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Abstract: One of the major issues in developing convective-scale ensemble forecasts is what is
widely known as under-dispersion. This can be addressed through the consideration of spatial
uncertainties via post-processing, motivating the development of various techniques to represent the
spatial uncertainties of ensembles. In this study, a recently developed fraction-based approach (the
ensemble agreement scale, EAS) is applied to characterize the spatial predictability and spread–skill
performances of precipitation forecasts using a WRF-EnKF convective-scale ensemble forecast system
over the Yangtze and Huai river valleys, China. Fourteen heavy rainfall events during the Meiyu
season of 2013 and 2014 were classified into two categories—strong forcing (SF) and weak forcing
(WF)—using the convective adjustment timescale. The results show that the spatial predictability
and spread–skill relationship are highly regime-dependent and that both exhibit lower values under
WF. Furthermore, a new object-based probabilistic approach (OBJ_NEP) is proposed as a supplement
to traditional neighborhood ensemble probability (NEP) and a recently proposed fraction-based
approach (EAS_NEP). The results of the application of OBJ_NEP are evaluated, and a comparison
is made between NEP and EAS_NEP for the analysis of experiments involving both idealized
and ‘real’ events by using objective verification methods. The results imply that OBJ_NEP can be
effectively employed under different large-scale forcings. Consequently, these results can aid the
understanding of spatial-based approaches to probabilistic forecasting, which has been widely applied
to post-processing processes of convective-scale ensemble forecast systems (CSEFs) in recent years.
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1. Introduction

In the last decade, due to the fast development of computing capability, convective-scale ensemble
forecast systems (CSEFs), which have grid spacings of less than 4 km and forecast ranges of less than
24 h, have been developed and quasi-operationally applied by many meteorological centers to forecast
heavy rainfall and other severe weather. Examples include COSMO-DE-EPS, which has a 2.5-km
resolution [1–3]; MOGREPS-UK, which has a 2.2-km resolution and has been implemented by the UK
Met Office [4,5]; and the AROME-EPS, which has a 2.5-km resolution and has been implemented in
France [6,7].
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However, due to complicated nonlinear error growth processes and multiscale interaction [8–12],
the perturbation methods implemented in current CSEFs are not able to sample the distribution and
growth of uncertainties from the initial analysis and model state, which leads to under-dispersion
issues [6,13–16]. This problem has posed great challenges for the development of CSEFs, involving
both ensemble design and post-processing approaches [17].

Unlike traditional point-based post-processing techniques (including both spread–skill relationship
and probability calibration) that are performed on outputs from global medium-range (~1 week,
30–100 km grid spacing [18,19]) or regional short-range (~1–3 days, 10–20 km grid spacing [20–22])
ensemble forecasts, it is still uncertain how to maximize the extraction of useful information from CSEFs
due to the double-penalty issues resulting from the regular application of grid-point methods [23,24]
and the under-dispersion problem induced by nonlinear error growth at a convective-scale [11,25].
Roberts and Lean [26] found that the skill of convective-scale forecasts should increase as a function
of spatial scale. Therefore, several practical methods have been proposed to represent the spatial
uncertainties of outputs from CSEFs to resolve the deficiencies due to double-penalty problems in the
forecast verification community. Fraction-based methods (also known as neighborhood methods) are
the most common way to represent the spatial information of high-resolution forecasts. Examples of
such methods include the fractions skill score (FSS), which has been widely used to measure forecast
skill [26,27]. Derivative forms of the FSS, such as the dispersive FSS (dFSS) and error FSS (eFSS),
can be used to further assess the ensemble performance of CSEFs [17,28]. Another application of
the fraction-based method, called neighborhood ensemble probability (NEP), involves calculating
probability forecasts by representing the fraction of points from all members within a fixed radius of
influence around each grid point that exceeds a precipitation threshold [29–31]. This method promotes
the spatial ensemble spread by considering surrounding information for each point. However, recent
studies have reported that the implementation of the NEP with a fixed radius can lead to artificial
reduction of probabilistic value at high-confidence (i.e., a higher probability derived from the grid-point
method) and small isolated areas (e.g., rare local severe weather events) via spatial filtering [17].
Therefore, for convective events with various intensities and influencing scales, a fixed radius may not
be appropriate [31].

Recently, Dey et al. [15,32] proposed the ensemble agreement scale (EAS) method to characterize
spatial uncertainties and evaluate the spread–skill relationship based on the outputs of CSEFs. For
deterministic events, the average agreement scale for ensemble members can be obtained by varying
the radius of influence at each grid point for each ensemble member—that is, for each grid within the
agreement scale, the ensemble members are matched on average [16]. Furthermore, a “mutative-scale”
method combining EAS and NEP was proposed to compute ensemble probability [32]. The results
showed that the EAS provided a locally adaptive influence radius for NEP, utilizing a smaller radius for
grids where ensemble members are in strong agreement and vice versa. Therefore, such a methodology
could effectively solve the decay problem by employing an adaptive radius through binary fields, and
is more reasonable for forecasting the complicated multiscale characteristics of convection.

