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Abstract: Inadequate representation and parameterization of sub-grid scale features and processes
are one of the main sources for uncertainties in regional climate change projections, particularly
for the Arctic regions where the climate change signal is amplified. Increasing model resolution
to a couple of kilometers will be helpful in resolving some of these challenges, for example to
better simulate convection and refined land heterogeneity and thus land–atmosphere interactions.
A set of multi-year simulations has been carried out for the Canadian Arctic domain at 12 km and
3 km resolutions using limited-area version of the global environmental multi-scale (GEM) model.
The model is integrated for five years driven by the fifth generation of the European Centre for
medium-range weather forecast reanalysis (ERA-5) at the lateral boundaries. The aim of this study
is to investigate the role of horizontal model resolution on the simulated surface climate variables.
Results indicate that although some aspects of the seasonal mean values are deteriorated at times,
substantial improvements are noted in the higher resolution simulation. The representation of extreme
precipitation events during summer and the simulation of winter temperature are better captured in
the convection-permitting simulation. Moreover, the observed temperature–extreme precipitation
scaling is realistically reproduced by the higher resolution simulation. These results advocate for the
use of convective-permitting resolution models for simulating future climate projections over the
Arctic to support climate impact assessment studies such as those related to engineering applications
and where high spatial and temporal resolution are beneficial.

Keywords: Arctic; convection permitting; regional climate model; temperature–extreme precipitation
scaling; climate

1. Introduction

Several studies have documented substantial changes in the Arctic climate during recent decades,
including a marked increase in surface air temperature and a reduction in sea ice extent [1–3] and
these changes are projected to intensify in the future under enhanced greenhouse gas concentration [4]
These projected changes can have considerable impacts on the local communities and on the natural
and built environment. Furthermore, despite its limited spatial extent, changes in the Arctic climate
can have remote impacts through teleconnection mechanisms and other climate feedback processes.
For instance, Arctic amplification and sea ice loss have been linked to weather and climate processes
that are often associated with extremes in mid-latitude regions [5,6] though the extent of these impacts
and the underlying physical mechanisms are still under intense debate [7].

Small-scale features and processes play a key role in shaping and modulating some aspects of the
Arctic climate [8]. Understanding and representing such small-scale processes in the climate model
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are vital for realistically simulating the current climate and also for providing reliable climate change
projections. The large inter-model spread in the magnitude of climate projections for the Arctic (e.g., [9])
makes it difficult to develop or design appropriate adaptation strategies. This spread among climate
models is not surprising given the differences in the representation and parameterization of sub-grid
scale features and processes in these models. It has been recognized that high-resolution simulations
(convection-permitting simulations) with horizontal grid resolutions of a few kilometers are capable
of simulating reasonably global climate model (GCM)-level sub-grid scale processes. Specifically,
convection-permitting simulations have been shown to correctly represent soil moisture precipitation
feedback [10], diurnal cycle of tropical precipitation over land [11], and sub daily precipitation intensity
distribution [12] better than coarse resolution simulations.

Observation- and model-based studies (e.g., [13,14]) show that the intensity and frequency of
extreme precipitations are increasing with global warming. Nevertheless, the rate of precipitation
intensification associated with surface warming is still uncertain [15]. Understanding and accurately
simulating the scaling of precipitation extremes with temperature in the current climate can
yield a better insight into how precipitation extreme intensity will evolve in a changing climate.
From a thermodynamics perspective, precipitation extremes are related to temperature through the
Clausius–Clapeyron (C-C) relation resulting in an increase at a rate of about 6–7% ◦C−1 [16]. This rate
of increase, however, deviates from the C-C scaling depending on various factors such as the duration
of precipitation [17,18], location [19], precipitation type [20], and dynamical processes contributing
to the precipitation [15]. Global and conventional regional climate models usually underestimate
precipitation extremes and the extreme precipitation–temperature (P-T) scaling due to their coarse
resolution and uncertainties in representing convection [21,22]. Recent studies such as Ban et al. [23]
have indicated that high-resolution models are indeed capable of reproducing the magnitude of
regional and local extremes as well as the extreme P-T scaling over mid-latitude regions, although
such study is yet to be done for the Arctic regions.

Given this documented added value and increasing computing resources, longer simulations
with convection-permitting models have been carried out for climate studies over several domains
such as Europe [12,24], Africa [25], Australia [26] and part of North America south of 60◦ N [27,28].
However, long-term climate simulations at convection-permitting resolution over Arctic Canada
are still lacking. The goal of this study is to evaluate the benefits of convection-permitting climate
simulations performed with the limited-area version of GEM model over the Canadian Arctic by
comparing it with observations as well as coarse-resolution simulations.

