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Abstract: Chlorine is an important atmospheric photochemical oxidant, but few studies have focused
on atmospheric chlorine. In this study, PM2.5 samples were collected from urban and rural sites
across China in January 2018, and concentrations of Cl− and other water-soluble ions in PM2.5 were
analyzed. The size-segregated aerosol Cl− data measured across Chinese cities by other studies were
compiled for comparison. The observed data demonstrated that the Cl− concentrations of PM2.5 in
northern cities (5.0 ± 3.7 µg/m3) were higher than those in central (1.9 ± 1.2 µg/m3) and southern
cities (0.84 ± 0.54 µg/m3), suggesting substantial chlorine emissions in northern cities during winter.
The concentrations of Cl− in aerosol were significantly higher in urban regions (0.11–26.7 µg/m3)
compared to than in rural regions (0.03–0.61 µg/m3) across China during winter, implying strong
anthropogenic chlorine emission in cities. Based on the mole ratios of Cl−/Na+, Cl−/K+ and Cl−/SO2−

4
and the PMF model, Cl− in northern and central cities was mainly sourced from the coal combustion
and biomass burning, but in southern cities, Cl− in PM2.5 was mainly affected by the equilibrium
between gas-phase HCl and particulate Cl−. The size-segregated statistical data demonstrated that
particulate Cl− had a bimodal pattern, and more Cl− was distributed in the fine model than that
in the coarse mode in winter, with the opposite pattern was observed in summer. This may be
attributed to both sources of atmospheric Cl− and Cl− involved in chemical processes. This study
reports the concentrations of aerosol Cl− on a national scale, and provides important information
for modeling the global atmospheric reactive chlorine distribution and the effects of chlorine on
atmospheric photochemistry.
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1. Introduction

Chlorine is one of the most abundant halogen species in the atmosphere, where it exists as
both inorganic Cl (such as particulate Cl− and gas-phase HCl) and organic Cl (such as CH3Cl
and chlorofluorocarbons), and participates in many atmospheric photochemical reactions [1].
Cl−-containing inorganic and organic compounds are considered to be one of the factors driving
the global climate change [2]. It is well known that halogens decrease the atmospheric ozone
concentration [3–7], and that halogens can participate in the NOx cycle, promoting heterogeneous
formation of atmospheric nitrate in both the marine and terrestrial atmospheric boundary layers [8–10].
Using the GEOS-Chem model, halogens were estimated to account for as much as ~15–27% of the
global oxidation of volatile organic compounds [7]. In addition, chlorine depletion is a common
phenomenon for marine aerosol and the volatilization of gas-phase HCl from the surface of particles
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may disturb the aerosol acidity [11–14], which further affects the water-soluble ion concentrations
aerosol [15,16]. Although the Cl− concentration in aerosol has been incidentally reported in many
studies, very few studies have paid attention to Cl− in terrestrial aerosols as compared to marine
aerosol, let alone in situ observations on a large spatial scale.

The sources of atmospheric Cl− have been identified using several different methods, such
as determining stable isotopic compositions of Cl− [17–19], monitoring the relationships between
Cl− and OC, EC, Na+, and K+ [16,20–22], and model simulations [23,24]. Atmospheric Cl− has
many natural sources, including sea water, wildfires, dust storms, and volcanic eruptions [25–28],
as well as anthropogenic sources, such as coal combustion, biomass burning, industrial emissions,
and the use of sodium chloride on icy roads [20,21,29–35]. The chlorine emissions from sea water
(both particulate Cl− and gas-phase HCl) were estimated to be 1792.6 Tg Cl yr−1 [23], which is
considerably higher than emissions from other sources, such as dust (15 Tg Cl yr−1 as particulate
Cl−) and volcanic eruptions (2 Tg Cl yr−1 as gas-phase HCl) [19]. In terms of anthropogenic sources,
the chlorine emission from biomass burning were 6.4 Tg Cl yr−1 [24], which were similar to the
emissions of gas phase HCl from coal combustion (4.6 Tg Cl yr−1, [19]) and urban garbage burning
(6~9 Tg Cl yr−1, [21]). The majority of atmospheric inorganic chlorine is returned to the Earth’s
surface by dry or wet deposition. Unlike bioavailable nutrients, such as NO3

−, that can rapidly
affect terrestrial ecosystems [36–39], Cl− exhibits conservative behavior and very few studies have
specifically investigated the influences of atmospheric Cl− deposition on the biogeochemistry of
terrestrial ecosystems [40]. With the high solubility and conservative behavior of Cl−, the mass
balance of Cl− has been used to evaluate the long-term groundwater recharge of regional hydrologic
cycles [41–43]. In addition, studies have demonstrated that deposition of atmospheric Cl− on the
surface of steel may accelerate the corrosion rate and reduce the lifetime of construction steel [44–46].
A review of atmospheric corrosion in China reported that Cl− plays an important role in the corrosion
of metals in areas across China [47].