Another spatial method which has been proposed to resolve double-penalty problems is the
object-based method [33,34]. By objectively identifying convective systems in both forecasting and
observation fields, attributes such as location, axis angle, and the intensity of certain systems can
be acquired by this method, thus providing more useful forecasting information. Additionally, the
object-based method also provides a more comprehensive perspective from which to assess the
spread–skill performance of ensemble forecasts [35]. In the present study, both the fraction- and
object-based methods are hereafter unified as the spatial-based method.

In the Yangtze and Huai river valleys (YHRV) [36], China, warm-season convective events are
often dominated by complicated multiscale interactions, encompassing synoptic- and subsynoptic-scale
systems (e.g., the Meiyu front, the southwesterly low-level jet stream, and the low-level southwest
vortex, which provide large-scale upward air motion and moisture [37,38]; and the local cold pool and
orographic forcing [39,40]). Previous studies have shown that the predictability of convective events is
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highly case-dependent [41–43], especially under conditions of variable large-scale forcing. Thus, the
corresponding regime-dependent spread–skill for CSEFs should also be assessed spatially.

This study, which is based on the ensemble outputs from a WRF-EnKF multiscale data assimilation
and prediction system, has two main goals, aimed at obtaining a better theoretical and practical
understanding of the spatial-based post-processing methods: (1) to employ the spatial method
EAS to investigate the spatial predictability and spread–skill relationship of convective events
across different convective regimes; and (2) to propose a refinement to NEP, fully considering
the regime-dependent predictability of convective events in the YHRV, and to compare this refined
NEP with other probability methods to verify if this new method is more suitable for forecasting events
over different convective regimes.

The outline of this article is as follows. Section 2 provides an overview of the experimental design
and diagnostic methods. Section 3 presents results for regime-dependent spatial predictability and the
evaluation of different probabilistic approaches. A summary and discussion are given in Section 4.

2. Data and Methods

2.1. Model Configuration

The Advanced Research core of the Weather Research and Forecasting (WRF) model ver. 3.7.1 [44]
was used to initialize the convective-scale simulation. Two one-way nested domains of 180 × 180 and
258 × 258 horizontal grid points with resolutions of 18 km and 3 km, respectively, were used. The
outer domain covered the whole of East China (Figure 1a) and the inner domain covered the target
region of the YHRV, including Anhui and Jiangsu provinces and surrounding areas (Figure 1b). All
domains contained 41 terrain-following hydrostatic-pressure vertical levels topped at 10 hPa.

The initial condition (IC) and lateral boundary conditions (LBCs) were acquired from the NCEP
GFS 0.5◦ × 0.5◦ analysis. The physical schemes package included the WSM6 microphysics [45], Grell-3
cumulus [46] applied to the outer domain, the YSU boundary layer scheme [47], RRTM longwave
radiation [48], and the Goddard shortwave radiation schemes [49].
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Figure 1. (a) Configuration of model domain. The red square indicates the inner domain and the black
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domain. Blue circles show the coverages of the seven radar sites.

2.2. Ensemble Design

In order to acquire a more realistic flow-dependent initial perturbation, a multiscale data
assimilation (DA) and forecast system was constructed based on the Ensemble Square Root Filter
(EnSRF) [50]. The initial ensembles for the outer domain were created by interpolating and adding
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analysis perturbations (0.5◦ × 0.5◦; calculated by removing the mean state of the first 30-member
ECMWF global ensemble products (https://apps.ecmwf.int/datasets/)) to the IC and LBCs as initial
perturbations (ICPs) and lateral boundary perturbations (LBPs). Such perturbations provide a good
representation of synoptic-scale uncertainties [51,52]. After performing a 3 h spin-up ensemble run at
00:00 or 12:00 UTC for each case, the mesoscale observational datasets were assimilated in the outer
domain with a 3 h cycling interval over a 24 h period. After the seventh cycle, the ensemble analysis
of the outer domain was downscaled to the 3-km-resolution inner domain using the “ndown” tool of
the WRF model. For the inner domain, convective-scale radar data (including reflectivity and radial
velocity) were directly assimilated with a 10 min interval for a 3 h period. The outer domain provided
large-scale LBPs to the inner domain during the radar DA cycle, which indirectly provided mesoscale
uncertainties for the final ICPs of the inner domain. Thus, the final ICPs acquired from the DA system
should be flow-dependent and multiscale [53].

