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Abstract: This study aims to address hydrological processes and impacts of an atmospheric river (AR)
event that occurred during 15–18 February 2004 in the Russian River basin in California. The National
Water Model (NWM), a fully distributed hydrologic model, was used to evaluate the hydrological
processes including soil moisture flux, overland flow, and streamflow. Observed streamflow and
volumetric soil water content data were used to evaluate the performance of the NWM using various
error metrics. The simulation results showed that this AR event (15–18 February 2004) with a long
duration of precipitation could cause not only deep soil saturation, but also high direct runoff depth.
Taken together, the analysis revealed the complex interaction between precipitation and land surface
response to the AR event. The results emphasize the significance of a change of water contents in
various soil layers and suggest that soil water content monitoring could aid in improving flood
forecasting accuracy caused by the extreme events such as the AR.
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1. Introduction

An atmospheric river (AR), suggested by Reference [1], represents relatively long, narrow flows
of precipitable water that move like a river, transporting water vapor from the tropical regions to
outside of the mid-latitudes [2–4]. An AR is typically several thousand kilometers long and several
hundred kilometers wide and may have a flow of water greater than that of the Amazon River, which
is the largest river in the world [2]. ARs were observed in the United States (US) [5–7], Europe [8,9],
and Asia [10–12]. In California, along the west coast of the US, AR impacts are a double-edged
sword [13]; ARs account for approximately half of the state’s annual precipitation and are a vital
water supply source for this region where frequent droughts occur, but ARs also cause frequent
flood damage by triggering exceptionally heavy rainfall. Along the US west coast, the interaction
of AR water vapor transport with steep orographic terrain often leads to complex heavy rainfall
events with multiple pulses of intense rain embedded in a background of more uniform stratiform
precipitation. The continuous supply of the AR water vapor has considerable hydrologic effects by
causing precipitation of a very long duration [14].
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The AR event that affected the San Francisco Bay area in 2004 illustrates the possible scale of the
impact of a single AR [5]. It brought heavy rains with strong winds, causing damage such as coastal
and inland inundations, road closures, air traffic controls, and landslides in several areas. ARs are
expected to cause more extreme weather phenomena around the world by the end of the 21st century.
According to a recent report by the National Aeronautics and Space Administration (NASA) [15],
if greenhouse gases continue to be emitted at the current rate, ARs will become 25% wider and longer
than they are now. They also projected that AR phenomena will happen more frequently around the
world and, as a result, extreme precipitation and storm events will increase by approximately 50%.
This is also a message urging for more research to better understand the hydrologic impacts from
extreme weather events enhanced by ARs that are expected to increase in the future.

There was an increase in the number of studies addressing the background, movement,
and hydrometeorological characteristics and effects of ARs in the western US [5,7,16–18], central
US [19,20], and other countries [4,12,21] where flood damage caused by ARs is becoming more frequent.
Some studies examined the hydrological impacts of ARs based on observation data [14,22,23]. These
studies investigated the effects of precipitation enhanced by ARs on the near surface moisture flux and
runoff flow. In particular, 43% of the annual maximum floods between 1979 and 2009 were caused by
ARs, of which 25% had frequencies exceeding 10 years [14].

The National Oceanic and Atmospheric Administration (NOAA) is carrying out the Advanced
Quantitative Precipitation Information (AQPI) project to assess potential improvements in precipitation
monitoring and short-term forecasts using new high-resolution radar systems to supplement
Next-Generation Radar (NEXRAD) coverage over the San Francisco (SF) Bay urban region. The AQPI
information is expected to aid water agencies in the nine counties in the SF Bay area to mitigate
flood damage by extreme heavy rain events including ARs [24,25]. The AQPI system will also
assess the impact of high-resolution precipitation on hydrologic forecasts from the NOAA National
Water Model (hereinafter referred to as NWM) which is in operation throughout the US since 2016.
The NWM has a high resolution (1 km) and is expected to be especially useful to water agencies for
small watersheds that currently have no hydrologic information. Because the NWM is physically
based, the model can be used to better understand the linkage between land surface and surface flow
processes. The NWM is expected to overcome the physical limitations (e.g., deep soil flux analysis and
hyper-resolution-based surface flow tracking) of observation-based analysis in terms of understanding
the hydrological processes.

The high-resolution hydrological products generated by a hydrological model provide a basis for
the spatiotemporal analysis of the hydrological impacts. For the AR events, it is critical to examine the
effects on various hydrological processes due to the AR heavy rainfall occurrence characteristics that
are different from general heavy rainfall events. This study aims to introduce the NWM in the NOAA
hydrological prediction system, which is to mitigate flood damage by extreme heavy rain events
enhanced by the ARs as part of the AQPI project. For this purpose and as a case study, hydrological
products simulated by the NWM are introduced and validated using an AR event which caused
considerable damage to California state in the United States. The case study is to present a brief
overview of the NWM performance to streamflow and soil moisture simulations. In the performance
review, the suitability of the NWM for AR analysis is examined by comparing the simulated soil water
contents and streamflows produced by the NWM with the observed data. The impacts of the AR on
hydrological processes that occurred on 15–18 February 2004 are examined using various hydrological
outputs from the NWM including volumetric soil water content, direct runoff, and streamflow.
The target area of this study is the Russian River basin in north San Francisco, California.

