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Abstract: Culturable eubacterial isolates were collected at various altitudes in Earth’s atmosphere,
including ~1.5 m above ground in Tallahassee, FL, USA; ~10.0 m above sea level over the mid-Atlantic
ridge (~15◦ N); ~20 km above ground over the continental United States; ~20 km above sea level over
the Pacific Ocean near southern California; and from the atmosphere of Carlsbad Cavern, Carlsbad
Cavern National Park, NM, USA. Isolates were screened for the presence of inducible virus-like
particles (VLP) through the use of mitomycin C and epifluorescent direct counts. We determined that
92.7% of the isolates carried inducible VLP counts in exposed versus non-exposed culture controls
and that the relationship was statistically significant. Further statistical analyses revealed that the
number of isolates that demonstrated VLP production did not vary among collection sites. These
data demonstrate a high prevalence of VLP generation in isolates collected in the lower atmosphere
and at extreme altitudes. They also show that species of eubacteria that are resistant to the rigors of
atmospheric transport play a significant role in long-range atmospheric inter- and intra-continental
dispersion of VLP and that long-range atmospheric transport of VLP may enhance rates of evolution
at the microbial scale in receiving environments.
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1. Introduction

Wherever there is life, there are viruses. Viruses outnumber all other organisms combined, and it
has been estimated that the current daily population on Earth is ~1031 [1]. Most of these viruses are
believed to be bacteriophages, which are viruses that utilize bacteria as their hosts [2,3]. Bacteriophage
densities in soil have been shown to occur at a range of ~103 to 108 g−1 [4–7] and in aquatic environments,
one to two logs greater than the typical bacterial population of ~105 to 109 mL−1 [8,9]. It was recently
demonstrated that in desert arid soil environments, concentrations of bacteria and virus-like particles
(VLP) ranged from ~103 to 107 g−1 and that their concentration gradients were ‘patchy’ in nature [5].
The term VLP has been defined in many microbial ecology studies as including bacteriophages, genetic
transfer agents (GTA), and membrane vesicles (MV) [10–12]. GTA are similar to bacteriophages in that
they contain a capsid and tail yet typically transport host-associated genes (versus viral genes) [10]. MV
bud from the cell and are generated throughout its life and during lyses and also typically transport
host genes [10]. VLP significantly influence the evolution and diversity of prokaryotic communities
and microbiogeochemical cycles in Earth’s numerous aquatic and terrestrial environments through
gene transfer [13–17].
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Bacteriophages typically replicate through one of two main life cycles, the lytic or lysogenic
cycles [18]. In the lytic cycle, the bacteriophage injects its genome into its host cytoplasm and pirates its
host replication pathways to replicate itself. The end result of the lytic cycle is the rupture or lysis of the
host cell and the release of the newly replicated bacteriophages. In the lysogenic cycle, bacteriophages
integrate their genome into their host cell (integration into the cellular genome or the establishment of
a stable plasmid within the host cytoplasm) and enter a non-lytic state known as a prophage. As a
prophage, the viral genome is replicated with the host during cell division, and thus the bacteriophage
genome is passed to host progeny. Bacteriophages of this type are known as temperate. Lysogeny is
usually terminated by some form of host-cell stress caused by environmental factors such as ultraviolet
(UV) damage, toxin exposure, or a change in nutrient conditions, at which time the prophage enters
the lytic cycle [19,20]. During bacteriophage replication, host genes may be incorporated into the new
phage and ultimately transferred to another host, a process known as transduction. The introduction
of extraneous genetic material into a host cell by bacteriophage infection can cause phenotypic shifts,
such as the acquired ability to produce toxins, to resist antibiotic exposure, and to resist infection by
other bacteriophages [21–24]. Gram-negative bacteria have been shown to generate high numbers of
GTA and MV in the absence of an inducible phage and, due to the virus-like size range of many of
these types of genetic shuttles, can easily be confused with bacteriophages when enumerating with
epifluorescent microscopy [10,25].