An observing system simulation experiment (OSSE) framework was employed to initialize the
ensembles [53–55]. The ‘true’ atmospheric state was represented by a 36 h nature run initialized 24
h before the analysis time for each case with a 3-km resolution over the outer domain. Thereafter,
for the outer domain, mesoscale sounding datasets were created at locations within mainland China
(Figure 1a) and were interpolated from the ‘true’ run while considering observational error. For the
inner domain, the ‘true’ run was interpolated to seven real radar locations (Figure 1b) considering
observational error (reflectivity and radial wind) in order to create radar datasets. The horizontal and
vertical covariance localization radii for the sounding datasets (radar data) in the outer (inner) domain
were set to 120 km and 6 km (20 km and 5 km), respectively. Additionally, to maintain the ensemble
during DA cycles, a multiplicative covariance inflation of 0.15 [56,57] and a relaxation inflation of
0.5 [58] were applied to the outer and inner domains, respectively; these values were chosen based on
sensitivity tests to provide the best ensemble spread.

The first 20 members of the ensemble analysis were used to initialize the 12 h ensemble forecasts for
both the inner and outer domains. The outer-domain forecasts were used to provide the inner-domain
LBPs. We only assessed the 12 h short-range forecasts, since in such a small domain with a 3-km
resolution the impact of error growth (especially at smaller scales) can influence the precipitation
forecasts and should be fully presented.

2.3. Selection and Classification of Cases

A total of 14 Meiyu season heavy rainfall events during June and July of 2013 and 2014 over
the YHRV (especially in the simulation domain) were selected for our ensemble experiments. These
events ranged from local self-organized convection to synoptically driven Meiyu front events [59]. The
corresponding verification domain was the whole inner domain, excluding LBCs. The cases were
objectively classified into two categories—strong forcing (SF) and weak forcing (WF)—based on the
convective adjustment timescale [60–62]

τc =
1
2

cpρ0T0

Lvg
CAPE
prate

(1)

where cp is the specific heat capacity of air at constant pressure, ρ0 and T0 are the reference air density
and air temperature, respectively, Lv is the latent heat of vaporization, g is the acceleration due to
gravity, and prate is the precipitation rate. Here, the ‘true’ state was used to calculate τc. Before
calculation, both the true CAPE and prate were smoothed with a Gaussian method and masked with a
precipitation threshold of 0.5 mm/h to avoid dry events. A commonly used threshold of 6 h [63] was
applied to distinguish SF (τc < 6 h) and WF (τc > 6 h) events.

2.4. Location-Dependent Agreement Scale

The EAS was used to quantitatively assess the spatial predictability of convective events and also
to calculate the ensemble probability. The distance Di, j between one grid point (i,j) at the agreement

https://apps.ecmwf.int/datasets/
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scale between two fields A and B (area-averaged value within a squared grid box centered around (i,j))
was defined as

Di j =


(A− B)2

(A2 + B2)
, i f A > 0 or B > 0

1, i f A = 0 and B = 0
(2)

The value of the EAS (including Smm and Smo) varies from 0 to Slim (a predetermined maximum
scale [15]; in this study, Slim was set to 80) until the criterion Di j ≤ Dcrit,i j = α is met. Subsequently,
member–member comparisons were calculated to retrieve the mean value for Di, j. In this study, the

pairs for Smm (i.e., the mean agreement scale among ensemble members) was Np =
N(N−1)

2 [15,31],
where N is the number of ensemble members, and there were N pairs for Smo (i.e., the mean agreement
scale between ensemble forecasts and observation). Following Blake et al. [31], α was set as 0.5 to
meet a moderate difficulty to satisfy a smaller radius. Moreover, to meet a potential guidance for the
subsequent probabilistic forecast, in this study we directly calculated the EAS for certain incidents (i.e.,
with certain thresholds).

2.5. Probability Generation Methods

In this study, four different methods for generating probabilistic forecasts were evaluated, including
a grid-based method and three spatial-based methods. The first approach was the traditional grid-based
probabilistic (GP) method, which calculates the average of the binary probabilities (BP) from each
member (n = 1, 2, 3, . . . ,N) at a grid point exceeding a certain precipitation threshold (q)

BP(q)i j =

{
1, i f fi j ≥ q
0, i f fi j < q

(3)

GP(q)i j =
1
N

N∑
n=1

BPi j (4)

where fij represents a single member forecast at grid point (i,j).
The second method used was the NEP [17,64], which was computed by applying a square spatial

filter to each grid of the GP method with a certain radius (r)

NEP(q)i j =
1

Nb

∑Nb

k=1
GPk, (5)

where Nb is the number of grid points within a radius r of each grid point. In this way, the spatial
uncertainty in CSEF probabilistic forecasts was considered to address the double penalty problems (as
indicated by Gilleland et al. [23], the skill at the grid-point in CSEF tends to be relatively poor) and
under-dispersion problems in the CSEF.

The third method used was the EAS_NEP [31], a modified version of the NEP. In this method, an
adaptive radius acquired from the EAS was applied to each grid to deal with the spurious decay in
well-handed events for the NEP. That is, if the ensembles at a grid point are in very good agreement, a
smaller radius is utilized to calculate the ensemble probability, and vice versa. This method was found
to be widely applicable to orographic precipitation, lake-effect snow, or very short-term forecasts [31].