In this study, PM2.5 samples were collected during January 2018 from 20 cities and 2 rural sites
across China (latitude from 22.8◦ N to 45.7◦ N and longitude from 102.7◦ E to 126.7◦ E; Figure 1).
Concentrations of Cl− in PM2.5 across Chinese urban and rural sites were measured, aiming to
investigate the spatial distribution of Cl− in PM2.5, and to explore the possible sources of Cl− in PM2.5

during winter across China. We also summed the size distribution of aerosol Cl− across China in both
winter and summer to examine the seasonal patterns of size-segregated aerosol Cl−.

2. Materials and Methods

2.1. Sampling and Chemical Analysis

A high-volume total suspended particulate sampler equipped with a PM2.5 impactor (KC-1000;
Laoshan Mountain Electronic Instrument Factory Co., Ltd, Qingdao, China) was used to collect PM2.5

samples. The sampling substrate was the Tissuquartz 2500QAT-UP filter (Pall Corp., Port Washington,
WA, USA), which was combusted at 450 ◦C for 4 hours before use. The sampling campaigns were
taken in January of 2018, and the sampling time for each PM2.5 sample in urban sites was 23.5 hours.
According to the latitude distribution and ambient temperature of each sampling sites, the 20 urban
sampling sites were divided into three regions: 1) Northern cities (blue solid circles in Figure 1),
including Harbin (HRB), Shenyang (SY), Shijiazhuang (SJZ), Tianjin (TJ), Taiyuan (TY), Ji’nan (JN),
Qingdao (QD), Xi’an (XA), and Lanzhou (LZ), where regions of heating supply are located in northern
China and the average ambient temperature in January is lower than zero. 2) Central cities (yellow
solid circles in Figure 1), including Shanghai (SH), Nanjing (NJ), Hangzhou (HZ), Nanchang (NC),
Wuhan (WH), Chongqing (CQ) and Chengdu (CD), which are located between 28 ◦N and 32 ◦N,
and the average ambient temperature ranges from 2 ◦C to 6 ◦C. 3) Southern cities (red solid circles
in Figure 1), including Xiamen (XM), Guangzhou (GZ), Nanning (NN) and Kunming (KM), located
south of 25 ◦N where the average ambient temperature is higher than 9 ◦C. We also sampled PM2.5
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samples from rural sites (Yudu and Puding, Figure 1), but the sampling time for each PM2.5 sample
was 47.5 hours and only 16 samples were collected from each rural sites. The latitude distributions of
ambient temperature and relative humidity for the urban sites are shown in Figure 1b,c.Atmosphere 2019, 10, x FOR PEER REVIEW 3 of 16 
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Figure 1. (a) Map of the 25 sampling sites. The color circles and black trigons indicate the urban
and rural sites, respectively. The dotted line indicates the boundary line of heating supply in China.
The black curve with arrow are the regional wind streamlines at 1000 hPa during the Asian winter
monsoon period based on the National Center for Environmental Prediction (NCEP) dataset. (b) Scatter
plot of average temperature against latitude for urban sampling sites. (c) Scatter plot of average relative
humidity (RH) against latitude for urban sampling sites. The data of temperature and RH are from
http://www.weatherandclimate.info/archive.php.

