. 2008, 87, 97–117. [CrossRef]

48. Moran, P.A.P. Notes on Continuous Stochastic Phenomena. Biometrika 1950, 37, 17–23. [CrossRef]
49. Ord, J.K.; Getis, A. Testing for Local Spatial Autocorrelation in the Presence of Global Autocorrelation.

J. Reg. Sci. 2001, 41, 411–432. [CrossRef]
50. Getis, A.; Ord, J.K. The Analysis of Spatial Association by Use of Distance Statistics. Geogr. Anal. 2010, 24,

189–206. [CrossRef]
51. Ye, X.; Wu, L. Analyzing the dynamics of homicide patterns in Chicago: ESDA and spatial panel approaches.

Appl. Geogr. 2011, 31, 800–807. [CrossRef]
52. Elhorst, J.P. Spatial Econometrics from Cross-Sectional Data to Spatial Panels; Springer: Heidelberg, Germany, 2014.

[CrossRef]
53. Vega, S.H.; Elhorst, J.P. The slx model. J. Reg. Sci. 2015, 55, 339–363. [CrossRef]
54. Baltagi, B. Econometric Analysis of Panel Data; John Wiley & Sons: Hoboken, NJ, USA, 2008.
55. Lesage, J.; Pace, R.K. Introduction to Spatial Econometrics; Informa UK Limited; Chapman and Hall/CRC:

Boca Raton, FL, USA, 2009.
56. Rey, S.J.; Ye, X. Comparative spatial dynamics of regional systems. In Progress in Spatial Analysis; Springer:

Berlin, Germany, 2010; pp. 441–463.
57. Ye, X.; Rey, S. A framework for exploratory space-time analysis of economic data. Ann. Reg. Sci. 2013, 50,

315–339. [CrossRef]
58. Sheng, P.; Guo, X. The Long-run and Short-run Impacts of Urbanization on Carbon Dioxide Emissions.

Econ. Model. 2016, 53, 208–215. [CrossRef]
59. Yu, J.; De Jong, R.; Lee, L.-F. Estimation for spatial dynamic panel data with fixed effects: The case of spatial

cointegration. J. Econ. 2012, 167, 16–37. [CrossRef]
60. Li, Q.; Song, J.; Wang, E.; Hu, H.; Zhang, J.; Wang, Y. Economic growth and pollutant emissions in China:

A spatial econometric analysis. Stoch. Environ. Res. Risk Assess. 2013, 28, 429–442. [CrossRef]
61. Cole, M.A. Trade, the pollution haven hypothesis and the environmental Kuznets curve: Examining the

linkages. Ecol. Econ. 2004, 48, 71–81. [CrossRef]
62. Ehrhardt-Martinez, K. Social Determinants of Deforestation in Developing Countries: A Cross-National

Study. Soc. Forces 1998, 77, 567–586. [CrossRef]
63. Martinez-Zarzoso, I.; Maruotti, A. The impact of urbanization on CO2 emissions: Evidence from developing

countries. Ecol. Econ. 2011, 70, 1344–1353. [CrossRef]
64. Liddle, B. Demographic Dynamics and Per Capita Environmental Impact: Using Panel Regressions and

Household Decompositions to Examine Population and Transport. Popul. Environ. 2003, 26, 23–39. [CrossRef]
65. Pachauri, S. An analysis of cross-sectional variations in total household energy requirements in India using

micro survey data. Energy Policy 2004, 32, 1723–1735. [CrossRef]
66. Pachauri, S.; Jiang, L. The household energy transition in India and China. Energy Policy 2008, 36, 4022–4035.

[CrossRef]
67. Torras, M.; Boyce, J.K. Income, inequality, and pollution: A reassessment of the environmental Kuznets