Although VLP occur in all terrestrial and aquatic habitats examined thus far, most studies
conducted to date have focused on their occurrence and role in aquatic environments. It has been
shown that the bacteriophage component of VLP accounts for significant bacterial mortality in aquatic
sediments and in the overlying water column [26]. In prophage studies, it has been shown that many
bacteria harbor prophages and that it is not uncommon to find bacterial genomes that harbor multiple
prophage genomes [27,28]. Relative to aquatic bacteriophage/host research, fewer studies have been
conducted in terrestrial-soil environments, where it has been estimated that over 90% of prokaryotic
diversity occurs [4,7,29]. Recent investigations indicate that lysogeny is more prevalent in soil microbial
communities than in marine environments [7]. The lysogenic cycle is believed to be a strategic means of
maintaining bacteriophage genomes in environments that contain low host numbers or other limiting
environmental factors, such as low or no available water to facilitate movement from one host to the
next [30,31]. Research has demonstrated the wide prevalence of lytic and lysogenic bacteriophages
in extreme environments (cold-and hot-water environments), including those found in Earth’s harsh
desert environments [8,32–34].

The role that potential host bacteria play in moving VLP vast distances in the Earth’s atmosphere
is not clear. Host exposure to UV radiation is a known cause of VLP induction [35]. Since there is
significant potential for UV exposure during atmospheric transport, bacterial cells that host VLP may
not survive long-range transport or long-term suspension unless the host is UV-tolerant and/or is
shielded via attachment to organic detritus or inorganic particulates. Host tolerance to UV exposure via
cell pigmentation, high guanine and cytosine content in their genome, or genes that provide enhanced
nucleic acid stabilization or repair may favor long-range dispersion or prolonged survival at altitude.
Thus, UV-tolerant hosts may facilitate the movement of VLP-mediated genes around the planet. This
may play a particularly important role in planetary-scale atmospheric-dispersion paths that result
from natural phenomena such as volcanic eruptions and the more frequent large-scale dust storms
that emanate from the continents of Australia, Africa, Eurasia, and the Americas [36]. In addition, the
formation of VLP (organic or inorganic) colloids in the atmosphere could to be an important factor in
the survival and persistence of bacteriophages outside the bacterial cell [37].

Bacterial species identified in volcanic soils have previously been identified at an altitude of
20 km in Earth’s atmosphere, and dust storms that originate from Earth’s deserts are known to move
diverse groups of microorganisms vast distances throughout the troposphere, tropopause, and lower
stratosphere [38–44]. Although these cited works have demonstrated bacterial and fungal dispersion
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on a global scale, no studies have been undertaken so far to address the potential for dispersed
prokaryotes to facilitate the long-range movement of VLP through Earth’s atmosphere.

In this work, we investigate the occurrence of inducible VLP in groups of eubacteria collected
at various altitudes in Earth’s atmosphere: a group collected at ~1.5 m above ground in the city
of Tallahassee, Florida [45]; a group collected at ~10 m above sea level at a mid-Atlantic site while
aboard the JOIDES (Joint Oceanographic Institutions for Deep Earth Sampling) Resolution during
Ocean Drilling Program (ODP) Leg 209, when African dust was present in the atmosphere [46];
and a group comprised of isolates collected at an altitude of 20 km during three different flights
conducted by NASA’s Stratospheric and Cosmic Dust Program [47–49]. The remaining isolate was
collected underground from the atmosphere of Carlsbad Cavern, Carlsbad Caverns National Park,
NM, USA [50].

2. Experiments

2.1. Origin of Isolates

Table 1 lists the sites of collection and taxonomy data for the 41 isolates utilized in this study.
Isolates were collected from four different atmospheric settings and grouped accordingly. The first
group of bacteria (17 isolates) was obtained from an altitude of ~1.5 m from atop a concrete patio
table in an open courtyard, located between two office buildings in Tallahassee (latitude 30.477377,
longitude−84.294601), from 6 July 2010 to 15 July 2012 [45]. The second group of bacteria (14 isolates)
was collected from the lower atmosphere (~10 m altitude) above the tropical mid-Atlantic ridge (~45◦

W, 14◦ N), when African dust was present in the atmosphere. Acquisition was made while aboard the
JOIDES Resolution on Ocean Drilling Program Leg 209 between 25 May 2003 and 1 July 2003 [46]. The
third group of bacteria (9 isolates) was obtained from an altitude of 20 km during three different NASA
ER2 flights, two over the continental US and one over the Pacific Ocean off the coast of California.
Collection data for these isolates have been described previously [47–49]. The remaining isolate
was collected ~140 m underground from the atmosphere of Sand Passage, in Carlsbad Cavern on 27
September 2004 [50].

