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Abstract: Seasonal forecasts for monsoonal rainfall characteristics like the onset of the rainy seasons
(ORS) are crucial for national weather services in semi-arid regions to better support decision-making
in rain-fed agriculture. In this study an approach for seasonal forecasting of the ORS is proposed
using precipitation information from a global seasonal ensemble prediction system. It consists of a
quantile–quantile-transformation for eliminating systematic differences between ensemble forecasts
and observations, a fuzzy-rule based method for estimating the ORS date and graphical methods
for an improved visualization of probabilistic ORS forecasts. The performance of the approach is
tested for several climate zones (the Sahel, Sudan and Guinean zone) in West Africa for a period
of eleven years (2000 to 2010), using hindcasts from the Seasonal Forecasting System 4 of ECMWF.
We indicated that seasonal ORS forecasts can be skillful for individual years and specific regions
(e.g., the Guinean coasts), but also associated with large uncertainties. A spatial verification of
the ORS fields emphasizes the importance of selecting appropriate performance measures (e.g.,
the anomaly correlation coefficient) to avoid an overestimation of the forecast skill. The graphical
methods consist of several common formats used in seasonal forecasting and a new index-based
method for a quicker interpretation of probabilistic ORS forecast. The new index can also be applied
to other seasonal forecast variables, providing an important alternative to the common forecast
formats used in seasonal forecasting. Moreover, the forecasting approach proposed in this study
is not computationally intensive and is therefore operational applicable for forecasting centers in
tropical and subtropical regions where computing power and bandwidth are often limited.

Keywords: seasonal forecasts; onset of the rainy season; bias correction; spatial verification; fuzzy
logic; West Africa

1. Introduction

Weather and climate can strongly influence agricultural production in many regions of the world.
Especially in tropical and subtropical areas, the monsoon rainfall plays a dominant role for the income
of many smallholders. Normal rainfall conditions are often related to better crop yields, but on the
contrary prolonged dry periods or a late onset of a rainy season can lead to crop failures and endanger
food security [1,2]. Providing reliable rainfall forecasts for the upcoming rainy season is therefore
crucial for many national weather services in tropical and subtropical regions.

West Africa is one of the most vulnerable regions in the world, where the welfare of society relies
heavily on the production of rain-fed agriculture. The climate of this region is governed by the West
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African Monsoon and its large-scale atmospheric and oceanic forces and is therefore characterized
by strong variabilities on different spatiotemporal scales (e.g., [3,4]). Strong precipitation anomalies
can trigger severe natural disasters such as the Sahel drought in the 1970s and 1980s or large-scale
floodings in 2017 [5], which can have immediate and major macro-socioeconomic impacts on the
society in this region [6]. Between 1980 and 2018, Munich Re recorded 82 drought events in West
Africa with an estimated overall loss of more than 3.6 billion US dollars [7]. One of the most important
precipitation parameter for farmers in West Africa is the onset of the rainy season (ORS) [8] since this
variable is highly related to management activities in rain-fed agriculture such as land preparation
and crop planting. In Benin, the study from [9] also shows a necessity of smallholders to account for
seasonal weather forecasts, especially the ORS date and other rainfall characteristics like the occurrence
of dry spells and the cumulative precipitation amount over a given period are of high interest. In
northern Burkina Faso, 63% of 170 farmers surveyed said they would be prepared to pay for seasonal,
sub-seasonal and daily weather information [10]. These studies show the tremendous importance that
this type of information will be made available for farmers in West Africa.

Seasonal rainfall forecasts for the region of West Africa are routinely produced within the
framework of the West African Regional Climate Outlook Forums (WARCOF) formerly known as
PRESAO (Prévisions Saisonnières en Afrique de l’Ouest) [11]. Under the coordination of the African
Centre for Meteorological Applications for Development (ACMAD) and the Centre Regional de
Formation et d’Application en Agrométéorologie et Hydrologie Opérationelle (AGRHYMET Regional
Centre), the West African weather services produces tercile-based probability forecasts of the seasonal
rainfall amount, e.g., for the peak period of the West African Monsoon namely July, August and
September [12]. However, WARCOF traditionally produces no quantitative forecasts for other rainfall
variables that are important for users in agriculture and other economic sectors. Agriculturally relevant
shortcomings of WARCOF are for example that pre-monsoonal and post-monsoonal periods are not
fully covered, forecasts provide only information about the total precipitation sum of a 3-month period,
intra-seasonal precipitation characteristics (e.g., ORS and dry spells) are not provided quantitatively
and the lead time is limited to 1 month (see [13]; and references herein). Only basic subjective statements
are formulated for the onset of the rainy season (ORS) and other rainfall characteristics like the dry spell
length and the cessation of the rainy season [14]. The procedure used by WARCOF to predict seasonal
precipitation is not only based on forecasts from global seasonal ensemble prediction systems (GSEPS),
but also on country-specific statistical forecasts considering sea surface temperature anomalies and
other meteorological information. [11]. During the WARCOF meeting, both the statistical results
and the global forecasts are then subjectively reinterpreted. This hand-drawn “consensus” forecast
is finally disseminated to potential users by radio broadcasts, agrometeorological bulletins, and
farmer workshops.