The paper is organized as follows: Section 2 describes the validation dataset and model setup for
the simulations. Section 3 deals with model evaluation for seasonal mean values of precipitation and
temperature. Characteristics of daily precipitation distribution and the precipitation–temperature (P-T)
relationship are presented in Section 4. Finally, discussion and conclusions are presented in Section 5.

2. Model, Data, and Methods

The limited-area version of the global environmental multi-scale model (GEM, [29,30]) v. 4.8.12
is used to downscale the fifth generation of European Centre for medium-range weather forecasting
reanalysis (ERA5, [31]). This model is used for numerical weather prediction by Environment and
Climate Change Canada. The model solves non-hydrostatic, deep atmosphere dynamics with implicit,
two-time-level semi-Lagrangian numerical scheme. In the horizontal, the model uses a regular
latitude–longitude grid with Arakawa C staggering and a rotated pole configuration such that the
domain is approximately centered on the equator, in order to minimize changes in grid spacing across
the domain. One of the new features of this version of the model is the use of Charney–Phillips
staggering in the vertical coordinate following Girard et al. [30]. The radiation scheme is represented
by Correlated K solar and terrestrial radiation of Li and Barker [32] and the planetary boundary
layer scheme follows Benoit et al. [33] and Delage [34]. The two schemes employed for condensation
processes are the double-moment microphysics scheme of Milbrandt and Yau [35] and the simpler
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version (ConSun) based on Sundqvist et al. [36]. The planetary boundary-layer shallow cloud scheme
(Conres, [37]) is switched off in the convection-permitting simulation but applied in the coarse-resolution
simulation (Table 1). It has to be noted that unlike the operational mode, the version of GEM model
used in this study is coupled to the Canadian land surface scheme (CLASS, [38–40]) and lakes are
represented by the FLake model [41,42].

Table 1. Summary of model configurations for HRES3 and MRES12 simulations.

Model Property HRES3 MRES12

Horizontal resolution 0.03 0.12
Number of grids (844 × 844) (220 × 220)

Vertical No. of levels 57 57
Time step for dynamics 60 s 300 s
Time step for Radiation 15 min 20 min
PBL shallow cloud/conv NIL CONRES [37]

Microphysics MPMY [35] ConSun [36]
Convection Kain–Fritsch [43] Kain–Fritsch [43]
KFCdepth 2000 m 4000
KFCTRIG 0.5 m/s 0.15 m/s

KFCTIMEC 1800 s 2700 s
Planetary boundary layer cloud

and convection
Clef (non-cloudy boundary layer

[33]
Clef (non-cloudy boundary layer

layer [33]
Mixing Length Blac62 [44] Boujo [45]

Precipitation type Bourge [46] Extended Bourge (Bourge3d) [46]

GEM simulates different precipitation types such as freezing rain, snowfall, and liquid rain,
however only total precipitation is analyzed in this study. In addition to the large-scale precipitation
schemes, the model includes the deep convection scheme of Kain and Fritsch [43] and the shallow
convection based on Bélair et al. [47] for both coarse- and high-resolution simulations, albeit with
different parameter settings. It has to be noted that the use of convection parameterization for
~3–8 km resolution is still a topic of debate and considered a gray zone as convection is neither
fully resolved nor can it be assumed to be smaller than the grid box resolution [48]. Several studies
focused at low and mid-latitudes, where convection can be organized and large scale, switch off the
convection parameterization at 4 km resolution (e.g., [25,27,28]). However, in this study, convection
parameterization is employed for the HRES3 simulation but with a different threshold for triggering
velocity and CAPE length. This is because the use of convection scheme at such a resolution can
improve spurious rainfall peaks and, hence, biases that might occur without it, as convection scheme
usually triggers deep clouds more quickly than the microphysics scheme [49].

Two five-year-long simulations, from 1 January 2008 to 1 January 2013, have been carried out at
0.12◦ (MRES12) and 0.03◦ (HRES3) horizontal resolutions over a domain covering northeast Canada
Figure 1. Both simulations use 57 vertical layers. After a series of preliminary tests with various
physics schemes, the combination of physics scheme and parameter setup listed in Table 1 were found
to better simulate the climate of the region at their respective resolutions and thus decided to proceed
with them. The model configurations for the two simulations therefore differ in model time step,
parameter settings for various physics packages including convection, and planetary boundary layer
schemes. The model domain of MRES12 consists of 220 × 220 grid points and that of HRES3 consists
of 864 × 864 grids covering almost the same region. For both simulations, lateral boundary conditions
for the atmospheric variables are updated on an hourly basis, whereas sea surface temperature and
sea ice fraction are prescribed at daily frequency. Unlike several convection-permitting simulations
(e.g., [27,28]), spectral nudging is not applied at the interior of the model.
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elevation [51]. Although Daymet data are available at 1 km × 1 km resolution, for easy comparison, 
the MRES12 and observational dataset are interpolated to the 3 km grid of HRES3. 