Table 1. Eubacteria isolate and sample site data.

Isolate (Date
Collected-ID) Location Altitude (m) Taxonomy (GenBank

Closest Neighbor)

GenBank
Accession
Number

07/06/10-A Tallahassee 1.5 Bacillus gibsonii HE604,338
07/06/10-B Tallahassee 1.5 Bacillus megaterium HE604,339
07/06/10-C Tallahassee 1.5 Bacillus sp. HE604,340
07/12/10-A Tallahassee 1.5 Bacillus sp. HE604,341
07/12/10-B Tallahassee 1.5 Bacillus sp. HE604,342
07/12/10-C Tallahassee 1.5 Enterobacteriaceae HE604,343
07/12/10-D Tallahassee 1.5 Enterobacteriaceae HE604,344
07/12/10-E Tallahassee 1.5 Bacillus sp. HE604,342
07/12/10-F Tallahassee 1.5 Bacillus sp. HE604,346
07/13/10-A Tallahassee 1.5 Bacillus sp. HE604,347
07/13/10-B Tallahassee 1.5 Bacillus sp. HE604,348
07/13/10-C Tallahassee 1.5 Exiguobacterium sp. HE604,349
07/13/10-D Tallahassee 1.5 Bacillus sp. HE604,350
07/14/10-A Tallahassee 1.5 Bacillus sp. HE604,345
07/14/10-B Tallahassee 1.5 Bacillus sp. HE604,342
07/15/12-E Tallahassee 1.5 Pseudomonas sp. HE995,774
07/15/12-G Tallahassee 1.5 Microccocus sp. HE995,775

05/25/03-BY0 mid-Atlantic 10 Actinobacteria AY857,677
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Table 1. Cont.

Isolate (Date
Collected-ID) Location Altitude (m) Taxonomy (GenBank

Closest Neighbor)

GenBank
Accession
Number

05/25/03-BY1 mid-Atlantic 10 Frigoribacterium AY857,767
05/26/03-BW0 mid-Atlantic 10 Kocuria rosea AY857,672
05/27/03-BY0 mid-Atlantic 10 Lentzea sp. AY857,673
06/01/03-BY0 mid-Atlantic 10 Novosphingobium subarticum AY857,675
06/12/03-BY0 mid-Atlantic 10 Brevibacterium casei AY857,665
06/12/03-BY1 mid-Atlantic 10 Staphylococcus epidermis AY857,685
06/12/03-BY2 mid-Atlantic 10 Liefsonia sp. AY857,676
06/15/03-BY0 mid-Atlantic 10 Bacillus aminovorans AY857,666
06/19/03-BC2 mid-Atlantic 10 Bacillus benzoevorans AY857,668
06/28/03-BP1 mid-Atlantic 10 Gordonia terrae AY857,719
06/28/03-BY0 mid-Atlantic 10 Pseudomonas sp. AY857,688
07/01/03-BW1 mid-Atlantic 10 Bacillus aminovorans AY857,722
07/01/03-BW0 mid-Atlantic 10 Bacillus sp. AY857,721

NASA1-1 Continental USA 20,000 Bacillus luciferensis AY291,461
NASA1-71 Continental USA 20,000 Bacillus sphaericus AY291,474

08/13/04-NASA2-8 Continental USA 20,000 Micrococcaceae EU029,597
08/13/04-NASA2-25 Continental USA 20,000 Staphylococcus sp. EU029,614
08/13/04-NASA2-33 Continental USA 20,000 Micrococcus luteus EU029,622
08/13/04-NASA2-34 Continental USA 20,000 Micrococcus thailand EU029,623
08/13/04-NASA2-43 Continental USA 20,000 Brevibacterium sp. EU029,632
04/28/08-NASA-DS1 Pacific 20,000 Bacillus endophyticus FJ649,336
04/28/08-NASA-DS3 Pacific 20,000 Bacillus sp. FJ649,338