Considering that some rare convective events (such as short-term convection triggered by local
thermal forcing in the YHRV; discussed in Section 3.2) may not be predicted by most ensemble members,
the EAS may overestimate the radius used for such grid points in the EAS_NEP method, leading to a
great underestimation of the effectiveness of the ensemble outputs (see Figure 7). Therefore, a fourth
approach was proposed which combines an objective-based method with the NEP (OBJ_NEP) to retain
possibly effective information about local convection over small areas that might be derived from fewer
ensemble members. The steps used to calculate the radius of influence in OBJ_NEP are listed below:
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(1) Firstly, all ensemble members are converted into binary fields using a certain precipitation
threshold. Then, a connected component labeling algorithm is employed to label the convective objects
throughout the binary field and filter out the objects with excessively small areas;

(2) For all objects in the binary fields across ensemble members, the length of the short side of their
minimum enclosing rectangles was calculated to represent the size of a single object. Apart from the
short-side length, the long-side length or area can also feasibly be used for this purpose. In this study,
the short-side length of the minimum enclosing rectangle was found to be the most representative
parameter to represent the size of a single object. Finally, the adaptive influence radius r for all objects
was computed

r = a ∗ml + b
a = (max_r−min_r)/(max_ml−min_ml)
b = max_r− a ∗max_ml

(6)

where ml represents the length of the short side of a certain object, max_r and min_r represent the
determined maximum and minimum radius thresholds, respectively, and max_ml and min_ml represent
the maximum and minimum lengths, respectively, of the short sides of all labeled objects. This equation
essentially shows a linear dependence between the influence radius of a certain object and the object’s
size. Thus, the influence radius for all objects can be computed for each group of ensemble members.

2.6. Verification

Two objective verification metrics—the fractions Brier score (FBS) and the area under curve (AUC)
score—were employed to quantitatively evaluate the four probabilistic approaches, respectively.

2.6.1. Fractions Brier Score (FBS)

The Brier score (BS) [65] has been widely used to compare probabilistic forecasts to a dichotomous
observational field

BS =
1
N

N∑
i=1

(Pi −Oi)
2 (7)

where Pi and Oi represent forecast probabilities and binary observation probabilities (1 if the event
occurs, 0 if it does not occur), respectively, at grid point i; and N represents the total number of grid
points. The BS ranges from 0 to 1, with lower values indicating a better forecast. In this work, the
FBS is computed following Blake et al. [30], where the dichotomous observational field was also
transformed with influencing radius. Therefore, the probabilistic forecasts can be assessed across
different influencing scales.

Furthermore, the Brier skill score (BSS) can be obtained by

BSS = 1−
FBS

FBSre f
(8)

In this study, the FBS calculated using the GP method was used to represent FBSref, while the
other three fraction-based probabilistic methods were compared using the BSS.

2.6.2. Area Under Curve (AUC) Score

Receiver operating characteristic (ROC) [66] curves are widely used to evaluate the ability
of forecasts to adequately discriminate between the exceedance and non-exceedance of a discrete
precipitation threshold, and then measure the resolution. An ROC curve can be created by plotting the
probability of detection (POD) against the probability of false detection (POFD) at a certain threshold.
Thereafter, the AUC score can be obtained by computing the area under the ROC curve; an AUC score
of 1 implies a perfect forecast and a score of 0.5 indicates no skill [67]. Generally, probabilistic forecasts
with AUC values larger than 0.7 are considered to be useful.
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3. Results

3.1. Overview of Heavy Rainfall Events

Figure 2c shows the evolution of τc as a function of forecast time for 14 Meiyu season heavy
rainfall events with a 6 h reference line. Values of τc are generally between 0 and 16 h, and most cases
are characterized with a threshold of 6 h. However, for some events, τc is close to 6 h during the 12 h
forecasting period, indicating that there is no definite boundary between the two subsets in this study.
Therefore, the events were simply categorized by the time-averaged value of τc.
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Figure 2. Ensemble-mean case-averaged 850 hPa wind vector (m/s), equivalent potential temperature
(344–348 K, 2 K interval, indicative of the location of the Meiyu front) and convective available potential
energy (white to black scale, J/Kg) for the (a) strong forcing (SF) and (b) weak forcing (WF) cases. (c) The
convective adjustment timescale (τc) averaged over all areas with a rainfall higher than 0.5 mm/h as a
function of forecast time (in hours) for 14 heavy rainfall events.

Figure 3 shows the case-averaged spatial distribution of 12 h accumulated precipitation for
observation and control forecasts for SF and WF events. In the SF phase (Figure 3a), a clear rainbelt
oriented southwest–northeast is apparent along the Meiyu front (shown by the gray areas in Figure 2a),
with the precipitation centers located near the border of Jiangsu and Anhui provinces (32.5◦ N, 119◦

E). In contrast, the total precipitation for WF events (Figure 3c) shows a multi-core feature in which
local precipitation maxima are located along heterogeneous and steep lower latitude terrains, such
as Tapie Mountain (31◦ N, 116◦ E), Huang Mountain (30◦ N, 117.5◦ E) and Mubu Mountain (29.5◦

N, 115◦ E). This result is consistent with the features of warm-sector convective events described by
Chen et al. [68]. The wind field also differs between SF and WF events, with WF events generally
characterized by weaker large-scale advection (Figure 2a,b) in which the available convective potential
energy is likely to rise (Figure 2b). These large-scale features are in accordance with recent work by
Klasa et al. [69], thus confirming the use of τc in this study.