The water-soluble ions analyzing processes can be referenced to Luo et al. [16] and Hsu et al. [48].
Briefly, a one-eighth piece of filter was extracted with 50 mL of Milli-Q water (conductivity 18.2 MΩ/cm)
in a clear centrifuge tube. The centrifuge tube filled with filter and 50 mL Milli-Q water, was subjected
to ultrasonically extraction for 30 minutes under room temperature, then centrifuged for 20 minutes at
2000 revolutions per minute. Finally, the extract was filtered using a 0.22 µm Millipore syringe filter.
After filtering, the extract was stored at −20 ◦C for further chemical analysis. The water-soluble ions
(Cl−, NH+

4 , Na+, Mg2+, K+, Ca2+, NO−3 , and SO2−
4 ) were analyzed by a ion chromatograph (Thermo

Fisher Scientific, Inc., Waltham, MA, USA). For the urban samples, all of the above ions were analyzed,
but for the rural sites, only anions (Cl−, NO−3 and SO2−

4 ) were analyzed.

2.2. Model of Positive Matrix Factorization

The positive matrix factorization (PMF 5.0) is a factor-based receptor model used for quantifying
the contribution of sources to samples based on the fingerprints of the sources [49]. In this study,
270 × 8 matrix (sample number × 8 species) date sets for northern cities, 214 × 8 matrix date sets for
central cities and 156 × 8 matrix date sets for southern cities were introduced into the PMF 5.0 to
quantify sources of Cl− in PM2.5 across China during the winter. We ran PMF 5.0 with the number of
runs set to 20 and the number of factors set from 3 to 6, and examined Q (Robust)/Qexp to choose the
best number of factors for the model. The detailed model parameter settings can be found in the user
guide (www.epa.gov) and other studies [50,51].

http://www.weatherandclimate.info/archive.php
www.epa.gov
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3. Results and Discussions

3.1. Spatial Distributions of Cl−, SO2−
4 , K+ and Na+ in PM2.5

Overall, the Cl− concentrations in PM2.5 ranged from 0.11 to 26.7 µg/m3 over the 20 urban sites
(Table 1; Figure 2a), which is consistent with previous observations of aerosol Cl− concentrations
across China during winter [52–55]. The concentrations of Cl− in PM2.5 across Chinese cities in our
observations were significantly higher than previous studies of aerosol Cl− during wintertime in
the northeastern United States (0.06~0.23 µg/m3) [14], in Iasi (0.32 ± 0.15 µg/m3) [30], and in Sao
Paulo (1.4 µg/m3) [56], suggesting intensive inorganic chlorine emissions in China. The aerosol
Cl− concentrations in rural sites ranged from 0.07 ± 0.02 µg/m3 to 0.55 ± 0.19 µg/m3 across China
during winter (Table 2, Figure 2b), which were significantly lower than those in urban sites (Table 1;
Figure 2a), suggesting strong anthropogenic emissions of chlorine in urban sites. In addition, there
were large spatial variations in aerosol Cl− in urban and rural sites. For example, the average Cl−

concentration (9.81 ± 5.20 µg/m3) in PM2.5 observed in Shijiazhuang (located in northern China) was
thirteen-fold times higher than those (0.69 ± 0.31 µg/m3) occurred in Kunming (located in southwest
China) during winter (Table 1). The average concentration of aerosol Cl− sampled in Changbai
Mountain (0.39 ± 0.15 µg/m3) was five times higher than that (0.07 ± 0.02 µg/m3) the rural site of Yudu
(Table 2).

Table 1. Concentrations of Cl− in urban PM2.5 (µg/m3) across China in January 2018.

Locations Min Max Median Mean 1 Mean 2 Mean 3 SD

Harbin (HRB) 1.15 18.6 6.77 6.91 5.78 6.65 3.94
Shenyang (SY) 1.00 7.24 3.57 3.73 3.34 3.72 1.69

Tianjin (TJ) 0.39 16.4 4.30 5.29 4.19 5.24 3.53
Shijiazhuang (SJZ) 1.29 26.7 9.46 9.81 8.44 9.7 5.20

Taiyuan (TY) 1.21 12.4 5.98 6.37 5.38 6.3 3.48
Ji’nan (JN) 0.84 10.44 3.12 3.79 3.21 3.64 2.36

Qingdao (QD) 0.99 9.77 2.65 3.18 2.74 3.17 1.95
Xi’an (XA) 1.08 10.5 3.18 3.80 3.34 3.74 2.14

Lanzhou (LZ) 0.67 5.23 2.73 2.62 2.27 2.61 1.30
Shanghai (SH) 0.17 5.61 1.30 1.73 1.29 1.73 1.41
Nanjing (NJ) 0.69 5.83 2.11 2.30 2.05 2.29 1.14