Moreover, dynamical and statistical forecasting methods that consider these types of variables
are relatively rarely represented in the scientific literature. An overview of forecasting approaches
for the ORS date is given in [15,16]. These approaches can be divided into two groups according to
the meteorological information used for the prediction: (1) Statistical techniques that use rainfall data
for the prediction. This group includes, for instance, the techniques proposed by [16,17], which were
tested for several stations in the Volta basin, and (2) statistical techniques proposed by [15,18], which
are based on other meteorological variables like relative humidity, air temperature and wind data
from atmospheric soundings. Both groups rely on observations for the prediction of the onset of the
rainy season. Thus, they belong to the group of statistical forecasting techniques where a time lag
is implemented in the equation system to make a prediction [19]. Forecasting methods that use the
information from GSEPS to produce a forecast of the ORS dates are extremely rare. For instance, ref [20]
presented a study in which the date of onset of the rainy season was forecasted using numerical weather
forecasts. Another approach is presented by [13]. They used a GSEPS, the Climate Forecast System
2 [21], in combination with a dynamical downscaling approach and a fuzzy-logic ORS approach [17] to
produce probabilistic forecasts for the ORS dates.
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This study presents a statistical method for forecasting the date of the ORS using precipitation
information from a GSEPS including several methods for visualization of ensemble-based ORS forecasts.
The approach consists of a quantile mapping approach [22] combined with a fuzzy-rule based ORS
method [17] to provide probabilistic forecasts for the ORS dates. The approach is less computationally
demanding in comparison to the dynamical downscaling method presented by [13] and can be therefore
much better operationally applied by National Meteorological and Hydrological services (NMHS) in
West Africa. We also perform a first performance assessment of the approach using ECMWF SYS4
hindcasts over a period of eleven years (2000–2010) in comparison to gridded observational data and
spatial verification measures such as the anomaly correlation coefficient [23]. The graphical methods
for visualization of the ORS predictions range from probabilistic quantile plots to a new index-based
measure, called the onset of the rainy season index (ORSI). The ORSI delivers crucial information about
an early, mean and late onset of the rainy season. For farmers, ORSI is easier to interpret compared to
common equiprobable categorical formats provided by WARCOF. Thus, the ORSI can be considered as
an appropriate and useful tool for farmers to adapt the sowing time to changes in the ORS. The ORSI
can also be easily adapted to be applied for other applications.

2. Data and Study Area

2.1. Study Area

The area of interest in this study (Figure 1) is West Africa with a focus on Burkina Faso, Ghana and
Benin (4.92◦ W–4.22◦ E, 4.56◦ N–15.08◦ N). West Africa’s climate is characterized by the West African
Monsoon (WAM), which is mainly controlled by the meridional migration of the sun and the associated
solar climate [24]. Many rainfall characteristics like the date of the ORS in this region are strongly
related to the seasonal migration of typical WAM features such as the intertropical convergence zone
(ITCZ). In August, the ITCZ reaches its northernmost position at about 11◦ N and retreats to the Gulf
of Guinea in the northern winter, where it remains close to the equator. Due to the migration of the
ITCZ, the Guinea coast therefore has a bimodal rainfall distribution with relatively dry conditions from
December to February and a second minimum with much wetter conditions during the peak period of
the West African Monsoon in July, August and September. The rainfall amounts in the area north of
9◦ N reaches its peak in August and the duration of the rainy season strongly shortens towards the
Sahara [25]. The study area is also characterized by a strong interannual [24] and annual [3] variability
of precipitation as well as decadal variability, which lead to substantial variations of ORS dates and
prolonged droughts over this region [26]. In addition, climate change seems to influence rainfall
characteristics in the Sahel zone, such as false starts and early cessation of rainy seasons or increased
frequency of intense daily rainfall [27,28]. Ref [29] also show an increasing precipitation intensity with
a higher average precipitation per rainy day, a 5–10 days later start and end of the rainy season, but
only a marginal change in the overall duration of the wet season.

2.2. ECMWF SYS4 Precipitation Hindcasts

In this study we use 11 years (2000–2010) of precipitation hindcasts from the seasonal forecast
system SYS4 of ECMWF. SYS4 consists of an ocean analysis model to determine the initial conditions
of the ocean, a global coupled ocean-atmosphere circulation model and post-processing techniques to
generate prediction products from the numerical output [30].
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grid points for the evaluation, each representative for Guinea Coast—A (7.37° N, 0.00° E), Sudan—B 
(10.18° N, 0.00° E) and Sahel—C (12.98° N, 0.00° W). 
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of the ocean, a global coupled ocean-atmosphere circulation model and post-processing techniques 
to generate prediction products from the numerical output [30]. 

There are several evaluation studies on the precipitation forecasts of SYS4 with reference to 
various study regions, including East Africa [31], South Africa [32], global [33] and the Asian 
monsoon region [34]. Especially for West Africa, the study by [35] can be mentioned, in which SYS4 
was evaluated for the Upper-Niger river basin based on the standardized precipitation index (SPI) 
showing that SYS4 has more predictive skill compared to the climatology, i.e., no skill. Ref [36] 
showed that SYS4 has the better performance in most cases compared to several other global 
seasonal weather forecasting systems (e.g., Climate Forecast System Version 2, Météo-France 3 or 
Community Climate System Model 3) for the region of West Africa.  
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initialized on the first day of each month. Further details can be found in [37] as well as in [30]. With 
the aim of developing statistical methods for the onset of the rainy season, it is important to 
investigate the reliability of SYS4’s daily rainfall data, as the statistical methods for the start of the 
rainy season directly rely on the precipitation ensemble of this model. The evaluation of the 
hindcasts with the observed values is therefore made for all 15 members of SYS4 in comparison to 
observations. Moreover, the selected hindcast data should also cover the potential ORS dates for the 
area of interest. Thus, the ensemble initialized in February is used for the study period with daily 
data available from 1 February to 31 August for each year of the investigation period. 

2.3. CHIRPS Observations 

CHIRPS (Climate Hazards Group Infrared Precipitation with Station data) is developed by the 
US Geological Survey (USGS) and the Climate Hazards Group of the University of California, Santa 
Barbara (UCSB). CHIRPS combines satellite imageries with a resolution of 0.05° and in-situ station 
data to produce gridded precipitation time series for trend analysis or seasonal drought monitoring 
[38]. Further details on the development of CHIRPS can be found in [39]. Ref [40] evaluated on a 
point to pixel basis several state-of-the-art satellite-based precipitation products e.g., CHIRPS, Africa 
Rainfall Estimate Climatology (ARC 2.0) [41], precipitation estimation from remotely sensed 
information using artificial neural networks (PERSIANN) [42], African Rainfall Estimation (RFE 2.0) 
[43] and the Tropical Rainfall Measuring Mission (TRMM, [44]) with rain-gauge data for Burkina 
Faso in the period from 2001–2014. The correlation between the daily satellite-based precipitation 
products and the measured data was generally weak, but the best performance was observed with 

Figure 1. Study Area “Burkina Faso, Ghana and Benin” (4.92◦ W–4.22◦ E, 4.56◦ N–15.08◦ N) and three
grid points for the evaluation, each representative for Guinea Coast—A (7.37◦ N, 0.00◦ E), Sudan—B
(10.18◦ N, 0.00◦ E) and Sahel—C (12.98◦ N, 0.00◦ W).