This paper is composed of four sections including the Introduction and Conclusions. Section 1
describes the background and purpose of this study. Section 2 explains the background knowledge
of AR and the methodology of the NWM. Section 3 outlines the verification results for the model
and the analysis results of the hydrological impacts of AR events. Finally, Section 4 summarizes the
conclusions derived from this study.
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2. Materials and Methods

2.1. Atmospheric River

ARs represent narrow atmospheric bands of water vapor transports that mainly occur in the air
of the midlatitudes [1]. According to Reference [4], ARs not only contain a large amount of water
vapor and feature strong low-level winds, but they also form part of the warm conveyor belt of an
extratropical cyclone (Figure 1). ARs are known as a cause of fatal floods and landslides due to the
continuous inflow of vapor leading to large amounts of precipitation for a long duration.
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Figure 1. Integrated water vapor (cm) carried by the atmospheric river of 15 February 2004 on the west
coast of the United States (US).

There are two typical methods of detecting ARs. The first method is based on the detection of the
integrated water vapor (IWV). An AR is defined as a water vapor transport where the cross-section of a
2-cm or larger IWV plume is narrower than 1000 km and longer than 2000 km [3]. The second method
is based on the detection of the vertically integrated water-vapor transport (IVT). An AR is defined
as having an IVT ≥250 kg·m−1

·s−1 that occurs in an area where the atmospheric pressure is between
300 and 1000 hPa [2]. The thresholds required for the AR detection can be determined using remote
sensing data acquired from satellites, zonal and meridional vapor flux reanalysis data, and AR models.

2.2. National Water Model

The NWM is a high-resolution hydrological model run over the conterminous US (CONUS) to
enhance hydrologic forecasting capabilities at different lead times. The core of the NWM system
is the National Center for Atmospheric Research (NCAR)-supported community Weather Research
and Forecasting Hydrologic model (WRF-Hydro). The NWM delivers streamflow forecasts on the
2.7 million river reaches of the United States Geological Survey (USGS) NHDPlus v2 hydrography
dataset, as well as gridded analyses of a host of other hydrologic variables (e.g., soil water contents at
various depths). The NWM simulates the water cycle with mathematical representations of the different
hydrologic and land surface processes and how they fit together to distribute water at the surface and
subsurface [26]. Figure 2 shows the hydrological architecture and hydrologic processes included in the
NWM. The model includes a forcing engine for handling various data (e.g., precipitation rate, surface
pressure, short and long-wave radiations, vertical and horizontal winds, temperature, and specific
humidity), land surface model for soil flux, terrain routing for hillslope surface flows, channel routing
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based on the National Hydrography Dataset (NHD) plus a channel network, and a reservoir inflow
and outflow simulation process. This complex representation of physical processes such as snowmelt
and the infiltration and movement of water through the soil layers varies significantly with changes
in various factors such as the elevation, soil, and vegetation. Additionally, extreme variability in the
amount of precipitation over short distances and times can cause the responses of rivers and streams
to change very quickly. For the detailed methodology background, readers can refer to the WRF-hydro
technical description and user’s guide [27].
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The forcing engine ingests the requisite hydrologic forcing from a variety of sources including
multi-radar/multi-sensor system (MRMS) radar-gauge observed precipitation data, high-resolution
rapid refresh (HRRR), rapid refresh (RAP), global forecasting system (GFS), and climate forecast
system (CFS) numerical weather prediction (NWP) forecast data. WRF-Hydro is configured to use
the Noah-MP Land Surface Model (LSM) to simulate land surface processes. Separate water routing
modules perform diffusive wave surface routing and saturated subsurface flow routing on a 250-m
grid, and Muskingum–Cunge channel routing down National Hydrography Dataset (NHDPlusV2)
stream reaches. River analyses and forecasts are provided across a domain encompassing the CONUS
and hydrologically contributing areas, while the land surface output is available for a larger domain
extending beyond the CONUS into Canada and Mexico (roughly from latitude 19◦ north (N) to 58◦ N).
The system includes analysis and assimilation configuration along with three forecast configurations.
The USGS streamflow observations are assimilated into the analysis and assimilation configuration,
and all four configurations benefit from the inclusion of 1260 reservoirs.