Regarding the control forecasts (CTRL) initialized from the ensemble mean analysis, the CTRL
for the SF phase (Figure 3b) generally reproduces the intensity and distribution of precipitation along
the Meiyu front, while the CTRL for the WF phase shows obvious over-prediction for the rainfall
centers located over Tapie Mountain and downslope locations. In general, the CTRL reasonably
reproduce the intensity and distribution of precipitation for the 12 h accumulated precipitation, with
small displacement errors in precipitation centers. For the WF phase, the CTRL better depict the
location of precipitation, however they under-predict the precipitation intensity and miss some isolated
precipitation centers adjacent to Huang Mountain (30◦ N, 117◦ E) and downslope of Mubu Mountain
(29◦ N, 115◦ E), showing a lower forecasting skill than for the SF phase. Additionally, low precipitation
damping occurs in the CTRL in the western and south boundaries of the study area, which is due to
the limited size of the inner domain.
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Figure 3. Spatial distributions of 12 h accumulated precipitation (mm) averaged from (a,c) the true
state and (b,d) the control forecasts over lead times of 0–12 h for (a,b) SF events and (c,d) WF events.

3.2. Spatial Predictability and Spread–Skill Relationship

In this section, the spatial predictability of precipitation forecasts is investigated across convective
regimes via EAS in an attempt to provide a better understanding of regime-dependent predictability
over the YHRV. Both Smm and Smo [15,32] are considered separately to assess the spatial spread–skill
for the CSEF derived from flow-dependent ICPs in combination with LBPs. The 1 h precipitation with
pre-defined precipitation thresholds (1 mm/h to represent light precipitation events and 5 mm/h to
represent stronger events) was used for calibration.

Figure 4 displays the case- and time-averaged spatial distribution of Smm (Figure 4a–d) and Smo

(Figure 4e–h) for different precipitation thresholds (Figure 4a,c,e,g for 1 mm/h and Figure 4b,d,f,h for 5
mm/h) and different convective regimes (Figure 4a,b,e,f for SF and Figure 4c,d,g,h for WF). Overall, the
EAS is larger near the center of convection and gradually increases with decreasing precipitation. This
indicates that the EAS method behaved as expected in this study [15]. Additionally, the EAS values of
the main EAS centers at higher latitudes under SF are generally lower than those at lower latitude
under WF, revealing a higher spatial predictability. This finding is similar to those of Dey et al. [32]
and Chen et al. [16], who found that EAS is higher for large coverage precipitation events than for
small coverage events. Although we employed a different classification method in this study, the SF
(WF) cases were found to correspond well with the larger (smaller) precipitation (see Figure 3) events
as in Dey et al. [32] and Chen et al. [16].
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time for (a,b,e,f) SF events and (c,d,g,h) WF events, with precipitation thresholds of (a,c,e,g) 1 mm/h
and (b,d,f,h) 5 mm/h. The red contours show the case-averaged 12 h accumulated precipitation which
is indicative of moist areas.

Considering the overall spatial spread–skill relationship (Figure 5), Smm is generally lower than
Smo in the convective region. As shown by the large-area negative bias for both SF and WF, this
indicates the under-dispersion issues and is consistent with the findings of Chen et al. [16]. Moreover,
the difference between Smm and Smo is generally larger for the WF events than for the SF events,
especially in mountainous regions. This indicates that the uncertainties for warm-sector convective
events are more difficult to estimate than those for typical convective events dominated by the Meiyu
front [68], and that the SF events are generally better predicted.
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Figure 5. Case-averaged spatial distribution of [Smm–Smo] averaged over the 1–12 h lead time for
(a,b) SF events and (c,d) WF events, with precipitation thresholds of (a,c) 1 mm/h and (b,d) 5 mm/h. The
red contours show the case-averaged 12 h accumulated precipitation which is indicative of moist areas.