Hangzhou (HZ) 0.42 4.75 1.91 1.94 1.55 1.92 1.24
Nanchang (NC) 0.27 3.37 0.95 1.13 0.90 1.05 0.79

Wuhan (WH) 0.28 4.60 2.12 2.27 2.07 2.13 0.88
Chongqing (CQ) 0.32 6.14 1.56 1.73 1.28 1.72 1.34
Chengdu (CD) 0.42 4.52 2.39 2.32 1.96 2.32 1.17
Kunming (KM) 0.26 1.55 0.63 0.69 0.63 0.69 0.31
Nanning (NN) 0.24 2.63 0.78 0.90 0.76 0.90 0.54

Guangzhou (GZ) 0.11 1.83 0.66 0.76 0.59 0.76 0.52
Xiamen (XM) 0.13 4.02 0.93 1.01 0.83 1.01 0.70

1 Arithmetic mean, 2 Geometric mean, 3 Volume mean.

The Cl− concentrations in PM2.5 gradually decreased from the northern cities (5.0 ± 3.7 µg/m3) to
the central cities (1.9 ± 1.2 µg/m3), and then to the southern cities (0.84± 0.54 µg/m3 across China during
winter (Figure 3a). Similar aerosol Cl− spatial patterns were also seen for the rural sites over China
(Figure 2b). These results indicated a national pattern of aerosol Cl− across China in winter. Moreover,
the decreased concentrations of aerosol Cl−, along with the path of the Asian winter monsoon from
the northern to southern China, suggested that the atmospheric chlorine may be transported along
the wind field. Although ambient temperature and RH have an obvious latitude distribution from
north to south China (Figure 1b,c), there were no positive or negative correlations between aerosol
Cl− and temperature, and between aerosol Cl− and RH for all the study regions. In addition, the
observations of Cl− concentrations were not consistent with the spatial distribution of the emission of
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chlorine (HCl + Cl2) modeled by the coal consumption and chlorine content of coal in each province
for the whole year of 2012 [57]. Liu et al. showed that high chlorine emissions are mainly distributed
in the Sichuan Basin, the Yangtze River Delta and the North China Plain, with no latitude variations
across China [57]. Due to a lack of coal consumption in January 2018 for the observed cities, we
cannot estimate the chlorine emissions from coal combustion. The discrepancies between the observed
aerosol Cl− concentrations and the modelled chlorine emissions across China may be related to the
seasonal differences (for example higher chlorine in winter than summer [58]), and the study scale
differences (for example, our study focused on the cities, but the study of Liu et al. [57] including both
cities and countryside).
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Figure 3. Concentrations of Cl− (a), scatter plot of concentration of Cl− against with PM2.5 (b) and mass
ratios of Cl−/PM2.5 (c) in northern, central and southern cities, respectively. The large boxes in (a) and
(c) represent the interquartile range from the 25th to 75th percentile. The line inside the box indicates
the median value. The whiskers extend upward to the 90th and downward to the 10th percentile.
Significant differences at the p < 0.05 level among different regions are marked with uppercase letters.

In addition, there was a positive relationship between concentrations of Cl− and PM2.5 in northern
China (R2 = 0.71), central China (R2 = 0.78) and southern China (R2 = 0.63) (Figure 3b), which indicated
that Cl− accumulates as concentration of particulate matter increases. The average mass ratios of
Cl−/PM2.5 in northern cities (6.0 ± 4.8%) were higher than those in central cities (2.7 ± 2.1%) and
southern cities (1.8 ± 1.8%) (Figure 3c), and were also higher than previous studies (ranging from 0.34
to 4.55) [54,58]. The anomalous high mass ratios of Cl−/PM2.5 in northern cities may be connected
with the high emission of anthropogenic chlorine [58], or with the higher gas-phase HCl partition into
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particulate Cl− [57], or with the implementation of air pollutant emission reduction measures, which
dropped the concentrations of PM2.5 during this study period. Such high mass ratios of Cl−/PM2.5 in
widespread northern cities deserve further explanation.

Table 2. Concentrations of aerosol Cl− in rural sites (µg/m3) during winter.