2.3. Hydrological Products Provided by NWM

Various hydrological products (e.g., soil water content, direct runoff, and streamflow) of the
NWM provided by the NOAA National Water Center are used. The NWM hydrologic products
used in this study were from a standalone simulation which was not coupled to an atmospheric
model as it was a retrospective analysis simulation based on observed meteorological forcings. The
land data assimilation system’s meteorological forcings are used as inputs and 1992 is used as the
spin-up period. The hydrological products are public to all users and are available at Environmental
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Data Commons (http://edc.occ-data.org/nwm/getdata/#archive-data-access). It provides streamflow
(an hourly time step for each channel segment), lake and reservoir-related products (an hourly time
step for each waterbody), land surface model outputs (three-hourly time step and 1-km resolution),
and ponded water depth and soil saturation outputs (three-hourly time step and 0.25-km resolution).
These products are available for 25 years (1 January 1993–31 December 2017).

Hydrological products (HP) are required to represent complex hydrological processes. Table 1
lists the features of the HPs generated by the NWM. The LSM uses 1.0-km grids and generates the
simulation results for the HPs. HPs corresponding to grid data include volumetric soil water content,
evapotranspiration, and snow-related variables. The soil water content is provided for a total of four
soil layers (layer-1: 0–100 mm; layer-2: 100–400 mm; layer-3: 400–1000 mm; layer-4: 1000–2000 mm),
making it possible to examine the flux between the top soil layer and the deep soil layer. HPs based
on 250-m grids include ponded water depth, which represents the direct runoff, and depth to soil
saturation, which represents the saturation state of the soil.

Table 1. Features of hydrological products produced by the National Water Model (NWM).

Type Size Variable Unit Others

Grid
1 km

Soil moisture saturation for
four layers fraction Volumetric soil water

content (m3/m3)
Accumulated

evapotranspiration mm -

Snow temperature K -
Column-averaged snow

cover fraction fraction -

Snow water equivalent km/m2 -
Snow depth m -

250 m
Ponded water depth mm Direct runoff depth

Depth to soil saturation m -

Point -

Streamflow m3/s Discharge
Velocity m/s -

Channel inflow m3/s Discharge
Reservoir

elevation/inflow/outflow m and m3/s
Water level and

discharge

The HPs corresponding to point data include the discharge, velocity, and channel inflow stream
of each channel segment. Reservoir HPs include the water level, which is a state variable, inflow
discharge to the reservoir, and outflow, which is the released water.

In this study, the simulated streamflow data (hourly) during 15–18 February 2004 and simulated
soil water content data (three-hourly) from the NWM for 2017 were used for NWM verification. Also,
hydrological outputs (soil moisture saturation, ponded water depth, and streamflow) provided by
NWM were used to analyze the hydrological impact of the AR (15–18 February 2004).

2.4. Data

2.4.1. Study Area

The Russian River basin straddles Sonoma and Mendocino Counties in California (Figure 3).
The basin has a drainage area of approximately 3,465 km2 above USGS gauge 11467000. Figure 3a
shows the accumulated precipitation map of the target AR event resulted from the tropical rainfall
measuring mission (TRMM). The event primarily impacted northern California and generated a
total precipitation of 146 mm in the Russian River basin. Note that the 146-mm total represents an
average across the watershed. The amounts of total rainfall vary considerably across the basin due to
orographic enhancement of precipitation in the higher-terrain regions compared to the low-lying areas,
consistent with previous studies of precipitation in this area [24,29–31]. This precipitation event caused

http://edc.occ-data.org/nwm/getdata/#archive-data-access
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heavy runoffs on the Russian River, which exceeded flood level at Guerneville on 18–19 February
2004 [5]. Also, the occurrence of AR events leading to extreme precipitation is not a one-time event
but a phenomenon observed several times each year. According to Reference [32], 65 AR events were
observed in the California coast area between 2005 and 2008.
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Figure 3b shows the USGS gauge locations and stream channel network on a digital elevation
model (DEM). The elevations within the drainage area range from 24 m at the gauge outlet near the
Pacific Ocean to 880 m at the headwaters along the eastern edge of the basin. Higher elevations within
the basin are characterized by forested areas with some concentrated areas of rangeland. Major cities
along the Russian River include Ukiah (population 16,075) and Healdsburg (population 11,254). In the
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Russian River basin, there are two lakes, Mendocino and Sonoma, which are critical to providing flood
control and supplying water to meet water usage requirements and minimum stream flows. The lakes
are regulated by the Coyote Valley Dam and Warm Springs Dam, respectively.

In addition, the NWM was updated as several versions such as 1.1 and 1.2 (for this study), and the
updates include new watersheds calibrated. However, the calibration process for the Russian River
basin is underway. Kim et al. [33] evaluated the NWM retrospective performance in the San Francisco
Bay area for five years (2013–2017 year). Although the study was not able to address the NWM
performance depending on the watersheds calibrated, it confirmed that the NWM performance in the
Russian River basin varies with watershed sizes, regulations by hydrologic facilities, and storm features.