To further investigate the temporal characteristics of the spatial spread–skill, Figure 6 illustrates
the evolution of the domain-averaged Smm and Smo and their standard deviations for SF (top row
of Figure 6) and WF events (bottom row of Figure 6) over 12 h. In general, the domain-averaged
mean Smm is smaller than the domain-averaged Smo in both regimes for the same lead time, which
indicates under-dispersion of the CSEF [16,32], with the evolution trend being steeper under WF
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than under SF. This suggests that it is desirable to preserve some information in the post-processing
processes. The evolution trend of deviation for Smm and Smo has a larger range for SF events at early
lead times (1–5 h) and for WF events at later lead times (6–12 h), especially for the higher precipitation
threshold (Figure 6b,d). This can be explained by the upscale growth of initial error. As documented in
previous studies, the flow-dependent initial error can grow rapidly in moist regions driven by moisture
dynamics [11,12,69]. Specifically, the rapid displacement of individual cells driven by large-scale forced
air ascent around the Meiyu front promotes the upscale error growth of initial small errors [44] and
can lead to higher variation of EAS while reaching saturation within early lead time. On the contrary,
warm-sector events, which are generally driven by local factors (such as orographic, radiative, or
cold-pool factors) [57,66], can lead to consistent local error growth [43,69]. Thus, the EAS shows a
larger variation with time, posing challenges for the forecasting of such events.
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represent the standard deviations of different events within certain categories; the red and blue shaded
areas represent Smm and Smo, respectively.

3.3. Verification of Probability Forecasts

Since the regime-dependent spread–skill relationship was found to be highly relevant to the
spatial predictability, with a lower spread–skill being associated with lower predictability (i.e., a higher
EAS in moist areas), convective events with a lower spatial predictability are associated with a lower
grid-based probability. Except for the decay at the maximum probability value (where most ensemble
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members matched well), the traditional NEP underestimates the probability of precipitation in the
small region with the spatial filter. Therefore, in order to achieve regime-dependent predictability in
the YHRV (as discussed in Section 3.2) as a result of the growth of nonlinear convective-scale error,
the OBJ_NEP method was developed and verified using both idealized experiments and ensemble
outputs from WRF-EnKF systems.

3.3.1. Idealized Experiment

First, an idealized experiment was conducted to obtain a better understanding of the advantages
and disadvantages of each probabilistic method (GP, NEP, EAS_NEP, and OBJ_NEP). Under a highly
idealized condition, two independent events were simulated over the YHRV region (Figure 5a): the
first event (OBS1) occurred at a higher latitude and over a larger area, and could be predicted by
most ensemble members (greater overlaps) in the CSEF with allowable spatial error, representing the
approximate condition of SF (Figure 4a); the second event (OBS2) had a smaller area and occurred at
a lower latitude between Tapie Mountain, Huang Mountain, and Mubu Mountain, representing the
approximate condition under WF with a lower predictability (only three of the 20 ensemble members
capture the cell). At most times, such idealized conditions will not occur. Therefore, the predictive
ability of the ensemble members will not be as good (poor) for the former (later) conditions. Both the
ensemble members and observations were depicted as simple binary geometric objects with different
sizes, representing the binary convection forecasts with a certain precipitation threshold [15].

For OBS1, GP gave higher probabilities, exceeding 60% at the maximum center (Figure 7a),
while NEP (Figure 7b), EAS_NEP (Figure 7c), and OBJ_NEP (Figure 7c) had more overlap with OBS1
than GP, indicating that these methods were more effective at representing spatial uncertainties, as
expected [26]. Specifically, among the three fraction-based methods, EAS_NEP was the most able to
retain the maximum center.Atmosphere 2018, 9, x FOR PEER REVIEW  12 of 20 
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For OBS2, for which there are only a few predictable members, GP exhibits lower probabilities
(only exceeding 10–20%). Under these circumstances, the EAS is so large that the probabilistic forecasts
are almost filtered out for NEP (Figure 8b) and EAS_NEP (Figure 8c). However, the newly proposed
OBJ_NEP method (Figure 8d) shows a better description of OBS2, retaining the smaller forecast objects
with a linear dependence between the influence radius and the objects’ size.Atmosphere 2018, 9, x FOR PEER REVIEW  13 of 20 
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Figure 8. Graphs of Fractions Brier Skill Score (FBSS) as a function of spatial scale (km) for the NEP
(black curve), EAS_NEP (blue curve), and OBJ_NEP (red curve) approaches for the idealized experiment.
GP was used as the reference forecast.

To assess the performance of different probabilistic forecasting approaches, plots of the fractions
Brier skill score (FBSS) of different probabilistic forecasts as a function of spatial influence scale were
created over the inner domain (Figure 8; LBCs excluded). The observation probabilities were generated
at each spatial scale, and the GP was used as the reference forecast in Equation 7. Generally, the three
fraction-based methods outperform GS, except for NEP and EAS_NEP at spatial scales lower that
6 km. Compared with other approaches, the FBSS curve for OBJ_NEP implies obvious advantages.
The OBJ_NEP method effectively shows both maximum centers and spatial uncertainties for OBS1 and
retains the small-area probabilities for OBS2. In conclusion, OBJ_NEP combines the advantage of GP
for retaining the small-area information and the advantage of EAS_NEP for employing an adaptive
radius to each grid.