To assess the model at process level, the extreme precipitation–temperature relationship for the 
summer (JJA) period is considered. Following Lenderink and van Meijgaard [52], daily precipitation 
intensities are first binned using the daily mean temperature with bin size of 2 K and the 95th and 
99th percentile of the precipitation is then computed for both observations and model simulations. It 
must be noted that only daily precipitation amounts larger than 0.5 mm/day are considered. 

3. Validation of Seasonal Means and Annual Cycle 

The observed seasonal mean climatology and the biases for the HRES3 and MRES12 
simulations for summer and winter are presented in Figure 2. The prominent feature of the observed 
climatology of temperature is its large inter-seasonal variation. The mean winter temperature can 
reach below −30 °C and in summer it ranges from 10 °C to 15 °C for most of the domain. Both 
simulations exhibit cold biases for most of the domain except over the northern part during both 
seasons. For MRES12, a cold bias is noted over the southwestern part of the domain during winter 
season. This bias, however, is substantially reduced during summer with the maximum bias located 
over the Baffin islands. Though the seasonal mean temperature biases are lower in the HRES3 
simulation, a clear improvement in temperature is noted only during the winter season as the bias in 
summer is generally visible throughout the domain. This implies that the high-resolution 
convection-permitting simulation is not always better in simulating seasonal mean temperature. The 
validation, however, should be taken cautiously as station observations are sparse over the Arctic 
(Figure 3, top left), which also deteriorates the Daymet quality. 
  

Figure 1. Topography (m) and free model domain for the HRES3 (red box) and MRES12 (blue
box) simulations.

Observational data for precipitation and surface air temperature used for validation are obtained
from the Daymet dataset [50]. This gridded dataset was developed from daily station observations
using truncated Gaussian interpolation procedure that consider, among other things, elevation [51].
Although Daymet data are available at 1 km × 1 km resolution, for easy comparison, the MRES12 and
observational dataset are interpolated to the 3 km grid of HRES3.

To assess the model at process level, the extreme precipitation–temperature relationship for the
summer (JJA) period is considered. Following Lenderink and van Meijgaard [52], daily precipitation
intensities are first binned using the daily mean temperature with bin size of 2 K and the 95th and 99th
percentile of the precipitation is then computed for both observations and model simulations. It must
be noted that only daily precipitation amounts larger than 0.5 mm/day are considered.

3. Validation of Seasonal Means and Annual Cycle

The observed seasonal mean climatology and the biases for the HRES3 and MRES12 simulations
for summer and winter are presented in Figure 2. The prominent feature of the observed climatology
of temperature is its large inter-seasonal variation. The mean winter temperature can reach below
−30 ◦C and in summer it ranges from 10 ◦C to 15 ◦C for most of the domain. Both simulations exhibit
cold biases for most of the domain except over the northern part during both seasons. For MRES12,
a cold bias is noted over the southwestern part of the domain during winter season. This bias, however,
is substantially reduced during summer with the maximum bias located over the Baffin islands.
Though the seasonal mean temperature biases are lower in the HRES3 simulation, a clear improvement
in temperature is noted only during the winter season as the bias in summer is generally visible
throughout the domain. This implies that the high-resolution convection-permitting simulation is not
always better in simulating seasonal mean temperature. The validation, however, should be taken
cautiously as station observations are sparse over the Arctic (Figure 3, top left), which also deteriorates
the Daymet quality.
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Figure 2. Mean temperature climatology (°C, left column) and biases for high-resolution simulation 
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shows the observed and simulated spatial distribution of winter and summer precipitation in 
HRES3 and MRES12. Observation shows relatively drier conditions towards the pole, particularly 
during the winter season. The maximum rainfall is experienced during summer; even during this 
season, the mean precipitation is generally less than 4 mm/day. The topographic influence is also 
noted along the Baffin Island coast. MRES12 produced a systematic dry bias during both seasons, 
particularly over the southern and western parts of the domain. The maximum dry bias in winter is 
found over the southwestern part of the domain and this is collocated with the maximum cold bias 
suggesting that these biases might be related to the use of non-cloudy/dry boundary layer scheme as 
opposed to the moist TKE scheme. This is because, in the dry scheme, diffusion is performed on the 
equivalent potential temperature and specific humidity with no effect on clouds. In contrast, the 
spatial distribution of precipitation is captured very well by HRES3 depicting higher values of 
precipitation over the southern and western part of the domain and lower values over the polar 
region and over the northwest. It has to be noted that the precipitation values plotted here are the 
sum of large-scale and convective precipitations, but a large fraction of the total precipitation (not 
shown) for this region is obtained from the large-scale precipitation (i.e., from the microphysics 
scheme) rather than from the convection parameterization. 
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obtained from observation (Daymet, left) and GEM4.8 simulations at high resolution (HRES3 middle
column) and coarse resolution (MRES12, right column). The red dots in the top left panel represent the
station distribution used in the Daymet dataset.