2.4.2. Observation Data

Table 2 lists the USGS stream gauges and soil water content observatories in the Russian River
basin used to verify the performance of the model. The gauges represent sub-basin areas ranging
from a few tens of kilometers to several thousand kilometers. Of the ten gauge sites in Table 2, six are
located in relatively natural regions, which are not regulated by hydrologic structures, with sub-basin
size ranging up to a few hundred square kilometers. The remaining four sites are larger and are located
in sub-basins regulated by upstream reservoirs. In the case of the soil water content, six observation
points were used to evaluate the model performance. The points represent elevation ranging 39–972 m
and provide the observed soil water content data for a soil depth of 10 cm. The Russian River basin
is subject to periodic flooding by ARs due to a combination of its geographical location along the
US west coast and the result of steep terrain in the watershed. Parameter-Elevation Regressions on
Independent Slopes Model (PRISM) data [34] state that the average annual precipitation in the basin
ranges from about 938 to 1635 mm, and 83% of the annual average precipitation occurs during the wet
season (generally, November–March).

Table 2. United States Geological Survey (USGS) stream gauges and soil water content observation
sensors used in this study. ID—identifier; N/A—not applicable.

Station ID
(USGS)

Drainage
Size (km2)

Elevation
(m)

Location
Flow Type Lake Available

PeriodLatitude (◦) Longitude (◦)

11467000 3465.4 6.2 38.5086 −122.9266 Regulated Mendocino/
Sonoma October 1987

11464000 2053.9 23.9 38.6133 −122.8352 Regulated Mendocino October 1987
11463000 1302.8 N/A 38.8790 −123.0530 Regulated Mendocino October 1989
11462500 937.6 154.3 39.0270 −123.1310 Regulated Mendocino October 1987
11461000 259.0 185.8 39.1960 −123.1940 Natural N/A November 1987
11461500 238.8 244.2 39.2466 −123.1291 Natural N/A October 1987
11466320 201.0 N/A 38.4452 −122.8061 Natural N/A December 1998
11467200 162.7 12.4 38.5066 −123.0686 Natural N/A October 2003
11466200 147.6 31.0 38.4366 −122.7236 Natural N/A December 2001
11463170 33.9 4.1 38.7977 −122.8013 Natural N/A October 1987

Site Name (Soil Water Content
Observation) Latitude (◦) Longitude (◦) Elevation

(m) Observation Start Date

Lake Sonoma 38.7187 −123.0537 396 17 December 2010
Middletown 38.7456 −122.7112 972 10 December 2014

Potter Valley—West 39.3204 −123.1801 518 26 May 2016
Rio Nido 38.5073 −122.9565 39 2 December 2006

Redwood Valley—North 39.3406 −123.2297 294 25 May2016
Redwood Valley—West 39.3014 −123.2601 631 26 May 2016

3. Results

3.1. Model Verification

The streamflow simulation results were evaluated using the hourly observed streamflow data for
the ten USGS stations. The period of the verification date was from 15 to 18 February 2004. Figure 4
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shows the box–whisker plots for the simulation results of five error indices, namely, the correlation
coefficient (CC), Nash–Sutcliffe efficiency (NSE), percent bias (PBIAS), peak flow (PF), and time to
peak (TP) errors. The equations of the error indices are as shown below (Table 3).
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Figure 4. Box–whisker plots of error indices for evaluation of the NWM performance. The hourly
streamflow data (15–18 February 2004) and five indices (correlation coefficient (CC), Nash–Sutcliffe
efficiency (NSE), percent bias (PBIAS), peak flow (PF) (%), and time to peak (TP) (h)) were used for
evaluation. These plots show the distribution of the values of error of simulated streamflow data.
The red spotted line means the ideal value of each index (e.g., simulated value is perfectly fit to the
observation).

Table 3. Statistics for evaluation of NWM simulation results.

Error Indices Acronym Equation

Correlation coefficient CC
∑
(Qsim−Qsim)(Qobs−Qobs)√∑

(Qsim−Qsim)
2
√∑

(Qobs−Qobs)
2

Nash–Sutcliffe efficiency NSE 1−
∑
(Qsim−Qobs)

2∑
(Qobs−Qobs)

2

Percent bias PBIAS (
∑
(Qobs −Qsim)) ÷

∑
Qobs × 100 (%)

Bias BS (
∑

Qsim ÷
∑

Qobs) × 100 (%)

Time to peak error TP Tobs − Tsim

Peak flow error PF ((Max(Qobs) − Max(Qsim)) ÷Max(Qobs)) × 100 (%)

The accuracy of the simulation results was generally high. Most CCs were higher than 0.8, and the
NSE ranged from −0.25 to 0.75. In particular, most NSE results were higher than 0.0, indicating that
the simulated streamflow exhibited an acceptable level of performance compared to the average of the
observed streamflow. For PBIAS, the first to third quantiles belonged to the 15–30% range, indicating a
low runoff volume error. The range of error in peak flow was from −50% to 50%, indicating that the
model does not simulate the peak flow rate well compared to the observed discharge. The peak time
error was also less than 3.5 h in most locations, and the largest error in peak time was about 27 h at one
station (e.g., USGS gauge 11463170).