3.3.2. WRF-EnKF CSEF Experiment

To further verify the effectiveness of OBJ_NEP in ‘real’ case studies, probabilistic methods were
objectively compared using outputs from WRF-EnKF (Section 2.2). The radius for EAS_NEP was
obtained from the Smm in Section 3.2 (range from 4 to 64 km), while the NEP was calculated using a
medium radius of 32 km to avoid substantial decay at maximum probability centers. For OBJ_NEP,
the radius range was also chosen to be between 4 and 64 km, i.e., corresponding to that of EAS_NEP.
Bootstrap confidence intervals at the the 90% level for the difference between each spatial-based method
and the GP were computed using 1000 replications to assess the statistical significance. A relatively
low confidence level was chosen due to the limited number of cases for each subset, and follows the
choice of Johnson and Wang [53].

Plots of FBS as a function of horizontal scale and forecast lead time were created for precipitation
thresholds of 1 mm/h and 5 mm/h under SF and WF, respectively (Figure 9). The corresponding
probability of observation was generated for spatial scales of 0, 12, 24, 36, 48, and 60 km. In general, all
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of the spatial-based methods showed clear advantages over the traditional GP method, with most of
the areas passing the 85% significance level. These advantages are basically related to early lead times
with larger spatial scales, due to the fact that the dispersion for ensemble members is generally lower
at early lead times, when the spatial-based probability captures more spatial uncertainties (this could
also explain the advantages at larger scales) without apparent decay at high-confidence probabilistic
centers. However, at later lead times, with the consistent growth of initial error characterized by moist
convection and large-scale flow [70], the ensemble members gradually evolve in different directions,
leading to lower probabilistic values. Under such circumstances, the effect of added uncertainties
extracted with spatial-based methods is clearly reduced [31].

1 
 

 

Figure 9. Differences between the fractional Brier score (FBS) of (a,d) NEP and GP, (b,e) EAS_NEP and
GP, and (c,f) OBJ_NEP and GP with precipitation thresholds of (top) 1 mm/h and (bottom) 5 mm/h
under SF. The dotted areas show the 90% bootstrap confidence intervals.

Specifically, EAS_NEP (Figure 9b,e) shows the lowest skill at early lead time compared with NEP
and OBJ_NEP. This can be explained by the lower EAS value computed among ensemble members
(as depicted in Figure 6, the EAS generally increased with time). Since this research only focused
on uncertainties induced by IC and LBCs, the EAS_NEP should have better skill at early lead times
computed from CSEF outputs with consideration of model uncertainties [31]. At later lead times,
EAS_NEP has higher skill (especially for strong precipitation events with a threshold of 5 mm/h,
Figure 9e). This is due to the fact that, at later lead times with lower probability (owing to the upscale
error growth), the EAS could effectively retain the probabilities of potentially well-handled events with
the application of a smaller radius and adopt a larger radius for poorly-handled events. Additionally,
for weaker precipitation events (1 mm/h), EAS_NEP generally shows a lower FBS (Figure 9b) since
such incidents are generally excessively widespread in our analysis domain (as indicated in Figure 1b),
which leads to a strong constraint of probabilistic skills for EAS_NEP.

The new method, OBJ_NEP (Figure 9c,f), generally obtained a higher FBS, with most areas
passing the 90% significance test. During the entire forecast, OBJ_NEP showed an advantage over
NEP (Figure 9a,d) at small scales (less than 36 km) for both weak and strong precipitation events. This
is due to the effective retaining of smaller-scale forecasting objects with an adaptive object-selective
radius, as well as the sufficient representation of spatial uncertainties for larger-scale objects.
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For the WF events (Figure 10), the overall advantages of the three spatial-based methods over
GP were much weaker than those for the SF events (Figure 9). This can be explained by the lower
predictability and under-dispersion issues of the CSEF (see Figures 4 and 5). Additionally, the variation
in skill between the spatial-based approaches is similar to that for SF events, further demonstrating the
effectiveness of OBJ_NEP.

1 
 

 

Figure 10. Differences between the fractional Brier score (FBS) of (a,d) NEP and GP, (b,e) EAS_NEP
and GP, and (c,f) OBJ_NEP and GP with precipitation thresholds of (top) 1 mm/h and (bottom) 5 mm/h
under WF. The dotted areas show the 90% bootstrap confidence intervals.

Furthermore, the AUC score was analyzed as a function of forecast lead time (Figure 11) in order
to evaluate the discriminatory ability of GP, NEP, and the two mutative-scale methods. Generally,
except for GS at later forecast lead times (Figure 11c,d), the AUC scores for both probabilistic forecasts
were greater than 0.7, indicating “useful” forecasts [17]. Moreover, the AUC scores decreased with
time, representing the decrease of predictability with consistent error growth.

Regarding the variation of the convective regime, the AUC scores under SF were generally
higher (lower) than those under WF within 1–2 h (2–12 h), highlighting the lower predictability of
convection under WF. This result is in accordance with the evolution of EAS (Figure 6) and with
previous studies [61,71]. It was also observed that the AUC score of GS was clearly lower under WF
than under SF, and that the spatial-based methods solved the decay to similar degrees, implying the
necessity to apply such methods during the post-processing of CSEFs, especially under WF conditions.