SPG PP1 Carlsbad Caverns 100 below
surface Myceligenerans crystallogenes HE995776

2.2. Isolate Collection Assay

The Tallahassee isolates were collected using a small portable membrane-filtration unit (Fisher
Scientific 110 V vacuum pump, product #13-310-485, and a PVC (PolyVinylChloride) two-place manifold,
housed in a large plastic toolbox) [45]. Presterilized filter housings containing 47-mm-diameter, 0.2-µm
pore-size cellulose acetate filter membranes were used for all air samples (Fisher Scientific, Atlanta,
GA, USA, Catalog #09-74030G). The filter housings were removed from their respective sterile bags
and placed on the analytical filter manifold. The housing lid was removed and vacuum applied using
a vacuum pump. Filtration flow rates ranged from 8.7 to ~17.4 L min−1. After filtration, the housings
and lids were replaced in their respective bags, and the bags were sealed with tape. R2A medium
(Fisher Scientific, Atlanta, GA, USA) was utilized in the following manner for microbial culture. The
sample filters were placed whole on R2A-medium plates, sample side up, and were incubated in the
dark at ambient temperature (36 ◦C). The ODP Leg 209 isolates were collected and identified in a
similar manner using the same membrane filtration unit in addition to a high-volume filtration unit
that was positioned atop the JOIDES Resolution derrick (the two 1 July 2003 isolates were obtained
from a high-volume filter. The remaining included in this report were collected using the low-volume
filtration unit and filters described above). Specific collection and identification details for these ODP
isolates are given in Griffin et al., 2006 [46]. The NASA high-altitude isolates were collected via a
deployed aluminum flag coated with glycerol and a modified flag, as previously described, at an
altitude of 20,000 m during NASA ER2 missions [47–49]. The Carlsbad Cavern isolate was obtained
using a break-down (all of the equipment minus the toolbox-like housing) version of the low-volume
membrane filtration unit described above, and the filter was plated and incubated at ambient cave
temperature for initial growth. After growth, the plates were transported to St. Petersburg, FL, USA,
for isolation of colony-forming units (CFUs) [50]. Once isolated from their respective environments,
CFUs were cryogenically stored at −70 ◦C and identified using the following protocol. Isolates were
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grown overnight in tryptic soy broth (TSB, Fisher Scientific, Atlanta, GA, USA). All isolates that grew
on R2A also grew in TSB. Genomic DNA was extracted from the isolates using the Qiagen Plant and
Tissue DNeasy Kit, as per the Gram + extraction protocol described in the kit. Universal 16S rRNA
polymerase-chain reaction (PCR) primers [51] and amplicon sequencing were utilized as previously
described for identification. A GenBank Blast search [52] was used for amplicon/isolate identification.
GenBank accession numbers for each isolate are listed in Table 1.

2.3. Mitomycin C Induction Plate Setup

In a separate 96-well micro-plate, 100 µL of 4 mg mL−1 mitomycin C were added to the top well
in each column. This quantity was serial diluted to the seventh well of each column using 90 µL of
sterile H2O and 10 µL of supernatant from the previous well. The eighth and last well was inoculated
with sterile H2O (negative control). Using a multi-channel pipette, 45 µL from each one of these wells
was transferred to matching wells on another 96-well micro-plate. In these wells, the mitomycin
dilution-series concentration ranged from 18 µg at 100 to 18 pg at the 10−6 dilution (rows/wells A
through G, and the H well was utilized as a negative control for each column/isolate, see Table 2).
One-hundred and fifty-five µL of sterile tryptic soy broth (TSB) was then added to each well, followed
by the addition of 50 µL of isolate culture (overnight culture grown in TSB at room temperature, one
isolate per micro-plate column). Two columns were used for each isolate, one that contained TSB
and the isolate seed and the other that contained TSB, the isolate seed and the described mitomycin
C-dilution series. The micro-plate was then incubated overnight at room temperature on a table-top
orbitor (set at less than 100 orbits per minute). The visual observation of reduction to turbidity in wells
with mitomycin dilution-series concentration was marked as indicative of the occurrence of induction
(Table 2).