Figure 5 shows the hydrograph of the hourly simulated and observed streamflow data for the
ten stations. Most hydrographs show that NWM simulated the tendency properly but there were
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differences between peak flows. The overall coefficient of determination (R-squared, R2) was found to
be 0.65 and the range of R2 was 0.23–0.91 for the 10 stations.

Atmosphere 2019, 10, x FOR PEER REVIEW 9 of 18 

 

differences between peak flows. The overall coefficient of determination (R-squared, R2) was found 
to be 0.65 and the range of R2 was 0.23–0.91 for the 10 stations. 

The difference in the results was found according to the reservoir operation effect and drainage 
area. In the stations affected by reservoirs and dams (Figure 5a–c), the observed hydrograph was a 
single peak, whereas two or more peak flows were simulated from the NWM. Reservoirs and dams 
reduce the peak flow in the downstream area by storing the runoff from the upstream area for flood 
control during the storm period. On the other hand, since the reservoir representation scheme of the 
present NWM does not reflect the actual reservoir operation, it discharges the reservoir inflow to the 
downstream. As a result, the simulated discharge was overestimated when the water was not 
actually discharged from the dam. However, the difference between two flows was not relatively 
large, and trends in flow and peak time were properly simulated. The average CC for these points 
was 0.88, R2 was 0.78, and TP was less than 2 h. 

In the case of watersheds with an area less than 1000 km2 (Figure 5d–j), the NWM simulated the 
trends well even though the observed hydrographs were complex, consisting of two or more peak 
flows. The average CC for these points was 0.77, R2 was 0.61, and TP was less than 5 h. Since 
calibration for the Russian River basin of the NWM is underway, calibration of parameters related to 
the antecedent soil moisture and direct runoff needs to be performed. In particular, the error indices 
at station 11463170 were 0.48 for CC, 0.23 for R2, and 27 h for TP, showing the poorest simulation 
results among the target stations. In addition, this station has the smallest drainage area and the 
steepest slope. 

 

Figure 5. Comparison of hourly observed (USGS) and simulated (NWM) streamflow data at the ten 
stations (15–18 February 2004). The line means the simulated streamflow by the NWM, and the dot 
means the observed streamflow at each station. (a–j) are ten stations in the Russian River basin 
listed in Table 2. 

2/15/04 2/17/04 2/19/04
0

400

800

1200

1600

2000

D
is

ch
ar

ge
 (c

m
s)

Obs
Sim

2/15/04 2/17/04 2/19/04
0

400

800

1200

1600

2/15/04 2/17/04 2/19/04
0

200

400

600

800

2/15/04 2/17/04 2/19/04
0

200

400

600

2/15/04 2/17/04 2/19/04
0

100

200

300

D
is

ch
ar

ge
(c

m
s)

2/15/04 2/17/04 2/19/04
0

50

100

150

200

250

2/15/04 2/17/04 2/19/04
Time (mm/dd/yy)

0

100

200

300

400

2/15/04 2/17/04 2/19/04
Time (mm/dd/yy)

0

100

200

300

400

500

2/15/04 2/17/04 2/19/04
Time (mm/dd/yy)

0

50

100

150

200

250

D
is

ch
ar

ge
(c

m
s)

2/15/04 2/17/04 2/19/04
Time (mm/dd/yy)

0

40

80

120

160

(a) (b) (c) (d)

(e) (f)
(g) (h)

(i) (j)

Figure 5. Comparison of hourly observed (USGS) and simulated (NWM) streamflow data at the ten
stations (15–18 February 2004). The line means the simulated streamflow by the NWM, and the dot
means the observed streamflow at each station. (a–j) are ten stations in the Russian River basin listed in
Table 2.

The difference in the results was found according to the reservoir operation effect and drainage
area. In the stations affected by reservoirs and dams (Figure 5a–c), the observed hydrograph was a
single peak, whereas two or more peak flows were simulated from the NWM. Reservoirs and dams
reduce the peak flow in the downstream area by storing the runoff from the upstream area for flood
control during the storm period. On the other hand, since the reservoir representation scheme of the
present NWM does not reflect the actual reservoir operation, it discharges the reservoir inflow to the
downstream. As a result, the simulated discharge was overestimated when the water was not actually
discharged from the dam. However, the difference between two flows was not relatively large, and
trends in flow and peak time were properly simulated. The average CC for these points was 0.88, R2

was 0.78, and TP was less than 2 h.
In the case of watersheds with an area less than 1000 km2 (Figure 5d–j), the NWM simulated