As with the FBS, both of the three spatial-based approaches showed advantages over GS. The
associated differences in probabilistic forecast were statistically significant at almost all lead times in
both SF and WF regimes, except for SF events with a precipitation threshold of 1 mm/h. Additionally,
the three spatial-based methods all led to an eventual divergence with GS, again highlighting that the
spatial-based post-processing method can be used to increase the probabilistic forecast skill [17,31].
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4. Discussion and Conclusions

This study investigated the regime-dependent spatial predictability and spread–skill relationship
in terms of the ensemble agreement scale (EAS) [15,32] over the Yangtze and Huai river valleys
(YHRV) using WRF-EnKF convective-scale ensemble forecasts (CSEFs). Furthermore, an object-based
probabilistic approach was proposed to fully utilize the spatial-based method as a supplement to
the NEP [17] and EAS_NEP [31]. Since CSEFs have been more frequently implemented in recent
years, these two goals can aid the better understanding of spatial-based post-processing methods. The
contribution of our study to these two goals is as follows:

(1) Using the convective adjustment timescale proposed by Done et al. [60] to distinguish convective
regimes as strong forcing (SF) and weak forcing (WF) events over the YHRV;

(2) Applying the EAS proposed by Dey et al. [15,32] to assess the spatial predictability and spread–skill
under different convective regimes;

(3) Offering a new probabilistic forecast approach using an object-based method, fully considering
regime-dependent predictability;

(4) Verifying the effectiveness of the new probabilistic forecast approach in both idealized and true
events using the fraction Brier score (FBS) and area under curve (AUC) score.

Our results show that the precipitation characteristics are regime-dependent over the YHRV in the
warm season. Convective events under SF were found to generally develop along the Meiyu front, in
accordance with Sun and Zhang [36]. However, events under WF were found to mainly develop at
lower latitudes around Tapie, Huang, and Mubu mountains (i.e., the warm sector of the YHRV [68]).
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Additionally, the associated spatial predictability and spread–skill relationship were also found to
be regime-dependent. Regarding the spatial predictability, WF events showed less predictability than
SF events, as the EASs in the moist area are generally smaller under SF. These findings are consistent
with Dey et al. [32] and Chen et al. [16], thus supporting the effectiveness of the EAS employed in
this study. Regarding the spread–skill relationship, both SF and WF events showed under-dispersion
issues [11,16], suggesting the need to employ a spatial-based approach to post-processing processes of
CSEFs. Moreover, divergence was induced by the time variation of EAS between SF and WF, with the
WF (SF) phase having a higher (lower) growth rate and a wider (narrower) trend of deviation among
each subset. This can be explained by the dynamics of nonlinear upscale error growth [43,71].

Fully considering regime-dependent features, a new spatial-based probabilistic method (OBJ_NEP)
based on a combination of object- and fraction-based methods was proposed to aid the understanding of
the post-processing of CSEFs implemented in the YHRV. This new method was assessed using a highly
idealized scenario in which a precipitation event with larger (smaller) coverage occurred at higher
(lower) latitudes in the YHRV. Although location bias was present, the ensemble members appropriately
captured the larger-coverage event; however, only a few members captured the smaller-coverage
event. The results show that OBJ_NEP captures both the large-coverage and small-coverage events,
while NEP and EAS_NEP do not capture the small-coverage event due to spatial filtering. Further
comparison between these probabilistic methods for a ‘real’ scenario using the FBS demonstrated
that OBJ_NEP has advantages over NEP at a smaller scale during almost the entire forecast range for
both high- and low-impact precipitation events. This advantage is more notable under WF, when
severe weather is rare and typically occurs over smaller spatial and temporal scales, revealing that
the effective retaining of higher-value and smaller-scale probabilistic information is important. This
conclusion could be further supported by the implementation of EAS_NEP, as this model shows more
skill under WF with high-impact events than that under SF [17]. Additionally, although only small
differences in AUC score were observed among the three spatial-based approaches, NEP, EAS_NEP,
and OBJ_NEP all had significantly higher AUC scores than GP.

The results of this study further showed that EAS_NEP does not have superior object verification
compared to the traditional NEP method. This may be due to the fact that CSEFs used in this study
have lower dispersion than that used in Blake et al. [32] due to OSSE configuration, which leads to
a restraint of EAS, especially for early forecast lead times. In future research, we plan to apply and
compare the three fraction-based probabilistic approaches, NEP, EAS_NEP, and OBJ_NEP using the
2018 CAPS (Center for Analysis and Prediction of Storms) Spring Forecast Experiments. The products
from these experiments have a 3-km grid spacing over the CONUS domain, with ICPs (derived from
GSI-EnKF radar assimilation), LBPs (derived from NCEP short-range ensemble forecast products), and
a multi-physics configuration, and can provide a more reasonable ensemble spread over a sufficiently
large domain.
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