There are several evaluation studies on the precipitation forecasts of SYS4 with reference to
various study regions, including East Africa [31], South Africa [32], global [33] and the Asian monsoon
region [34]. Especially for West Africa, the study by [35] can be mentioned, in which SYS4 was
evaluated for the Upper-Niger river basin based on the standardized precipitation index (SPI) showing
that SYS4 has more predictive skill compared to the climatology, i.e., no skill. Ref [36] showed that
SYS4 has the better performance in most cases compared to several other global seasonal weather
forecasting systems (e.g., Climate Forecast System Version 2, Météo-France 3 or Community Climate
System Model 3) for the region of West Africa.

The hindcasts of SYS4 comprise of 15 ensemble members and consist of 7-month simulations
initialized on the first day of each month. Further details can be found in [37] as well as in [30]. With
the aim of developing statistical methods for the onset of the rainy season, it is important to investigate
the reliability of SYS4’s daily rainfall data, as the statistical methods for the start of the rainy season
directly rely on the precipitation ensemble of this model. The evaluation of the hindcasts with the
observed values is therefore made for all 15 members of SYS4 in comparison to observations. Moreover,
the selected hindcast data should also cover the potential ORS dates for the area of interest. Thus, the
ensemble initialized in February is used for the study period with daily data available from 1 February
to 31 August for each year of the investigation period.

2.3. CHIRPS Observations

CHIRPS (Climate Hazards Group Infrared Precipitation with Station data) is developed by the
US Geological Survey (USGS) and the Climate Hazards Group of the University of California, Santa
Barbara (UCSB). CHIRPS combines satellite imageries with a resolution of 0.05◦ and in-situ station data
to produce gridded precipitation time series for trend analysis or seasonal drought monitoring [38].
Further details on the development of CHIRPS can be found in [39]. Ref [40] evaluated on a point to
pixel basis several state-of-the-art satellite-based precipitation products e.g., CHIRPS, Africa Rainfall
Estimate Climatology (ARC 2.0) [41], precipitation estimation from remotely sensed information using
artificial neural networks (PERSIANN) [42], African Rainfall Estimation (RFE 2.0) [43] and the Tropical
Rainfall Measuring Mission (TRMM, [44]) with rain-gauge data for Burkina Faso in the period from
2001–2014. The correlation between the daily satellite-based precipitation products and the measured
data was generally weak, but the best performance was observed with CHIRPS data (r = 0.47). For this
study, the daily data of CHIRPS 2.0 with a resolution of 0.25◦ × 0.25◦ is used. An interpolation from
CHIRPS to the spatial resolution of SYS4 is performed using a nearest neighbor approach. The data
can be therefore directly compared and verified with the SYS4 precipitation data.
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3. Forecasting Methodology and Verification

Figure 2 shows an overview of the dataflow and the different components of the forecasting
approach. The precipitation ensemble of SYS4 is the basis for the provision of the probabilistic
onset forecasts. These forecasts are adapted to the observed climatology represented by the CHIRPS
observations using a quantile–quantile-transformation. The corrected ensemble information is used to
calculate the ORS dates using the fuzzy-logic approach of [17]. This bias correction and the calculation of
the onset dates are done for each grid cell of the SYS4 ensemble. Afterward, the probabilistic forecasts of
the onset dates are calculated and based on this information several visualization approaches are used.
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Figure 2. Schematic overview of the different components of the forecasting procedure for the onset
of the rainy season (ORS) proposed in this study. CHIRPS 2.0 = Climate Hazards Group Infrared
Precipitation with Station data version 2, and ECMWF SYS4 = seasonal forecast system SYS4 of the
European Centre of Medium Range Weather Forecasts.

It is noted that the different components of the forecasting approach can be replaced by other
methods or data products. For instance, the precipitation ensemble of other GSEPS like CFS2 can be
used instead of SYS4. The same applies also for the observations, bias correction technique and the
ORS method. The methodology can be also transferred to other regions of the world, if corresponding
observations are available. In Sections 3.1 and 3.2 a more detailed description of the different model
components (bias correction approach, ORS method) is given. The verification of the ORS fields and
the calculation of the ORS index are shown in Sections 3.3 and 3.4.

3.1. Bias Correction of Ensemble Precipitation Forecasts

Precipitation information from global models used in weather forecasting and climate prediction
are characterized by systematic deviations from observations so that the observed precipitation
climatology for a given geographical region is often not well reproduced. This problem is shown for
different climatological zones in West Africa for example by [13]. They analyzed the precipitation
hindcasts of CFSv2 in comparison to the Global Precipitation Climatology Centre reanalysis dataset over
a period of more than 25 years (1983–2009). Moreover, the precipitation bias of climate models can also
reduce the reliability of hydrological or agricultural model simulations, if the precipitation simulations
are used without any corrections. Therefore, different bias correction techniques were developed in the
past to eliminate systematic model deviations and to better match the observed climatology for a given
region. A recent overview is presented in [45] and applications for the West African monsoon are given
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in [13,46]. In this study, the quantile–quantile transformation following [22] and [47] is applied to adapt
the distribution of the hindcasts ensemble (SYS4) to the observed climatological distribution (CHIRPS).
In this work, the procedure is performed for each ensemble member and grid point separately using
the daily time series as follows:

1. Sort the daily observed values x = { x1, x2, . . . , xn } for the investigation period (1 February–31
February, 2000–2010) in an ascending order.

2. Determination of the rank Rxi for each observation with i = 1, 2, . . . , n and n = number
of observations.

3. Determining the empirical cumulative distribution function of the observations Fx by calculating
the cumulative frequencies pi for each observation using the formula pi = Rxi /(n + 1).

4. Sort the daily forecast values y =
{

y1, y2, . . . , yn
}

of an ensemble member for the investigation
period (1.02–31.08, 2000–2010) in an ascending order.

5. Determination of the rank Ryi for each forecast with i = 1, 2, . . . , m and m = number of forecasts.
6. Determining the empirical cumulative distribution function of the forecasts Fy by calculating the

cumulative frequencies qi for each forecast using the formula qi = Ryi /(m + 1).
7. Determine the corrected prediction value y′i for each qi with the inverse cumulative distribution

function of the observations y′i = F−1
x (qi).