the trends well even though the observed hydrographs were complex, consisting of two or more
peak flows. The average CC for these points was 0.77, R2 was 0.61, and TP was less than 5 h. Since
calibration for the Russian River basin of the NWM is underway, calibration of parameters related to
the antecedent soil moisture and direct runoff needs to be performed. In particular, the error indices at
station 11463170 were 0.48 for CC, 0.23 for R2, and 27 h for TP, showing the poorest simulation results
among the target stations. In addition, this station has the smallest drainage area and the steepest slope.
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In this study, six situ soil water content data in the Russian River basin were manipulated to
evaluate the soil flux estimation performance of the NWM. Since all of the soil water content sensor data
in the Russian River basin were not available for the AR event in 2004 but available from 2016 onward,
the data observed from 1 January–31 December 2017 were used to compare with the NWM results.
CC, NSE, and bias (BS) were used as the three error indices for evaluation. Figure 6 shows the time
series and error indices (CC, NSE, and BS) for three-hourly soil water content. All error indices were
found to vary with season, and the difference in soil water content modeling performance between the
wet season (January–March and November–December) and dry season (April–October) was evident.
Also, the results of BS show that simulation performance was better in the wet season than dry season
when AR was frequently generated. In the wet season, the bias caused by the dramatic changes in
the soil water content were observed at Potter Valley—West, Rio Nido, and Redwood Valley—North
points, and the differences between the peak flow were also evident. In the case of Lake Sonoma,
BS showed 159.3%, indicating that the difference between observation and simulated results was
significant compared to other sites. In the dry season, soil water content was predominantly attenuated,
and the error between observation and simulated results was mostly due to bias. In particular, errors
were apparent in Lake Sonoma (BS 314.8%) and Rio Nido (BS 207.6%).
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Figure 6. Comparison of three-hourly observed and simulated soil water content data at the six stations
for 2017. Blue and red lines mean simulated soil water content during wet and dry seasons, respectively,
and dots indicate the observed soil water content data. (a–f) are six stations in the Russian River basin
listed in Table 2.
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3.2. Hydrological Impacts of the Atmospheric River

3.2.1. Overview

Figure 7 shows the observed IWV which was obtained from the NASA Modern-Era Retrospective
Analysis for Research and Application (MERRA) reanalysis, as well as precipitation and time-series
results for the soil water content, direct runoff depth (e.g., overland flow), and streamflow as simulated
using the NWM for the AR event (15–18 February 2004). The soil water content and direct runoff depth
were the area average values across the Russian River basin. The streamflow represents the hourly
discharge simulated for every stream channel segment in the basin. For the simulated streamflow,
time-series data scaled to the peak flow and non-scaled time-series data for 11467000 (outlet of the
Russian River basin) are both shown.
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Figure 7. Time-series results obtained with the NWM (15–19 February 2004). The results shown in
the figure include the integrated water vapor (cm) (a), precipitation (mm) (b), soil water content for
four layers (c), direct runoff depth (mm) (d), and streamflow discharge (e). The three periods, AP, P1,
and P2, indicate the antecedent precipitation time just before the AR event and two parts of the AR
event. Simulated results for (a–d) are area-averaged values over the entire domain, and (e) shows the
simulated discharge for USGS gauges in each stream.
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The four-day event with precipitation occurring everyday encompassed 15–18 February, and AR
began its impact on 16 February (IWV slightly above AR criterion of 2 cm—Figure 7a) with some
precipitation, but the main story was the two pronounced periods of enhanced precipitation on 16
and 18 February (Figure 7b) corresponding to larger pulses of the IWV above the AR threshold. The
precipitation peaks and trend were associated with trends of soil water content of topsoil layers
(Figure 7c), direct runoff depth (Figure 7d), and streamflow (Figure 7e). To highlight the hydrological
effects associated with different phases of the AR, the four-day time series in Figure 7 (97 h) was
divided into three periods (antecedent precipitation (AP), and two time points P1 and P2). The AR
precipitation where the IWV exceeded the AR criterion (IWV > 2 cm) occurred for a total of 47 h
(8:00 a.m. 16 February–6:00 p.m. 18 February). The AP had a duration of 24 h and 11.4 mm of
total precipitation. P1 continued for approximately 24 h, and the maximum hourly precipitation was
13.5 mm/h. P2 continued for approximately 23 h, and the maximum hourly precipitation was 7.13 mm/h.
As shown in the figure, the IWV and the precipitation trends were very similar. Furthermore, P1
dominated over P2 in terms of precipitation.