Locations Types Min Max Mean SD References

Yudu (YD) PM2.5 0.03 0.11 0.07 0.02 This study
Puding (PD) PM2.5 0.03 0.61 0.23 0.19 This study

Mt. Hua (HS) PM10 0.3 0.2 [59]
Mt. Yulong (YL) TSP 0.13 0.46 0.26 0.08 [60]

Mt. Gongga (GG) PM2.5 0.03 0.52 0.17 - [61]
Mt. Gongga (GG) PM10 0.05 1.13 0.26 - [61]

Mt. changbai (CBS) PM2.5 - - 0.39 0.15 [62]
Mt. Longfeng (LF) TSP - - 0.55 0.19 [63]

Mt. Waliguan (WLG) TSP - - 0.37 0.13 [63]

Concentrations of SO2−
4 , K+ and Na+ also decreased from the northern cities to the southern

cities (Figure 4). These results, on the one hand, validate our regional divisions (i.e., northern, central
and southern cities), but on the other hand, imply that the strongest anthropogenic emission of
SO2−

4 , K+ and Na+ occurred in northern China. Most urban aerosol SO2−
4 is associated with the coal

combustion [20,22]. The highest concentration of SO2−
4 in PM2.5 in northern cities (13.3 ± 9.0 µg/m3)

in these measurements (Figure 4a) may be attributed to increasing consumption of coal in winter
for heating supply. The SO2−

4 in central cities (11.7 ± 6.7 µg/m3) may be sourced from the local
emissions or transport from the northern China. High K+ emission is a characteristic of biomass
burning [64,65]. In these observed campaigns, the highest concentration of K+ occurred in northern
cities (0.98 ± 0.78 µg/m3), followed by central cities (0.77 ± 0.52 µg/m3), and then southern cities
(0.59 ± 0.48 µg/m3) (Figure 4b). However, the active fire points from the Aqua and Terra MODIS data
in January 2018 displayed an opposite trend for K+, i.e., less fire points in northern China but more
in southern China (Figure 5). For the highest concentrations of K+ in northern China, we speculate
that coal combustion may be an important source of K+ [64,66], but the contribution from residential
biofuel combustion may not be negligible [58]. In southern China, K+ may be mainly from the biomass
burning (Figure 5). Significantly higher Na+ in northern cities (0.75 ± 0.58 µg/m3) compared to central
(0.26 ± 0.19 µg/m3) and southern (0.21 ± 0.16 µg/m3) cities (Fig. 4c) further indicated that there is higher
consumption of coal in northern cities, as Na+ emission is a characteristic of coal combustion [67,68].
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Figure 4. Concentrations of SO2−
4 (a), K+ (b) and Na+ (c) in northern, central and southern cities,

respectively. The large boxes represent the interquartile range from the 25th to 75th percentile. The line
inside the box indicates the median value. The whiskers extend upward to the 90th and downward to
the 10th percentile. Significant differences at the p < 0.05 level among different regions are marked with
uppercase letters.
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3.2. Source Apportionment of Cl− in PM2.5

To explore the possible sources of Cl− in PM2.5 over Chinese cities in winter, the mole ratios
of Cl−/Na+, Cl−/K+ and Cl−/SO2−

4 , and the PMF 5.0 model, were employed to explore and estimate
the origins of Cl−. The mole ratios of Cl−/Na+ were 5.5 ± 3.8, 5.5 ± 2.5 and 4.5 ± 3.9 in northern,
central and southern cities (Figure 6a), respectively, which were significantly higher than sea water
(1.17) [69]. Even for coastal cities, the average ratios of Cl−/Na+ were (5.5 ± 3.1 in northern cities
(TJ and QD), 4.7 ± 2.8 in central cities (SH and HZ) and 2.9 ± 2.5 in southern cities (XM and GZ)),
which were still higher than seawater. These results indicate that the oceanic source of chlorine is
minor for all observed inland cities. Moreover, the mole ratios of Cl−/Na+ in PM2.5 were higher
than that (1.3 ± 0.87) in urban dust [70], implying the urban dust source of chlorine is also minor for
atmospheric aerosol chlorine. For the aerosol chlorine in an urban atmosphere, excluding the natural
origins, anthropogenic emissions (such as coal combustion and biomass burning (including burning
of residential and industrial biofuel, agricultural waste and wildfires)) have been widely mentioned
in the literature [32,57,58]. However, the mole ratios of Cl−/Na+ in PM2.5 for all the cities in our
observations during winter were higher than the Cl−/Na+ mole ratios in PM2.5 that collected directly
from the flue gas of biomass burning (3.2 ± 2.7) [71–74] and coal combustion (1.2 ± 1.9) [73,75–79]
(Figure 6a). This may be ascribed to, on the one hand, the chlorine released from biomass burning and
coal combustion, including both gas-phase HCl and particulate Cl− [76], and sampling the PM2.5 from
the flue gas only, which would filter the particulate Cl−. On the other hand, Cl− sampled in urban
PM2.5 not only involves the primary particulate Cl−, but also contains the transformation of gas-phase
HCl to particulate Cl− [14].