8. Repeat steps 4–7 for each ensemble member and each grid point.

Figure 3 shows an example of a quantile–quantile transformation of daily precipitation amounts
to better understand the approach described above. Here y(t) corresponds to the original value of the
forecast and y’(t) to the forecast value corrected by the inverse cumulative distribution function of
the observation.Atmosphere 2019, 10, x FOR PEER REVIEW 7 of 21 
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Figure 3. Example of a quantile–quantile-transformation for correcting daily precipitation (mm) at grid
point C (12.98◦ N, 0.00◦ W) of an ensemble member of SYS4 (left) using CHIRPS observations (right),
y(t) = forecast value and y’(t) = corrected forecast value.

The analysis of the joint distribution of the forecasts (SYS4) and the observations (CHIRPS) is done
by a quantile–quantile plot, in which the daily sorted forecasted and observed precipitation values are
represented in a coordinate system against each other. At this point it should also be mentioned that
due to the grid-based determination of the ORS in Section 3.2, the focus is on the data of the individual
grid points and therefore no temporal or spatial aggregation is performed. Accordingly, this analysis
evaluates three grid points, each representative for different climate regions of the study zone: Guinea
Coast (A), Sudan (B) and Sahel (C). Figure 4 shows the quantile plots for selected grid points of these
zones for the 15 SYS4 ensemble members using selected quantiles (Q10, median, Q90). The distribution
of the CHIPRS observations is relatively good captured by the SYS4 ensemble members, in particular
for the Sudan zone. However, the analysis also reveals several systematic deviations between the SYS4
ensemble and the CHIRPS observations. For instance, smaller precipitation amounts (<20 mm/d) are
strongly overestimated by the SYS4 ensemble for the grid point A located in the Guinean coasts. In
addition, the SYS4 ensemble shows a quite diverse picture for the Sahel region with underestimations of
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the lower precipitation range (<30 mm) and overestimations of the upper precipitation range (>30 mm).
Overall, Figure 4 indicates that the intra-ensemble biases of raw SYS4 forecasts are comparable to
CHIRPS, i.e., the CHIRPS lies within the distribution of the SYS4 ensemble simulations. For high
precipitation values, the SYS4 distributions are wider compared to small values. This is to be expected
due to the fact that high precipitation values are less frequent and might be affected more heavily by
stochasticity, coming from uncertainties from the model initial conditions and other limitations of the
model such as parameterization options and non-adequate model equations [48]. Due to the systematic
deviations for the small precipitation values (as discussed above), a statistical bias correction is applied
in this study. This bias correction is done for each ensemble member separately.
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to 2010).

3.2. Calculation of the ORS Dates Using Fuzzy Rules

There are several definitions for the determination of ORS for the West African monsoon system.
An overview of these methods is given in [49]. Ref [20] divides the definitions into two categories:

1. ORS is defined by local precipitation events and is based on dry and wet periods.
2. ORS is defined by large-scale changes of the WAM system, indicated by e.g., circulation patterns

or specific atmospheric variables like long-wave radiation fluxes.

In this study, the approach by [17] was applied, which belongs to the first category proposed
by [20]. The approach of [17] is based on the ORS definitions of [50]. In [50] the ORS is defined as the
first day of the year in which the following three conditions occur simultaneously:

1. The accumulated sum of precipitation in five consecutive days is at least 25 mm.
2. Within this pentad, at least two more days must exceed a precipitation amount of 1 mm.
3. There is no period of consecutive 7 dry days or longer within the next 30 days (false start criterion).

A dry day is defined as a day with less than 1 mm precipitation.

A shortcoming of the approach by [50] is its binary logic. An accumulated precipitation sum of
24.9 mm is not identified as the onset of the rainy season although only 0.1 mm is missing to fulfill
the criteria. Since many other ORS approaches rely on binary logics, [17] introduced fuzzy rules for
a more smoothed transition of the applied conditions. This ORS fuzzy-logic were used by several
other investigations, as well [2,51]. The membership functions of the fuzzy rules used in this study
are shown in Figure 5. For example, for condition 1, accumulated precipitation amounts of less than
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18 mm receives a membership value of 0, and above 25 mm a 1. In the range between 18 and 25
mm, normalized values between 0 and 1 are assigned by linear interpolation. Thus, the probabilities
of being interpreted as ORS are increasing with precipitation rates larger than 18 mm. A similar
membership function is applied to condition 2, which is supposed to exclude single rainfall events to
be misinterpreted as ORS. It must be noted that the membership functions were optimized for the
Volta Basin of West Africa [17], and therefore could be assumed to be reasonable for our study area.
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Due to the runtime length (seven months) of SYS4 and the late ORS within the Sahel zone, the
false start criterion (condition 3) is not included in this study. However, we found that the false start
criterion had only little impact on the ORS patterns. The criterion was evaluated with CHIRPS over the
study period and each grid cell. The ORS only shifted in 14.1% of the cases (not shown). False starts
occurred all over the study region and it was not only a problem of the northern parts. To avoid this, a
smaller domain must be used, the runtime length of SYS4 needs to be extended or the fuzzy rules need
to be optimized for operational applications. Therefore, a complete application of the approach should
be carried out based on these evaluation results in further studies.

The ORS is met if the multiplied values of both membership functions (γ1 and γ2) exceeds a given
threshold value γt . Any variation of the γt can influence the ORS calculation and can therefore avoid
that no ORS date is defined for a particular year. This is a common problem for other ORS definition.
In this study a threshold value of γt = 0.5 is used for the calculation of the ORS dates.

3.3. Verification of the Spatial ORS Fields

The ORS is calculated according to the aforementioned definitions for each grid point over all
ensembles and CHIRPS observations, as well. The verification of the ORS forecasts is on the one
hand performed spatially for each year over the entire study domain (spatial verification), and on
the other hand temporally for each grid cell [23] over the entire study period (temporal verification).
Considering the grid-based development of the ORS index in Section 3.4, it is important that the data
is evaluated both temporally for each grid cell and spatially for each year.

The spatial verification of the ORS fields is performed by calculating the Pearson’s correlation
coefficient (r), the mean absolute error (MAE) and the anomaly correlation coefficient (ACC) between
the forecasted and the corresponding observed ORS. MAE and r are calculated for each ensemble
member j and time step t using Equations (1) and (2).