The NWM simulation of soil water content in the four soil layers is shown in Figure 7c. The soil
water content simulated from infiltrated precipitation during the AP period affected the soil water
content change of soil layers during the P1 period. Soil water content of topsoil layers (layers 1 and
2), which are drier than deep soil layer (layers 3 and 4), gradually increased due to the infiltrated
precipitation during the AP period. During the P1 period, precipitation had a major effect on the
change in the soil water content in layers 1 and 2 (the top soil layers), but the changes in the soil water
content level of layers 3 and 4 (the deep soil layers) were not significant (Figure 7c). The precipitation
that infiltrated during the P1 period played the role of increasing the soil water content of the deep soil
layer during the P2 period. Unlike during the P1 period, during the P2 period, the soil water content
level in layer 4 exhibited an increasing trend, and this led the changes in the upper layers. In particular,
the increasing trend in the soil water content of layers 1 and 2 became identical to that of layer 4. This
corresponds to the physical phenomenon whereby the percolation rate in the deep soil layers increases
as a result of continuous water infiltration, while the infiltration rate of the topsoil layer decreases. The
phenomenon is very normal when considering infiltration and percolation rates by time [35]. P1 and
P2 showed clear differences in the saturation rate by the soil layer. Table 4 lists the saturation rates
(a change in saturation/hour) of the four soil layers by the AR period. In P1, the saturation rates of
layers 1 and 2 were higher than 0.05, indicating rapid changes, but the saturation rate of layer 4 was
0.005, indicating almost no change. In P2, the saturation rates of the four soil layers ranged from 0.0103
to 0.0164, indicating a very low variability and generally similar saturation rates. Based on the above
results, it was demonstrated that a complex heavy rainfall enhanced by the AR is the most significant
threat to floods as it has not only a long duration, but also enough water to saturate soil layers. This
feature of AR rainfall events causes changes in the soil water content of the deep soil layer, which plays
a role in determining percolation rate, and this decreases the infiltration rate of the topsoil layer due
to the interaction with percolation process. Consequently, this process leads rainfall to higher direct
runoffs as time progresses.

Table 4. Saturation rates depending on soil layers and atmospheric river (AR) periods. The values are
areal averages over the Russian river basin.

Layer Saturation Rate (Change in Soil Water Content in an Hour)

P1 P2

1 0.0527 0.0125
2 0.0597 0.0103
3 0.0340 0.0129
4 0.0052 0.0164
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The direct runoff depth (DRD) showed the same increasing and decreasing trends as the hyetograph,
and peak values in P1 and P2 (Figure 7d). Table 5 lists the total precipitation, accumulated DRD,
and the ratio of DRD to precipitation for the P1 and P2 periods. The mean and maximum precipitation
during P1 were 3.1 and 13.5 mm/h, respectively, which were higher than those of P2. However,
the accumulated DRD of P2 was 28.1 mm, which was approximately 12% higher than that of P1.
Furthermore, the ratio of the accumulated DRD to the total precipitation confirms that the outflow rate
in P2 was higher than that in P1 because of the preconditioning of P1. During the P2 period, increased
soil water content of the topsoil layers caused high DRD.

Table 5. Features of precipitation and direct runoff depth for P1 and P2. The values are areal averages
over the Russian river basin.

Contents
P1 (6:00 a.m.

16 February–5:00 a.m.
17 February)

P2 (6:00 a.m.
17 February–4:00 a.m.

18 February)

Total (6:00 a.m.
16 February–4:00 a.m.

18 February)

Total precipitation (mm) (%) 75.17 (51.45%) 70.93 (48.55%) 146.09 (100%)
Duration (h) 24 23 47

Mean precipitation (mm/h) 3.13 3.08 3.11
Max precipitation (mm/h) 13.54 7.14 13.54
Accumulated direct runoff

depth (mm) (%) 22.22 (44.14%) 28.12 (55.86%) 50.34 (100%)

Ratio of direct runoff depth to
precipitation 0.296 0.396 0.345

The trend exhibited by the streamflow was very similar to that of the DRD, with peak flows
appearing in P1 and P2. The streamflows in each channel segment showed various shapes of
hydrographs due to several factors such as flow type, as well as topographic and stream characteristics,
and the overall trend was very similar to the ponded water depth. The hydrograph at the basin outlet
also exhibited a complex shape with two peak flows. The maximum peak flow occurred during P2,
which was the result of the change in the soil water content caused by P1 and a relatively high outflow
rate as described above. The additional hydrological impacts of the AR on the soil flux, direct runoff,
and streamflow are explained in the following section.

3.2.2. Soil Flux

Figure 8 shows the changes in soil water content level between the initial and peak times during P1
and P2 periods for the four soil layers. The results for the P1 period reveal several important features.
Firstly, the change in soil water content level during the P1 period was relatively large in layers 1
and 2, but small in layers 3 and 4. This is because, in layers 1 and 2, which correspond to the topsoil
layer (or near-surface soil layers), the change in soil water content level is dominated by the infiltrated
precipitation, whereas, in layers 3 and 4, which correspond to the deep soil layers, the change in soil
water content level is dominated by percolation. Furthermore, it can be inferred from the large change
in the soil water content levels in layers 1 and 2 during the P1 period that the precipitation during the
AP was insufficient to saturate the soil.