Table 2. Results from Mitomycin C experiments. Columns marked with and “X” indicate turbidity
and no visible clearing of the wells. Unmarked columns indicate visible clearing. Columns A through
H represent the dilution series 100 (A = 18 µg mitomycin C) through 106 (G = 18 pg mitomycin C) and
the negative control well (H), respectively. Column A wells were used for direct counts. No clearing
was noted in any of the matched control wells utilized as an additional control.

Collection Location Samples ID A B C D E F G H

Tallahassee samples

070,610 A X X X X X X X
070,610 B X X X X X X
070,610 C X X X X
071,210 B X X X X X
071,210 A X X X X X X X
071,210 C X X X X X X X
071,210 D X X X X
071,210 E X X X X X X
071,210 F X X X X X X X
071,310 A X X X X X X X
071,310 B X X X X X
071,310 C X X X X X
071,310 D X X X X
071,410 A X X X X X
071,410 B X X X X X X
071,512 E X X X X X X
071,512 G X X X X X X
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Table 2. Cont.

Collection Location Samples ID A B C D E F G H

Atlantic samples

052,503 BY0 X X X X X X
052,503 BY1 X X X X X X
052,603 BW0 X X X X
052,703 BY0 X X X X X X
060,103 BY0 X X X X
061,203 BY0 X X X X X X X
061,203 BY1 X X X X X X X
061,203 BY2 X X X X X
061,503 BY0 X X X X
061,903 BC2 X X X X
062,803 BP1 X X X X X X X
062,803 BY0 X X X X

070,103 BWO X X X X
070,103 BW1 X X X X X X

NASA samples

NASA 1–1 X X X X X
NASA 1–71 X X X X
NASA 2–43 X X X X
NASA 2–25 X X X X X X X
NASA 2–8 X X X X X X X

NASA 2–33 X X X X X
NASA 2–34 X X X X
NASA DS1 X X X X
NASA DS3 X X X X

Carlsbad SPG PP1 X X X X X

2.4. Epifluorescent Direct Counts

The first well of each column in the 96-well plate was utilized for VLP direct counts (Table 2).
The direct-count protocol utilized follows a modification of a previously published protocol [53].
In short, 100 to 10 µL of post-mitomycin C culture were filtered (in duplicate) through Whatman
Anodisc 0.02-µm-pore-size, 25-mm-diameter, glass-fiber filters (Whatman, # 6809-60 02, Fisher Scientific,
Massachusetts, US). Some samples were centrifuged at 14,000 rpm for 10 min to limit bacteria carryover
that may interfere with obtaining accurate VLP direct counts. For staining, the filters were placed
sample side up, on top of a drop of diluted SYBR Gold nucleic-acid stain (Molecular Probes, Eugene)
OR: 97.5 µL of 0.02 µm filtered H2O + 2.5 µL of a 1/10 dilution of SYBR Gold) and incubated at room
temperature in the dark for ~10 to 15 min. The filters were then removed from the drop of diluted
SYBR Gold, excess stain was removed by blotting the back of the filter on tissue paper, and the filter
was then placed on a glass slide. Twenty-seven microliters of antifade solution (990.0 µL 50% 1X
PBS/50% Glycerin + 10.0 µL 10% P-phenylene diamine) were placed on a coverslip, and the coverslip
placed over the filter. The coverslip was lightly pressed to expel any trapped air, and the slide was then
refrigerated in the dark (for a maximum of 2 days) until being counted by epifluorescent microscopy.
Fifteen fields per slide/duplicate were counted at 1000 × (oil) using a Carl Zeiss Inc. Axioskop 40
epifluorescent microscope (Jena, Germany). The average numbers of viral-like particles (VLP) were
obtained by averaging both field and sample counts (considering filter-apparatus diameter, volume
eluted, volume filtered, and ocular grid area at 1000 ×magnification).