The lower molar ratios of Cl−/K+ from the flue gas of biomass burning than coal combustion
(Figure 6b), agrees with the relatively high potassium released from the biomass burning [64,65] and
implies that more chlorine is released from coal combustion than biomass burning. High Cl−/K+

ratios in northern cities (Figure 6b), together with high concentrations of Cl− and K+ in northern
cities (Figures 3a and 4b), suggests that chlorine is mainly related to potassium in PM2.5. Moreover,
the lower Cl−/K+ ratios in southern cities, coupled with the lower concentrations of Cl− and K+ in
southern cities, suggests that more K+ than Cl− is emitted, which is consistent with the more active fire
points in southern China than central and northern China (Figure 5). Furthermore, the well correlation
coefficients (0.78) between Cl− and K+ in northern cities implies that there are similar sources of
Cl− and K+. These results suggested that Cl− and K+ in northern cities is mainly sourced from the
coal combustion. A significantly higher Cl−/SO2−

4 ratio from biomass burning than coal combustion
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indicates that there is relatively high Cl− emission from the biomass burning (Figure 6c). The decreasing
trend in the Cl−/SO2−

4 ratio from the northern cities to the southern cities (Figure 6c) suggests that the
contribution of biomass burning to aerosol Cl− cannot be neglected in northern cities. Similarly, coal
combustion also may be an important source of aerosol Cl− in central and southern cities.
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Figure 6. Mole ratios of Cl−/Na+ (a), Cl−/K+ (b) and Cl−/SO2−
4 (c) in aerosol collected from the

northern, central and southern cities, and from the gas flue directly from biomass burning (BB) and
coal combustion (CC).

To quantify the possible contributions of different sources of Cl− in PM2.5, four resolved source
profiles for Cl− and other water-soluble ions in PM2.5 were performed by the PMF model (Figure 7).
The first factor with high loading of K+ indicated the sources of coal combustion and biomass burning.
The second factor was characterized by high amounts of secondary formation ions (NO−3 , SO2−

4 and
NH+

4 ), giving the secondary formation source. A high Ca2+ level indicated that the third factor was
related to the soil dust. The fourth factor showed a high amount of Na+, which may be associated
with the sea salts or with sodium-containing salts in urban spray water (hereafter, ‘salts’ includes
both sodium-containing salts in spray water and sea salts). In order to improve the urban air quality,
water is frequently sprayed into the air by a sprinkler in many Chinese cities, governed by the local
government. The mode results showed that the dominant contribution of Cl− in PM2.5 was from coal
combustion and biomass burning, and the soil dust and salts were the other contributors in northern
cities (Figure 7, Panel A). In central cities, 60% of Cl− in PM2.5 is from coal combustion and biomass
burning, but the remainder is from the salts (Figure 7, Panel B). However, in southern cities, around
60% of Cl− in PM2.5 is associated with the secondary formation ions (Figure 7, Panel C), implying an
abundant partition of gas-phase chlorine into particulate Cl−.
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3.3. Size Distributions of Aerosol Cl−: A Review