The change pattern of the soil water content level in the P2 period was different from that in
the P1 period. The most notable characteristic was that there were no significant variations in the
change in soil water content levels in the four soil layers. This result indicates that the precipitation
that infiltrated during the P1 period saturated the topsoil layer. In the deep soil layers, layer 4 was
noteworthy. The change in soil water content in layer 4 was greater in P2 than in P1, which means
that more soil water content moved to the deeper layer during the P2 period. In other words, in P1,
the infiltrated precipitation played the greatest role in changing the soil water content level in the top
layers, whereas, in P2, percolation had the greatest effect in the deep layers. In terms of flood analysis,
the change in soil water content level during P2 was more significant than that during P1. It is thought
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that the precipitation that infiltrated during P1 gave rise to a base flow during P2, thus contributing
greatly to the total runoff volume.
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3.2.3. Surface Flow

Figure 9 shows the DRD at the initial and peak times during P1 and P2. In both P1 and P2,
the distribution and size of the DRD did not change much at the peak time, but the depth of the DRD
at the initial time in P2 was greater than that in P1 because of the preconditioned soil water content
during P1. As indicated by the soil water content results, the precipitation that infiltrated during P1
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caused a high direct runoff at the initial time during P2. This result demonstrates that not only the
precipitation in P2, but also the precipitation in P1 had direct and indirect effects on the DRD in P2.Atmosphere 2019, 10, x FOR PEER REVIEW 15 of 18 
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The flood frequency of the simulated streamflow was analyzed for eight sub-watersheds in the
Russian River basin. For these sub-watersheds, the drainage areas were distinguished based on the
hydrologic unit code (HUC) 10, whose average size is 587.9 km2. Figure 10 shows the peak flows
of the eight watersheds and the corresponding T-year recurrence intervals. The flood frequency
was estimated using regional regression equations which are functions of drainage area and mean
annual precipitation for the area [36]. The return periods ranged from 1.8 to 8.9 years according to the
watershed. It was found that the flood event for the average return period of 3.6 years was caused by
the AR event (15–18 February). There was almost no difference in the flood frequency between the
upstream and downstream watersheds. The return periods in the upstream parts of watersheds 1 to 3
were 3.8, 3.1, and 2.4 years, respectively, and that of the downstream part of watershed 8 was 2.1 years.
The factors affecting streamflow include not only the volume, but also the velocity, which reflect the
geographic features such as the slope and width of the stream. The maximum and mean velocities
of the streamflow were simulated for the stations in the eight watersheds. The simulated ranges of
the maximum and mean velocities were 0.18–3.56 m/s and 0.11–1.80 m/s, respectively. The results
of the streamflow velocity simulation were relatively high in the upstream areas, compared to the
downstream, indicating that the streams in upstream area have a steeper slope and a narrower width.
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4. Summary and Conclusions

This study aimed to introduce the NWM for analyzing the impacts of an AR event on hydrological
responses and to present the analysis results. For this purpose, an AR event occurring during
15–18 February 2004 on the Russian River basin, California was selected as a case study. Among
hydrological factors that play important roles in occurring flood generation, soil water content, direct
runoff depth, and streamflow simulated by the NWM were used.

For validating the NWM performance for streamflow and soil water contents, various error
metrics were used. The results showed that the NWM simulated the trends of streamflow better than
the peak flow. The error metrics indicated that the average CC was 0.81, NSE was 0.47, PBIAS was
30%, PF was 31%, and TP was 4.5 h for streamflows. For soil water contents, the simulation results
showed better performance in the wet season. The average CC was 0.92, NSE was −0.07, and BS was
106%. It was also showed that the NWM simulated trends well for soil water contents.

The major fundamental hydrological impact of the AR was a change in soil water contents of the
top and deep soil layers which determine infiltration and percolation rates due to a long duration
of rainfall with multiple pulses, and the AR decreased the infiltration rate of the topsoil layer due
to the interaction with percolation process. The change also affected surface flow (e.g., direct runoff

and streamflows). The saturated topsoil layer made surface flow high compared to the amount of
precipitation during the AR event. The ratio of direct runoff depth to precipitation was 25% higher
than the period when the soil was not saturated. This may cause flood volume with a return period of
up to 8.9 years in the Russian river basin.

The NWM is able to accurately simulate the hydrological processes enhanced by AR events which
can cause flooding. It is also effective in predicting the hydrological impacts of ARs, as well as the
retrospective analysis. The NWM will play a critical role in hydrologic forecasting and enabling
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the efficient management of water resources on the US west coast where ARs with complex heavy
rainfalls and long durations occur frequently. Finally, the significance of soil water contents to extreme
flood runoff should be emphasized: soil water content monitoring could aid in improving flood
forecasting accuracy.
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