MAE j (t) =
1
M

∑
M
i=1

∣∣∣yi j(t) − oi(t)
∣∣∣, (1)

r j(t) =

∑M
i=1

(
yi j(t) − y j(t)

)
(oi(t) − o(t))√∑M

i=1

(
yi j(t) − y(t)

)2
√∑M

i=1(oi(t) − o(t))2
, (2)
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where M corresponds to the number of grid points, yi j to the ORS forecast value at grid cell i of
ensemble member j and oi to the corresponding observed ORS value. The mean observed and forecast
ORS values of ensemble member j of the data sets are given by y and o. The Pearson’s correlation
coefficient and related measures like coefficient of determination are one of the most popular scores
used for model validation. The correlation coefficient is also frequently used for the verification of
spatial fields as outlined by [19] and for comparison of atmospheric fields as a measure for pattern
similarity [52]. The Pearson correlation coefficient is also a measure for the skill of a forecast system as
shown by [53]. However, unlike other popular skill scores for continuous variables (e.g., the mean
squared error skill score), it measures the potential skill of the forecast system as defined by [53]
without any unconditional bias.

The ACC is another common measure used specifically for spatial forecast verification [19,23].
First, the anomalies values of the forecasts y′i j and observations o′i are calculated with y′i j = yi j − or and
o′i = oi − or where yi is the ORS forecast value at grid cell i and oi to the corresponding observed ORS
value. The mean observed ORS values of the climatological reference period (1981–2010) are given by
or. Then, the Pearson correlation is applied using the anomaly values. The score measures therefore
how good the correspondence is between the predicted and the observed anomaly fields, which is
highly important for climate model evaluation.

In addition to the spatial verification, the MAE and r are calculated for each time series of a
grid cell and over the respective study period to perform a temporal verification of the ORS forecast.
Afterwards, an averaging of the (skill) scores from the individual 15 ensemble members takes place.
It should therefore be mentioned that the mean score is not indicative of the performance of the
ensemble mean.

3.4. Calculation of the ORS Index

In order to better interpret ensemble-based ORS forecasts, an index for the ORS dates is proposed
in this study. The approach is based on probabilistic forecasts for the ORS date computed for
climatologically equiprobable categories. The calculation of the ORS index for these categories is based
on the following formula:

ORSI =
∑

K
k=1gkpk, (3)

where pk is the forecast probability of k-th category, gk is the corresponding weight of k-th category, K
is the number of climatologically equiprobable categories. The weight gk is computed by calculating
the difference between the bin centre of k-th category and the median of uniformly distributed forecast
probabilities, which is 0.5. The value of gk can range between 1 and −1. A forecast probability of
extreme categories therefore receives a higher weight in comparison to categories close to the middle
category. In the case of an odd number of equiprobable categories like tercile-based categories, the
forecast probability of the middle category receives no weight.

In this study the ORS index is computed for tercile-based probabilistic forecasts of the ORS dates.
Tercile-based probabilistic forecasts are the most common format in seasonal forecasting [23]. The
values of the tercile-based ORS index ranges between −33.3 and 33.3, where negative (positive) ORS
values indicate a late (early) onset and corresponding distribution of the forecast probabilities is left
skewed (right skewed). The minimum (maximum) ORS value of −33.3 (33.3) is reached, if all ORS
members belong to the category below average (above average) with p3 = 100% (p1 = 100%) and
p2 = p1 = 0% (p3 = p2 = 0%). The weights for the computation of the ORSI values for tercile-based
forecast are g1 = 1

3 , g2 = 0 and g3 = − 1
3 . The forecast probability for the near-normal category receives

therefore no weight. The calculation of the ORSI only relies on the forecast probability for above
normal and below normal. Climatological forecasts with equally distributed forecast probabilities
(p1 = 33.3%, p2 = 33.3% and p3 = 33.3%) are indicated by an ORSI value of zero. The same applies
also for symmetric distributed forecast probabilities (e.g., p1 = 20%, p2 = 60% and p3 = 20%) and if all
members belong to the category near average (p1 = 0%, p2 = 100% and p3 = 0%). Thus, the ORS index
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provides information about an early, mean and late onset of the rainy season. However, it cannot
distinguish between climatological forecasts and forecasts where a normal onset is more likely.

In the following, the methodology for probabilistic forecasting of the ORS dates is listed as an
example for a grid cell:

1. Calculation of the observed ORS dates from CHIRPS for the period from 1981–2010.
2. Determination of the quantiles Q 1

3
and Q 2

3
from the observed ORS dates to define the tercile-based

ORS categories.
3. Calculation of the ORS dates from the bias-corrected SYS4 precipitation hindcasts for each

ensemble member of a given year.
4. Classification of the 15 ORS ensemble members into the three tercile-based categories: Below

average, if yij (t) < Q 1
3

, near average, if Q 1
3
≤ yij (t) ≤ Q 2

3
and above average, if yij (t) > Q 2

3
.

5. Calculation of the corresponding forecast probabilities pk for each ORS category.
6. Calculation of the ORS index value based on Equation (3).
7. Step 3 to 6 are repeated, if the forecasts probabilities are determined for other years.

4. Results and Discussion

4.1. Spatiotemperal Verification of the ORS Fields

The spatial accuracy of the ORS forecasts is shown in Figure 6 in terms of the MAE. The MAE
was computed for each ensemble member and based on this information a box-plot diagram was
produced for each year. Thus, the mean of the box plots shows the average accuracy of the ensemble
forecasts for a given year and the box-plot spread the performance differences between the ensemble
members. The mean MAE over the study period is 23.3 days, which indicates a relatively low
accuracy for the prediction of the ORS dates in this region. This outcome can be expected because the
prediction of precipitation characteristics on a much coarser temporal scale (e.g., monthly or seasonal
precipitation amounts) is already characterized by low performance as shown by [13]. Moreover,
seasonal forecasting of specific daily precipitation characteristics like ORS dates is a much more
challenging task in comparison to seasonal forecasting of monthly or seasonal precipitation amount
(or other meteorological variables like temperature). Reasons are the inherent high uncertainty
of long-range forecasts products like seasonal forecasts and the high stochastic character of daily
precipitation events, in particular in monsoonal regions like West Africa. Another reason is the
uncertainty coming from the reference products used for comparison. This is shown e.g., by [51] for
the calculation of the ORS dates for West Africa. Figure 6 also shows strong variations of the forecast
performance of the ORS dates for the different years indicated by the mean and the spread of the
box-plot diagrams. For some years the ORS forecasts were much better (e.g., 2007) in comparison to
other years (2005).