2.5. Statistics

SPSS 21 for Windows (SPSS Inc., Chicago, IL, USA) was used for statistical analyses. A
Kolmogorov–Smirnov Z test was conducted to check data normality. Spearman’s rho was utilized
to determine correlations when the data were not normally distributed. Data were subjected to a
Kruskal–Wallis test to compare significant differences in concentrations of VLP mL−1 in different
atmospheric settings.
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3. Results

Most of the bacteria isolated from the various atmospheric environments were gram-positive
bacteria (36/41 = 87.9%). In the Tallahassee and Atlantic groups, gram-positive bacteria represented
82.4 and 85.7% of the isolates, respectively. In contrast, the isolates collected at extreme altitudes in
the NASA studies were all gram positives. All of the isolates included in this study were Firmicutes,
Actinobacteria, or Proteobacteria. In the Tallahassee isolate group, 76.5% were Firmicutes, 17.6% were
Proteobacteria, and 5.9% were Actinobacteria. In the Atlantic group, 42.9% were Firmicutes, 42.9%
were Actinobacteria, and 14.2% were Proteobacteria. In the NASA group, 55.5% were Firmicutes and
44.5% were Actinobacteria. The lone isolate from Carlsbad Cavern was an Actinobacteria.

The number of wells that were observed to clear or not clear for each isolate is illustrated in Table 2
and listed in Table 3. Table 3 also lists the VLP counts for all the samples (control and mitomycin C
treated). No clearing of wells was observed for five of the isolates (three from the Tallahassee group
and one each from the Atlantic and NASA groups). In these samples, VLP mL−1 ranged from 7.3 × 103

to 6.1 × 106 in wells containing mitomycin C, and from 0 to 6.9 × 105 in control wells (no mitomycin C).
For the remaining isolates, exposure to mitomycin C resulted in VLP mL−1 counts that ranged from 0
to 5.6 × 107 versus control counts that ranged from 0 to 4.1 × 107.

Table 3. Bacteriophage production (virus-like particles, VLP) per epifluorescent direct count.