Here, the published datasets of size-segregated urban aerosol Cl− that were sampled during both
winter and summer in China were compiled for comparison [30,52,56,80–87] (Figure 8). The compiled
size distribution results of aerosol Cl− displayed a bimodal pattern, with peaks located between
0.43~0.65 µm for fine mode particles and 4.7~5.8 µm for coarse mode particles both in winter (Figure 8a)
and summer (Figure 8b). The dual peak distribution of aerosol Cl− might be ascribed to both the
sources of chlorine and the gas-particulate partitioning of chlorine. The sources of aerosol Cl− in the
urban atmosphere include primary particulate Cl− emission (particulate Cl− directly emitted from the
coal combustion, biomass burning, mineral dust and sea salts) and the transformation of gas-phase HCl
(mainly emitted from the coal combustion, biomass burning and industrial emissions) into particulate
Cl− [21,32,67]. The primary particulate Cl− sources, such as sea salt and mineral dust, were mainly
distributed in the coarse mode. For example, Cl− in aerosols that were sampled in the open ocean
was dominantly distributed in size ranges from 4.7 to 5.8 µm [88], and during dust periods, aerosol
Cl− was mainly located in the coarse mode [89]. Primary particulate Cl− emitted directly from coal
combustion and biomass burning was distributed in the fine mode [34,75]. However, most of the
chlorine was emitted into the atmosphere from coal combustion and biomass burning as gas-phase
HCl [90,91]. The equilibrium of gas-phase HCl and particulate Cl− may affect the size distribution
of aerosol Cl−. Previous studies have shown that the partitioning of gas-phase HCl and particulate
Cl− depends on particulate pH, atmospheric relative humidity, ambient temperature, particle loading
and particle water content [14,30]. Thus, it is hard to discuss the size distributions of aerosol Cl−

during gas-particulate partitioning of chlorine for the in-situ observations. In addition, the neutral
reaction between gas-phase HCl and mineral particles may enhance the Cl− distribution in coarse
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mode particles [26], and the reaction of gas-phase HCl with NH3 to form solid NH4Cl is located in the
fine mode [31].
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(c) The mass ratios of Cl− in fine and coarse particles during winter and summer using the data from
(a) and (b).

The statistical results also showed that urban aerosol Cl− concentration distributed in the fine
mode was similar to that in the coarse mode during winter, but significantly higher Cl− concentration
was distributed in the coarse mode than in the fine mode during summer (Figure 8c). The seasonal
discrepancies in size-segregated aerosol Cl− concentration may be attributed to several possible factors.
First, during summer, the prevailing wind direction is from the ocean to the land, which may carry
the sea salt into the inland, which may enhance aerosol Cl− in the coarse mode. On the contrary,
during winter, the wind direction of the Asian winter monsoon is from the land to the ocean, which
weakens the influences of sea salt. Second, more coal and biomass consumption for heating occurs
in winter than summer in northern China, which may enhance the primary fine mode aerosol Cl−

during winter. Third, concentrations of PM2.5 are generally higher in winter than summer [92], and fine
particles provide a relatively large specific surface area, which may enhance Cl− in the fine mode in
winter [31]. Fourth, acidic ions, such as SO2−

4 and NO−3 , distributed in the fine mode [52,85], can acidize
fine mode aerosols [93]. In summer, strong solar irradiation can enhance gas-phase HCl release from
the acidic fine particles through acid displacement between sulfuric acid or nitric acid and deliquesced
Cl− (HNO3(g) + Cl−(aq) → NO−3 (aq) + HCl(g) or H2SO4(g) + Cl−(aq) → SO2−

4 (aq) + HCl(g)) [89]. On the
contrary, more Cl− may reside in fine mode aerosol in winter than summer.

4. Conclusions

Samples of PM2.5 were collected from 20 urban and two rural sites across China during winter,
and the water-soluble ions were analyzed. The aerosol Cl− concentrations decreased from northern to
southern China, both in urban cities and rural sites, indicating a national spatial pattern of aerosol
Cl− during winter across China. The high concentration of Cl− in northern China, coupled with the
high concentrations of SO2−

4 , K+ and Na+ and the high mole ratios of Cl−/Na+, Cl−/K+ and Cl−/SO2−
4

in northern cities, suggests that coal combustion and biomass burning are the dominate sources of
Cl− in PM2.5. However, for the southern cities, the Cl− in PM2.5 was mainly affected by partition of
gas-phase chlorine to particulate Cl−. Statistical analysis of the size distributions of Cl−-containing
aerosols exhibited a bimodal pattern during both winter and summer. This bimodal pattern may
be attributed to chlorine sources, Cl− involved photochemical reactions and partition of gas-phase
chlorine to particulate Cl−. Our simultaneously in-situ observations of Cl− concentrations in PM2.5

across China provides information for accurately modeling the spatial distribution of atmospheric
chlorine and its effect on atmospheric photochemistry.
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