The inter-annual variation of the performance can be also a pure random artifact due the low
sample size of 15 ensemble members. To prove this hypothesis, statistical tests using a Student’s t-test
for paired samples and a modification of Student’s t-test for unequal variances, the Welch’s t-test [54,55],
are applied to evaluate whether the mean values of two MAE samples (e.g., 2007 and 2005) are
significantly different from each other. More information how the statistical tests are exactly used in this
study is given in the Appendix A. The statistical tests partially confirm the aforementioned hypothesis.
However, the outcomes of the t-tests also indicate that the mean MAE values are significantly different
from each other for pairs with very different means (like 2007 and 2005) indicating that the inter-annual
variation of the performance is not a pure random artifact.
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Figure 6. Spatial verification of ORS fields based on the mean absolute error (Julian days). The
calculation was performed for each of the 15 SYS4 ensemble members (initialized in February)
compared to CHIRPS for the entire study region. The box extends from the quartile values Q1 to Q3 of
the data, with a line at the median (Q2). The position of the whiskers shows 1.5× interquartile range
(Q3–Q1) from the edges of the boxes. Outliers extend beyond the end of the whiskers.

The association between the predicted and observed ORS fields is shown in Figure 7 for the
Pearson’s correlation coefficient. The outcomes of this study show that the average of the correlation
coefficients is 0.79 with a maximum value of 0.92 for the year 2006. Only the year 2005 falls strongly out
of the upper correlation range because several statistics of the box plot diagram like the first quartile
(0.75) and the minimum value (0.40) show the smallest but still a moderate to high correlation. Since
the Pearson correlation coefficient is not only a measure of association between two fields but also a
measure of the skill, the ORS prediction seems to be very skillful for this region. However, most of the
skill is artificial due to strong seasonality of the ORS dates as a result of the northward migration of the
WAM system during the boreal spring and early summer. The calculation of the anomalies for the
forecasts and observed ORS values removes the seasonality of the ORS fields. The resulting anomaly
patterns have a much smaller association, but they still have a slight positive correlation for most of
the members (Figure 8). Moreover, the calculation of the significance threshold for the ACC scores
based on a Student’s t-test (α = 0.10, n = 185) indicates only for two years, namely 2000 and 2001, a
significant skill for the majority of the ensemble members. This example demonstrates the importance
of selecting an appropriate skill score for the verification of the spatial ORS fields. Otherwise the
forecasts performance for the ORS dates could be highly misinterpreted for this region. Figure 8 also
shows that the quality of the ORS forecast strongly varies for the different years like for the other scores.
There are several years when the majority of the ORS ensemble members have a negative ACC. This
is case for 2009 where 13 out of 15 ensemble members are negative and the ACC mean is −0.11 and
ACC has a minimum value of −0.44. On the other hand, there are also several years when most of the
ensemble members have a positive ACC. For example, 14 out of 15 members are positive ACC value
for 2001. For this year the ACC mean is 0.13 and the maximum ACC of the ensemble reaches a value
of 0.48.
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Figure 8. Spatial verification using the anomaly correlation coefficient. The calculation was done for
each of the 15 SYS4 ensemble members (initialized in February) compared to CHIRPS for the entire
study region. The statistics used for the visualization of the box and whisker plots are the same as
Figure 6.

In addition, a temporal verification of the ORS forecasts is performed in this study. The verification
measures are calculated for each grid cell by comparing the predicted ORS time series with a time
series of the ORS observations. The verification measures are calculated for each ensemble member
separately and afterwards an averaging of this sample is conducted. The outcome of this calculation is
shown for the MAE (a), r (b) and bias (c) in Figure 9. It shows strong regional differences regarding
the accuracy of the ORS forecast. The MAE values gradually decrease from the South to the North
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with a MAE of approximately 15 days in the southwestern part of the study domain near the Guinean
coastline and more than 35 days in the northern part of the study domain. Thus, the accuracy of
the ORS forecasts is much higher for the Guinean zone in comparison to the Sudan-Sahel region.
Several studies already showed that seasonal precipitation forecasts for West Africa have usually a
higher performance for the Guinean zone compared to the poleward located climate zones like the
Sudan-Sahel or Sahel (e.g., [11,22]). Ref [22] mentions that those regions have a higher skill where
precipitation is stronger interlinked with oceanic surface conditions. Another explanation for the lower
model accuracy in the Sahel region can be the higher stochastic nature of the precipitation events in
this region compared to the Guinean zone since most of the rainfall is the result of convective systems
in the Sahel region (see [56]; and references herein). However, the gradual decline of the MAE values
can also be a purely operational effect. The ORS dates in the Guinean zone are based on much shorter
lead times in comparison to the ORS dates in the Sahel zone, and the accuracy of the ORS prediction
should theoretically decrease with shorter lead times.
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Figure 9. Forecast accuracy, skill and bias for ORS dates for each grid cell based on (a) mean absolute
error (MAE); (b) Pearson’s correlation r and (c) bias. Mean of 15 ensemble members of SYS4 (initialized
in February) in comparison to CHIRPS, 2000–2010.

The correlation map shows a positive skill for most part of the Guinea zone. This region is also
characterized by the highest skill (up to 0.40 and more) since the MAE and the bias values are relatively
low compared to the other regions. The northern parts of the study domain show also a slight positive
skill between the predicted and observed time series, although the accuracy of the ORS forecast is
relatively low. The low accuracy is mainly the result of the strong unconditional biases in this region as
shown in Figure 9c. The MAE value is negatively influenced by a bias, which is not the case for the
correlation measure [53]. Thus, the correlation indicates the model skill in term of bias-free products
and it is a verification measure for the potential skill of ORS forecasts. However, it must be noted that
due to the small sample size (11 years), the significance threshold for the Pearson correlation is r = 0.39
(based on a Student’s t-test, α = 0.10, n = 11). Thus, for most of parts of the study domain the model
skill is not statistically significant. Only for several grid cells next to the Guinean coast this threshold is
reached or exceeded.