Some of the benefits of convection-permitting simulations are illustrated in Figure 3, which shows
the observed and simulated spatial distribution of winter and summer precipitation in HRES3 and
MRES12. Observation shows relatively drier conditions towards the pole, particularly during the
winter season. The maximum rainfall is experienced during summer; even during this season, the
mean precipitation is generally less than 4 mm/day. The topographic influence is also noted along
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the Baffin Island coast. MRES12 produced a systematic dry bias during both seasons, particularly
over the southern and western parts of the domain. The maximum dry bias in winter is found over
the southwestern part of the domain and this is collocated with the maximum cold bias suggesting
that these biases might be related to the use of non-cloudy/dry boundary layer scheme as opposed to
the moist TKE scheme. This is because, in the dry scheme, diffusion is performed on the equivalent
potential temperature and specific humidity with no effect on clouds. In contrast, the spatial distribution
of precipitation is captured very well by HRES3 depicting higher values of precipitation over the
southern and western part of the domain and lower values over the polar region and over the
northwest. It has to be noted that the precipitation values plotted here are the sum of large-scale and
convective precipitations, but a large fraction of the total precipitation (not shown) for this region is
obtained from the large-scale precipitation (i.e., from the microphysics scheme) rather than from the
convection parameterization.

Annual Cycle

The observed and simulated domain average annual cycle of temperature is shown in Figure 4
(right). The mean observed temperature ranges between −26 ◦C in January to 10 ◦C in July.
Both simulations captured the annual cycle and the timing of peak correctly. The HRES3 reproduced
the pattern well except during the summer months where it underestimates by about 2 ◦C, which is
partly linked to the positive precipitation bias. The cold bias of MRES12 is apparent during the autumn
and winter months Figure 4 (right), possibly due to the underestimation of precipitation. This cold
and dry bias in the MRES12 simulation may be linked to the use of the dry boundary layer scheme.
Figure 4 (left) compares the observed and simulated area averaged annual cycle of precipitation.
Observation indicates that the lowest precipitation occurs during winter. Progressing towards summer,
precipitation steadily increases to reach its maxima in August. Both model simulations captured these
minima and maxima of the annual cycle correctly albeit with biases in magnitude. It is apparent from
Figure 4 (left) that MRES12 substantially underestimates rainfall, particularity during summer months.
HRES3, on the other hand, improved the simulation during these summer months when the rainfall is
at its peak, even if it has a systematic positive bias.Atmosphere 2019, 10, x FOR PEER REVIEW 7 of 12 
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Figure 4. Area-weighteddomain average annual cycle of precipitation (left) and temperature (right).

4. Daily Rainfall Extremes and P-T Relationship

The characteristics of precipitation extremes in the two simulations are assessed by computing the
95th percentile of daily summer precipitation and the frequency of heavy precipitation (≥5 mm/day) at
every grid point as shown in Figure 5. Observation indicates that areas with higher intensity as well
as the most frequent heavy rainfall events are collocated with regions receiving maximum seasonal
precipitation namely northern Quebec, southern Nunavut, and eastern coastal areas of the Baffin Island.
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HRES3 shows similar broad patterns to those of Daymet and hence can be considered successful
in reproducing the observed characteristics well, even if the percentage of heavy rainfall events is
generally underestimated. Compared to HRES3 and Daymet, MRES12 substantially underestimates
the intensity and frequency of extreme precipitation events consistent with its relatively low resolution.
From the above analysis, there is a clear improvement in the model simulation in the frequency of
occurrence of heavy precipitation when the model resolution is increased from 12 km to 3 km.
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Figure 5. Frequency (number of heavy precipitation days per summer) of extreme precipitation events
(days) during JJA from observation (left), HRES3 (middle), and MRES12 (right) simulations.