Collection
Location Isolate ID Wells Cleared a Mitomycin

VLP mL−1
Control Wells

VLP mL−1
VLP

Production

Tallahassee
samples

070610 A 1 5.60 × 106 2.39 × 106 3.21 × 106

070610 B 2 1.31 × 105 3.07 × 105
−1.76 × 105

070610 C 4 1.28 × 107 0.00 × 101 1.28 × 107

071210 B 3 1.61 × 105 7.30 × 104 8.80 × 104

071210 A 0 7.30 × 103 0.00 × 101 7.30 × 103

071210 C 0 6.13 × 106 6.94 × 105 5.44 × 106

071210 D 4 4.46 × 106 1.90 × 106 2.56 × 106

071210 E 2 1.99 × 105 1.02 × 105 9.70 × 104

071210 F 0 9.86 × 105 1.83 × 105 8.03 × 105

071310 A 1 4.67 × 105 1.31 × 105 3.36 × 105

071310 B 3 8.98 × 105 1.10 × 105 7.88 × 105

071310 C 3 5.60 × 107 4.11 × 106 5.19 × 107

071310 D 4 2.10 × 107 2.04 × 105 2.08 × 107

071410 A 3 8.32 × 105 0.00 × 100 8.32 × 105

071410 B 3 1.18 × 106 1.09 × 106 9.00 × 104

071512 E 2 2.19 × 104 7.30 × 103 1.46 × 104

071512 G 2 5.84 × 104 4.38 × 104 1.46 × 104

Atlantic
samples

052503 BY0 2 4.91 × 106 4.02 × 105 4.51 × 106

052503 BY1 2 1.66 × 106 8.03 × 105 8.57 × 105

052603 BW0 4 4.46 × 107 4.38 × 104 4.46 × 107

052703 BY0 2 3.60 × 106 3.21 × 105 3.28 × 106

060103 BY0 4 1.18 × 106 5.40 × 105 6.40 × 105

061203 BY0 1 8.07 × 106 0.00 × 100 8.07 × 106

061203 BY1 0 3.25 × 106 2.92 × 105 2.96 × 106

061203 BY2 3 7.04 × 106 5.84 × 105 6.46 × 106

061503 BY0 4 9.24 × 106 4.75 × 105 8.77 × 106

061903 BC2 4 5.95 × 105 1.10 × 106
−5.05 × 105

062803 BP1 1 1.72 × 106 3.37 × 105 1.38 × 106

062803 BY0 4 1.68 × 106 7.23 × 105 9.57 × 105

070103 BWO 4 2.59 × 106 0.00 × 100 2.59 × 106

070103 BW1 2 0.00 × 100 3.20 × 106
−3.20 × 106
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Table 3. Cont.

Collection
Location Isolate ID Wells Cleared a Mitomycin

VLP mL−1
Control Wells

VLP mL−1
VLP

Production

NASA samples

NASA 1-1 3 6.79 × 106 0.00 × 100 6.79 × 106

NASA 1-71 4 4.85 × 106 2.23 × 106 2.62 × 106

NASA 2-43 4 1.41 × 107 5.84 × 104 1.40 × 107

NASA 2-25 0 3.62 × 106 4.38 × 104 3.58 × 106

NASA 2-8 1 1.53 × 106 8.18 × 105 7.12 × 105

NASA 2-33 3 5.50 × 106 1.90 × 106 3.60 × 106

NASA 2-34 1 3.58 × 106 0.00 × 100 3.58 × 106

NASA DS1 4 1.42 × 106 1.02 × 105 1.32 × 106

NASA DS3 4 4.10 × 106 5.84 × 105 3.52 × 106

Carlsbad
Cavern SPG PP1 3 2.40 × 106 8.32 × 105 1.57 × 106

a Wells cleared = number of wells that cleared in the dilution series experiments with mitomycin C.

VLP were detected in almost all samples, with the exception of 070,103BW1 where they were
not observed in the well containing mitomycin C, and in samples 071,210B, 071,410A, 061,203BYO,
070,103BWO, and NASA 1-1 in the control wells. In the Tallahassee group, the VLP counts in the
mitomycin C wells ranged over four orders of magnitude from ~103 to ~107 VLP mL−1 (average
6.5 × 106). For the control wells, the VLP counts ranged over six orders of magnitude from 0 to
~106 VLP mL−1 (average of 6.6 × 105). In the Atlantic isolate group, VLP mL−1 counts in the wells
containing mitomycin C ranged over seven orders of magnitude from 0 to ~107 (average 6.4 × 106),
and control counts ranged over six orders of magnitude from 0 to ~106 mL−1 (average 6.3 × 105).

The NASA group VLP counts in the wells with mitomycin C ranged over one order of magnitude
from ~106 to ~107 mL−1 (average of 5.0× 106), and the control wells ranged over six orders of magnitude
from 0 to ~106 VLP mL−1 (average 6.4× 105). The Carlsbad Cavern isolate produced 2.4× 106 VLP mL−1

in the presence of mitomycin C and 8.3 × 105 VLP mL−1 in the control well.
The differences between the average of VLP mL−1 counts in the mitomycin C wells with respect

to the control reactions by sites and bacterial groups (Firmicute, Proteobacteria, Actinobacteria) are
illustrated in Figure 1. VLP mL−1 counts for the Firmicute and Proteobacteria isolates in all groups were
within one order of magnitude. The Atlantic Actinobacteria isolates produced the highest overall VLP
counts at an average of 1.0 × 107 VLP mL−1. Within the Atlantic isolate group, the Actinobacteria and
Firmicute average VLP counts were higher than those observed with the Proteobacteria (within one
order of magnitude). The lowest overall counts that were above the minimum detection limit occurred
with the Tallahassee Actinobacteria isolate at 5.8 × 104 VLP mL−1. This count level was around two
orders of magnitude lower than the average counts observed with Firmicute (avg. 7.7 × 106 VLP mL−1)
and Proteobacteria (avg. 3.5 × 106 VLP mL−1) isolates at that site. However, with the NASA Firmicutes
and Actinobacteria isolates, the average VLP mL−1 in the mitomycin C and for control wells were ~106

and ~105, respectively. Bacteriophage production in the absence of mitomycin C ranged from 4.4 × 104

to 6.9 × 105 VLP mL−1 for the Actinobacteria, from 5.9 × 105 to 8.4 × 105 for the Firmicutes, and from
6.3 × 105 to 8.7 × 105 for the Proteobacteria.