Curve. Ecol. Econ. 1998, 25, 147–160. [CrossRef]
68. Yu, S.; Hu, X.; Fan, J.-L.; Cheng, J. Convergence of carbon emissions intensity across Chinese industrial

sectors. J. Clean. Prod. 2018, 194, 179–192. [CrossRef]

http://dx.doi.org/10.1111/0002-9092.00194
http://dx.doi.org/10.1177/1536867X1701700109
http://dx.doi.org/10.2307/2118443
http://dx.doi.org/10.1007/s10640-007-9096-5
http://dx.doi.org/10.1016/S0921-8009(03)00188-5
http://dx.doi.org/10.1111/j.0016-7363.2005.00671.x
http://dx.doi.org/10.1111/j.1435-5957.2007.00148.x
http://dx.doi.org/10.1093/biomet/37.1-2.17
http://dx.doi.org/10.1111/0022-4146.00224
http://dx.doi.org/10.1111/j.1538-4632.1992.tb00261.x
http://dx.doi.org/10.1016/j.apgeog.2010.08.006
http://dx.doi.org/10.1007/978-3-642-40340-8
http://dx.doi.org/10.1111/jors.12188
http://dx.doi.org/10.1007/s00168-011-0470-4
http://dx.doi.org/10.1016/j.econmod.2015.12.006
http://dx.doi.org/10.1016/j.jeconom.2011.05.014
http://dx.doi.org/10.1007/s00477-013-0762-6
http://dx.doi.org/10.1016/j.ecolecon.2003.09.007
http://dx.doi.org/10.1093/sf/77.2.567
http://dx.doi.org/10.1016/j.ecolecon.2011.02.009
http://dx.doi.org/10.1023/B:POEN.0000039951.37276.f3
http://dx.doi.org/10.1016/S0301-4215(03)00162-9
http://dx.doi.org/10.1016/j.enpol.2008.06.016
http://dx.doi.org/10.1016/S0921-8009(97)00177-8
http://dx.doi.org/10.1016/j.jclepro.2018.05.121


Atmosphere 2019, 10, 534 22 of 22

69. Ministry of Ecology and Environment (MEE). Bulletin of National Environmental Statistics (2015); Ministry of
Ecology and Environment of the People’s Republic of China: Beijing, China, 2017.

70. Suri, V.; Chapman, D. Economic growth, trade and energy: Implications for the environmental Kuznets
curve. Ecol. Econ. 1998, 25, 195–208. [CrossRef]

71. Dinda, S.; Coondoo, D.; Pal, M. Air quality and economic growth: An empirical study. Ecol. Econ. 2000, 34,
409–423. [CrossRef]

72. Zhang, C.; Lin, Y. Panel estimation for urbanization, energy consumption and CO2 emissions: A regional
analysis in China. Energy Policy 2012, 49, 488–498. [CrossRef]

73. REN21, P.S. Renewables 2014: Global Status Report; REN21 Secretariat: Paris, France, 2014.
74. Galeotti, M.; Lanza, A. Richer and cleaner? A study on carbon dioxide emissions in developing countries.

Energy Policy 1999, 27, 565–573. [CrossRef]
75. Bruyn, D.S.M. Explaining the Kuznets curve. Structural change and international agreements in reducing

sulphur emissions. Environ. Dev. Econ. 1997, 2, 485–502. [CrossRef]
76. Krugman, P. Increasing Returns and Economic Geography. J. Politi. Econ. 1991, 99, 483–499. [CrossRef]
77. Miao, F.U. Geographical Distance and Technological Spillover Effects: A Spatial Econometric Explanation of

Technological and Economic Agglomeration Phenomena. China Econ. Q. 2009, 8, 1549–1566.
78. Pirotte, A.; Mur, J. Neglected dynamics and spatial dependence on panel data: Consequences for convergence

of the usual static model estimators. Spat. Econ. Anal. 2017, 12, 202–229. [CrossRef]

© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/S0921-8009(97)00180-8
http://dx.doi.org/10.1016/S0921-8009(00)00179-8
http://dx.doi.org/10.1016/j.enpol.2012.06.048
http://dx.doi.org/10.1016/S0301-4215(99)00047-6
http://dx.doi.org/10.1017/S1355770X97000260
http://dx.doi.org/10.1086/261763
http://dx.doi.org/10.1080/17421772.2016.1232839
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Data and Methodology 
	Variables Selection and Data Resources 
	ESDA 
	Global Spatial Autocorrelation 
	Local Spatial Agglomeration 

	Dynamic Spatial Panel Data Model 

	Findings and Interpretation 
	Spatiotemporal Characteristics of SO2 Emissions 
	Space–Time Nexus between SO2 Emissions and Its Socioeconomic Determinants 
	Econometric Results and Interpretation 

	Discussion 
	Conclusions 
	References