The frequency distribution of daily precipitation is illustrated in Figure 6. The figure generally
shows that the frequency of precipitation events decrease with increasing intensity and this characteristic
is reproduced by both simulations. It is also apparent that both simulations overestimate the frequency
of precipitation less than ~2 mm/day and underestimate the frequency of precipitation events between
2–11 mm/day. MRES12 simulation, in particular, overestimates the frequency of light precipitation
events and underestimates the medium and heavy precipitation events. Unlike the MRES12 simulation,
the HRES3 simulations tend to capture the frequency of heavy precipitation events greater than
11 mm/day better, and generally exhibits consistently lower bias for all thresholds. This is consistent
with the higher number of heavy rainfall events greater than the 95th percentile in the spatial distribution
of extreme events discussed in the previous section.

Figure 7 shows the relationship between selected (95th and 99th) percentiles of the daily
precipitation intensities (on logarithmic scale) against daily mean temperatures. From observation
data, there is a clear increase of precipitation intensities with temperature until about 15 ◦C at a
rate of approximately 7%/K, i.e., close to the C-C relation, but tends to decrease in precipitation
intensity for temperature above 15 ◦C. Panthou et al. [18] also noted this decline of precipitation
intensity at higher temperature for boreal forest regions of Canada and attribute it to the decrease of
moisture at higher temperature. Both simulations more or less reproduced this observed characteristic,
however MRES12 simulation show a sharp decline for temperatures beyond 15 ◦C. We also note
that the scaling relationship is similar at both percentiles, however MRES12 underestimates at both
percentile thresholds and HRES3 overestimates the precipitation extremes at the 99th percentile. The
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apparent difference in the slope of the scaling in MRES12 and HRES3 for higher temperature can also
be attributed to the difference in the microphysics scheme used in the two simulations. As Singh and
O’Gorman [53] indicated, the scaling of precipitation extremes with temperature is quite sensitive to
the microphysics. This also implied that P-T scaling should be considered as one of the diagnostic
metrics when selecting a suitable microphysics during model configuration.
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Figure 7. The 95th (left) and 99th (right) percentiles of daily precipitation intensity as a function of
daily mean temperature for the region between 59◦ N and 65.5◦ N. Dashed and dotted lines correspond
to the 7%/◦C and 14%/◦C, respectively. The Y-axis is plotted in logarithmic scale for convenience.

5. Discussion and Conclusions

A convection-permitting simulation (HRES3) has been conducted at a horizontal resolution of
3 km over northern Canada for the 2008–2012 period. HRES3 is evaluated by comparing against coarse
resolution (MRES12) simulation and a high-resolution (1 km × 1 km) observational dataset. It has to be
noted that both HRES3 and MRES12 are driven by ERA5 reanalysis fields at the boundaries.

Comparison of the seasonal mean temperature indicated that both models exhibit cold biases in
both seasons over most of the domain. HRES3 has a slight colder bias in summer and MRES has a
stronger colder bias in winter. HRES3 improved the precipitation simulation by removing the dry bias
in MRES12. In general, the precipitation simulated by HRES3 is slightly overestimated, which may
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partly be due to the uncertainties in the observations, as the observations over Arctic are sparse and
located along the coast.

HRES3 is in better agreement with observations compared to MRES12 for depicting the
precipitation spatial pattern. In general, precipitation is much more realistic in HRES3 than in
the MRES12. This is also true for extreme precipitation, where the spatial and temporal patterns are
better represented in HRES3. In MRES12, extreme precipitation is underestimated, while small-intensity
precipitation (less than 2 mm/day) tends to be too persistent and wide spread.

Similarly, the intensity–frequency distribution of precipitation is better represented in the
high-resolution simulation, particularly the frequency of rare but extreme precipitation events. Finally,
we conclude that HRES3 produces better climate means and extremes compared to MRES12.

The scaling of heavy precipitation events with the ambient environmental temperature is also
investigated for the region between 59◦ N to 65◦ N using observational data and the two simulations.
The observed increase of heavy precipitation events with environmental temperature is found to follow
close to the 7%/◦C, which HRES3 captures well. MRES12 also reproduced this scaling fairly well for
most of the temperature range, except for the lower and higher temperatures.

Several observational and modelling studies (e.g., [17,18]) have identified super CC scaling for
short duration precipitation (i.e., sub daily and sub hourly). It would be interesting to assess how the
MRES12 and HRES13 simulations represent the P-T scaling for these short-duration precipitation events.

This preliminary convection-permitting resolution simulation over northeast Canada provides
useful insights and suggests the need for longer simulations than conducted here and more detailed
analysis of other variables.
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