Statistical Analysis

The Kolmogorov–Smirnov test results demonstrated that the VLP counts, in the wells containing
mitomycin C and in the control wells, from Atlantic at 0.05% (N = 14, p = 0.093, 0.252) and NASA at
0.05% (N = 9, p = 0.722, 0.444) groups, were normally distributed. However, in the Tallahassee isolate
group, the VLP counts in the mitomycin C and control wells were not normally distributed at 0.05%
(N = 17, p = 0.044, 0.049). Overall, the concentrations of VLP in wells containing mitomycin C (first/top
well) were significantly different than what was observed in the control wells (matched first/top well)
at 0.05% (N = 41, p = 0.023, rs = 0.354). If the Atlantic isolate 070,103BW1 is removed (no VLP detected
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after exposure to mitomycin C) as an outlier, the strength of the association increases from weak to
moderate at 0.01% (N = 40, p = 0.005, rs = 0.428). A weak positive correlation was observed between
the concentrations of VLP counts in the presence of mitomycin C and the number of wells that cleared
(rs of 0.295 of p = 0.064) for all isolates. Statistical analysis showed no significant difference between
the concentrations of VLP counts in the presence of mitomycin C (p-Values of 0.163) and in the control
wells (p-Values of 0.648), based on isolate origin (Tallahassee, Atlantic, NJ, USA, or NASA).
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4. Discussion

The objective of this study was to measure the concentration of mitomycin C-inducible VLP
in groups of eubacteria collected at various altitudes in Earth’s atmosphere. Our data indicate
that there are no differences in the concentrations of VLP mL−1 among the various sites of origin
(Tallahassee = terrestrial near ground, Atlantic = aquatic near surface, and NASA = high altitude).
These data could imply that environmental stress factors associated with atmospheric transport, such
as UV exposure and desiccation, may not directly influence the generation of VLP in communities of
airborne eubacteria. Observations in aquatic environments have demonstrated the detrimental effects
of environmental stress on extracellular VLP decay and production [30,53]. The stresses associated with
atmospheric transport could preselect for bacteriophage carriers that have the genetic characteristics
to provide enhanced protection of the cells’ nucleic acids or that are carriers of prophages that resist
induction in an atmospheric setting.

Induction of VLP by mitomycin C was observed in 38 out of 41 (92.7%) of the isolates in this study.
These data were similar to those reported by Mercanti et al., 2011 [54] for strains of Lactobacillus, but
were much higher than those observed by Weinbauer and Suttle (1996) and Jiang and Paul (1998) [13,30]
in aquatic environments at 43% and 47%, respectively; or by Williamson et al., 2007 [7] in soil microbial
communities at 33.0%. This high prophage prevalence rate in eubacteria isolates versus those observed
in other environments indicates that the atmosphere may quickly select for carriers.

The presence of mitomycin C appeared to suppress VLP production with the 070,103 BW1 isolate.
The absence of induction by mitomycin C with isolates could be due to suppression, resistance to the
induction agent, or the absence of prophages. Five of the isolates demonstrated an increase in phage
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production in the presence of mitomycin C, but clearing of the wells was not noted. These data indicate
that those isolates were resistant to lysis or that there was a rapid transition to an infection-resistant state.
The presence of VLP was observed in 34 out of 41 (83.0%) of the control samples. These data indicate
that it is possible that culturable eubacteria may serve as effective long-range atmospheric VLP vectors,
and thus both host and VLP elements may influence the genetic diversity of downwind environments.

5. Conclusions

A high prevalence rate of VLP at lower and extreme altitudes in Earth’s atmosphere was detected
in this study. It may be possible that, once injected into the atmosphere, the stress of that environment
quickly selects against eubacteria that are not capable of high VLP production.

Data also suggest that this may be a significant mechanism for long-range atmospheric inter-and
intra-continental dispersion of viable VLP-related genes and thus could be a driver of evolution in
downwind environments.

Additional sampling and testing are required to confirm these hypotheses.
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