4.2. Visualisation of the ORS Fields

The ensemble-based forecasts of the ORS dates are shown in Figure 10 for the year 2001. We
selected this year because according to the MAE and ACC values computed in the previous section,
2001 is the best year in terms of forecast accuracy and skill. Moreover, the year 2001 is also characterized
by a rather special observational ORS pattern with a late ORS in the Guinean zone and an early ORS in
the Sahel zone. This pattern is shown in Figure 11c computed as the differences between the absolute
ORS values minus the climatological mean. Thus, positive values in Figure 11 indicate a late onset (red
pixels, near the Guinean coast, mostly below 10◦ N) and negative values an early onset (blue pixels,
mostly above 10◦ N).
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The ORS forecasts in Figure 10 are based on the ensemble mean (middle panel), both terciles
(right and left panel) and the inter-quantile range to illustrate the forecast uncertainty. Quantile-based
forecasts are a straightforward way for visualization of ensemble-based forecasts and are often used to
illustrate forecast uncertainties for precipitation, but also for other hydro-meteorological variables. The
quantile-based approach is already used by [13] to visualize ORS predictions. This graphical approach
should be also preferred in comparison to plotting the spatial fields of all ensemble members. This
latter approach is often named as spaghetti plots in ensemble forecasting (e.g., [57–59] and it has the
disadvantage that the plots became very confusing, in particular for large ensemble sizes and higher
lead times.

The quantile-based ORS maps show a clear north–south gradient of the ORS dates. In this respect,
a relatively realistic pattern is produced for the forecasts. The information based on the terciles can
also be interpreted as an early and late ORS date. The difference between the late and the early ORS
dates is an estimation of the forecast uncertainty. The uncertainty is quite large although only 1/3 of
the ensemble is used for the illustration. Figure 10d also indicate that the uncertainty increases from
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the Guinean coastline to the Sahel zone due to the different lead times and other reasons as discussed
in the previous section. Moreover, a comparison of Figure 10a–c with Figure 11a reveals that many
observations are not enclosed by the selected uncertainty interval. The approach produces for the
southern parts of the domain too early ORS dates and too late ORS dates for the northern part of the
domain. This shows that the selected quantiles are too narrow to enclose all observations. If more
extreme quantiles (e.g., Q90 and Q10) are used for the calculation of the late and early ORS dates,
the observations will be better enclosed by the uncertainty interval. However, this will also strongly
increase the range of the illustrated forecast uncertainty.

Another format for the visualization of ensemble-based ORS forecasts are probabilistic forecasts
based on climatologically equiprobable categories shown in Figure 12. In this study, the forecast
probabilities are calculated for each grid cell for tercile-based categories over the entire domain.
Climatological average conditions (Figure 11b) are indicated by uniformly distributed forecast
probabilities (1/3 for all three categories). For the central and northern parts of the study region, the
ORS is forecasted to be earlier, because the forecast probabilities are much higher for “below-normal”
than the average conditions (1/3) and much lower for the other categories. For the southern parts
of the study region, it is vice versa, with much higher probabilities for “above normal” and ORS is
expected to be late. However, a correct interpretation of the tercile-based categories is for many users
not straightforward since forecast probabilities of climatologically equiprobable categories needs to
be considered jointly and a good statistical background is therefore needed. For further discussion
regarding this issue we refer to the study of [11] and the references herein.
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An alternative way for illustrating the forecast probabilities of climatologically equiprobable
categories is the ORS index proposed in Section 3.4. This index is displayed for the year 2001 in
Figure 13 based on the forecast probabilities given in Figure 12. At a glance, the ORS index provides
information on an early (green, ORSI > 0), normal (yellow ORSI ~ 0) and late (red, ORSI < 0) ORS. The
ORSI therefore summarizes the information from the three probabilistic patterns and is thus much
easier to interpret than Figure 12. It therefore provides a simple alternative to illustrate whether an
early or late ORS is forecasted for the coming rainy season. For our specific example, the index shows
strong negative values up to –30 for the Guinean coast indicating a late ORS for that region, while
for the Sahel zone the opposite signal is predicted (a late onset with ORSI values up to 30). Thus, the
predicted ORSI patterns show very similar large-scale features as the observed ORS anomalies shown
in Figure 11c.
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5. Summary and Conclusions

This work presented a statistical approach for seasonal forecasting of the onset of the rainy
season using precipitation forecasts of a GSEPS. The basis of this approach was a quantile–quantile
transformation for removing biases from the precipitation ensemble, a fuzzy-rule based approach
for calculation of the ORS date and several graphical methods for an improved visualization of
ensemble-based ORS forecasts. As outlined in the methodology part of the work, the different
components of the approach were modular and could therefore be replaced by other methods (i.e.,
downscaling or ORS approaches) and datasets (i.e., GSEPS forecasts and observations). Moreover,
the approach could be relatively easily transferred to other geographical regions of the world and
extended to crucial rainfall characteristics like the cessation and the length of the rainy season. The
presented approach has also the advantage that it is not very CPU demanding and requires only a
single variable for the downscaling process. Unlike many other downscaling approaches, it might be
better operationally applicable to forecasting centers in development countries where bandwidth and
computing power are often limited.

In this study we also performed a first evaluation of the ORS forecasts by employing various
verification measures and methods to determine the performance of the approach in space and in time.
This analysis illustrated that forecasting ORS dates several months in advance was a major challenge.
The ORS forecasts were associated with large uncertainties due to the inherent high uncertainty of
seasonal forecasts and other reasons like the high stochastic nature of daily precipitation in West Africa.
We also illustrated in this study the importance of selecting appropriate performance measures for
verification of the spatial ORS fields to remove seasonal dependencies. This was done by using the
anomaly correlation coefficient. Since the focus was on spatial verification of the ORS fields, other
methods for verification of probabilistic forecast like the continuous ranked probability score [60] were
not yet employed. However, this type of forecast verification is needed to get a better insight regarding
the quality of probabilistic seasonal ORS forecasts. In addition, verification techniques for determining
the economic value should be applied in future studies to determine another type of forecast goodness,
i.e., the forecast value (e.g., [19]). This is needed to demonstrate how valuable the ORS forecast is for a
particular end user. Recent examples towards this kind of verification are presented e.g., in [11,61].
The selected spatial verification methods applied in this study were also relatively strict and imply
a perfect forecast of the ORS fields in space and time, in particular the MAE. This basic assumption
should be further examined in future studies by the selection of alternative spatial verification methods.
These new methods can be found, for example, in [23,62].
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We also tested different forecasts formats for visualization of probabilistic ORS forecasts. These
approaches range from quantile-based ORS forecasts, over climatologically equiprobable categories to a
new ORS index for indicating an early or late ORS. Since the ORS index is a joint measure of categorical
forecasts, it is much easier to understand than the common formats used in seasonal forecasting.
Moreover, the ORS index was applied in this study to tercile-based categories but can be also used for
forecasts for more than three categories and to other seasonal forecasts variables. The index provides
therefore an important alternative to the current forecast formats used in seasonal forecasting.

There were several limitations of the presented methodology. Possible improvements in future
studies are:

• Better adapting the ORS approach to the location-specific conditions in the region, i.e., considering
the heterogeneous rainfall conditions across the region. This can be achieved by coupling the ORS
approach to a process-based crop model to derive location-specific planting rules (ORS criteria),
as done in [2,63]. Based on seasonal predictions, it is also possible to incorporate the false-start
criterion in the ORS predictions;

• Testing the skills of other GSEPS such as the Climate Forecast System Version 2 or the ECMWF
SYS5, which is e.g., improved in terms of the spatial resolution and the number of ensemble
members compared to the SYS4 [64]. Since the probabilistic forecast depends strongly on the size
of the ensemble members (e.g., [64]), the increase of the ensemble members may possibly lead to
improved ORS predictions;

• Incorporating longer lead times in the analysis. Longer lead times would increase preparation
time for farmers. On the other hand, increasing the lead time would result in reduced forecast
periods for the rainy season;

• Further reducing the biases in the forecasts, either by improving the statistical bias correction
method or by dynamically downscaling the forecasts. The former could e.g., be achieved by
applying the corrections separately for the different months (e.g., [65]) or for different large-scale
atmospheric circulation patterns (e.g., [66]).

In general, more precise ORS forecasts will possibly impact on the farmer’s tactical decision such
as the timing for planting, the types crops and the varieties to grow, i.e., long or short duration varieties.
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Appendix A

A basic assumption for the application of the Student’s t-test or Welch’s t-test is that the MAE
samples are normally distributed for each year. To check this assumption, a Shapiro–Wilk test [67] on
the MAE samples was performed, which are shown in Table A1. In addition, the Levene’s test [68]
for equality of variances (e.g., H0 : σ2

2007 = σ2
2005) was used to decide whether to use Student’s t-test

or Welch’s t-test. All samples are normally distributed (Table A1), but some pairs of the year’s show
inequality of variances (Table A2). Since Student’s t-test cannot be used for inequality of variances
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(e.g., σ2
2000 , σ

2
2002) the Welch’s t-test was applied. For all combinations of years with equal variances

Student’s t-test (e.g., σ2
2000 = σ2

2001) was used (Table A3).

Table A1. Shapiro–Wilk test for normality, bold print if H0 was accepted at α = 0.05.

Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Shapiro-Wilk test 0.962 0.953 0.913 0.941 0.948 0.968 0.888 0.945 0.909 0.976 0.912

Table A2. Levene’s test for equality of variances, bold print if H0 was accepted at α = 0.05.

Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

2000 0.0000 0.6857 4.4401 3.2395 0.4457 11.4124 10.4689 0.0046 4.2194 4.7732 0.2915
2001 0.6857 0.0000 2.4402 1.3479 0.0128 7.5099 6.7862 0.9765 1.6950 2.0575 0.1180
2002 4.4401 2.4402 0.0000 0.2468 2.5807 0.6076 0.4680 4.9639 0.3073 0.2046 3.3129
2003 3.2395 1.3479 0.2468 0.0000 1.4816 1.9600 1.6680 3.7898 0.0006 0.0082 2.1308
2004 0.4457 0.0128 2.5807 1.4816 0.0000 7.6105 6.8992 0.6338 1.8393 2.2029 0.0415
2005 11.4124 7.5099 0.6076 1.9600 7.6105 0.0000 0.0099 12.8651 2.3825 2.0390 9.4714
2006 10.4689 6.7862 0.4680 1.6680 6.8992 0.0099 0.0000 11.7991 2.0297 1.7165 8.6121
2007 0.0046 0.9765 4.9639 3.7898 0.6338 12.8651 11.7991 0.0000 5.1484 5.7892 0.4753
2008 4.2194 1.6950 0.3073 0.0006 1.8393 2.3825 2.0297 5.1484 0.0000 0.0163 2.7800
2009 4.7732 2.0575 0.2046 0.0082 2.2029 2.0390 1.7165 5.7892 0.0163 0.0000 3.2528
2010 0.2915 0.1180 3.3129 2.1308 0.0415 9.4714 8.6121 0.4753 2.7800 3.2528 0.0000

Table A3. Two sample t-test for equal means (equal variances)/Welch’s t-test (unequal variances), bold
print if H0 was accepted at α = 0.05.

Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

2000 0.0000 1.8406 −0.2189 0.1816 0.1690 −2.3839 −0.7848 2.1129 0.4895 −0.8831 0.9980
2001 −1.8406 0.0000 −1.3634 −1.1451 −1.5163 −3.3723 −1.8394 −0.0538 −0.9283 −2.1992 −0.8811
2002 0.2189 1.3634 0.0000 0.3171 0.3161 −1.7477 −0.4627 1.4119 0.5372 −0.4430 0.8145
2003 −0.1816 1.1451 −0.3171 0.0000 −0.0500 −2.1811 −0.8006 1.1985 0.2338 −0.8509 0.5113
2004 −0.1690 1.5163 −0.3161 0.0500 0.0000 −2.3958 −0.8554 1.6783 0.3311 −0.9561 0.7306
2005 2.3839 3.3723 1.7477 2.1811 2.3958 0.0000 1.2399 3.5143 2.4388 1.5009 2.9086
2006 0.7848 1.8394 0.4627 0.8006 0.8554 −1.2399 0.0000 1.9046 1.0226 0.0879 1.3350
2007 −2.1129 0.0538 −1.4119 −1.1985 −1.6783 −3.5143 −1.9046 0.0000 −0.9712 −2.3518 −0.9699
2008 −0.4895 0.9283 −0.5372 −0.2338 −0.3311 −2.4388 −1.0226 0.9712 0.0000 −1.1259 0.2509
2009 0.8831 2.1992 0.4430 0.8509 0.9561 −1.5009 −0.0879 2.3518 1.1259 0.0000 1.5821
2010 −0.9980 0.8811 −0.8145 −0.5113 −0.7306 −2.9086 −1.3350 0.9699 −0.2509 −1.5821 0.0000
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