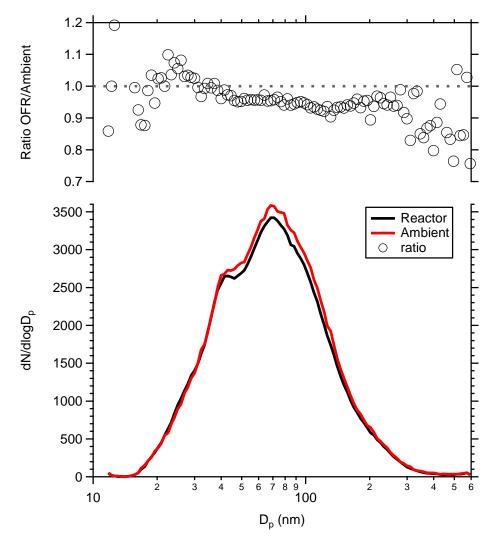
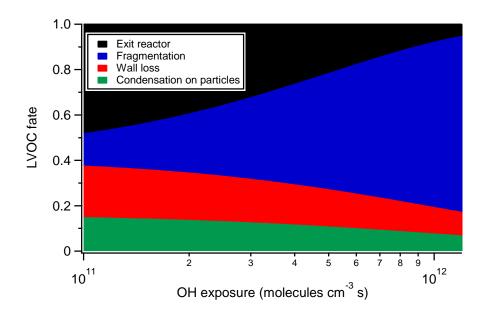
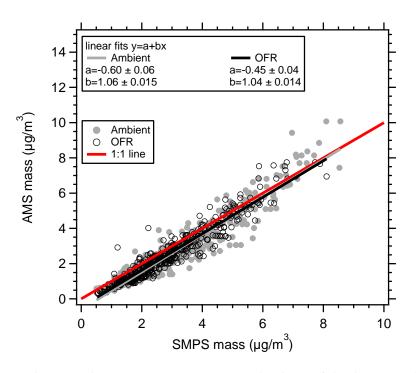
Supplemental Information for

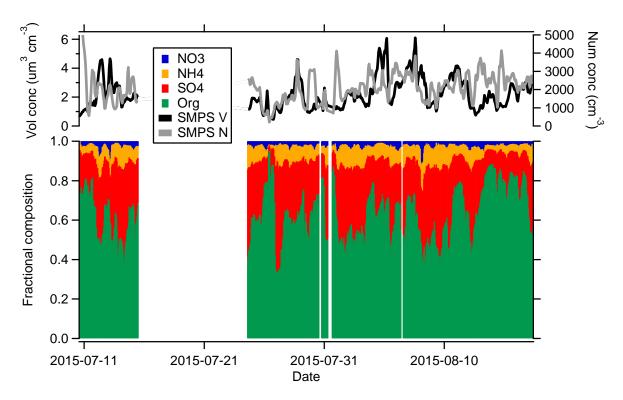

No particle mass enhancement from induced atmospheric ageing at a rural site in northern Europe

Erik Ahlberg^{1,2,*}, Stina Ausmeel², Axel Eriksson^{2,3}, Thomas Holst⁴, Tomas Karlsson⁴, William H. Brune⁵, Göran Frank², Pontus Roldin², Adam Kristensson², Birgitta Svenningsson²


¹Centre for Environmental and Climate Research, Lund University, Sölvegatan 37, 223 52 Lund, Sweden

² Division of Nuclear Physics, Lund University, Box 118, 221 00 Lund, Sweden


- ³ Ergonomics and Aerosol Technology, Lund University, Box 118, 221 00 Lund, Sweden
- ⁴ Department of Physical Geography and Ecosystem Science, Lund University, Sölvegatan 12, 223 62 Lund, Sweden
- ⁵ Department of Meteorology, Pennsylvania State University, University Park, PA, United States
- * Correspondence: erik.ahlberg@nuclear.lu.se


Figure S1. Average size spectrum and size resolved losses in the reactor from a period when the UV lamps were off. The ratio between OFR and ambient data shows significant noise at sizes where the number concentration is low.

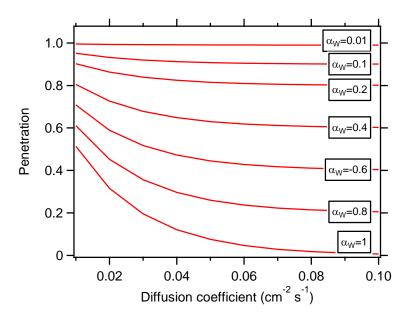

Figure S2. The modeled fractional fate of LVOCs in the reactor as a function of OH exposure. The model was constructed using the same principles as in Palm *et al.* [1]. The settings used were koH= 1 x 10^{-11} cm³ molecules⁻¹ s⁻¹, a residence time of 160 s, a condensation sink of 1.29 x 10^{-3} s⁻¹ (campaign average, corresponding to a surface area concentration of 42 µm² cm⁻³), eddy diffusion coefficient of 0.0042 and wall loss rate of 0,0020 s⁻¹. Loss to fragmentation is assumed after reaction with OH five times.

Figure S3. Total AMS and SMPS mass concentrations. The slopes of the data gives the collection efficiency of the AMS. The offset in SMPS mass (a-value) is likely from a constant error at the high end of the SMPS size spectra.

Figure S4. Overview of the campaign showing SMPS number and volume concentrations and AMS chemical composition.

Figure S5. Calculated penetration through the inlet up to the reactor as a function of diffusion coefficients and wall mass accommodation coefficient.

 Palm, B. B., Campuzano-Jost, P., Ortega, A. M., Day, D. A., Kaser, L., Jud, W., Karl, T., Hansel, A., Hunter, J. F., Cross, E. S., Kroll, J. H., Peng, Z., Brune, W. H. and Jimenez, J. L.: In situ secondary organic aerosol formation from ambient pine forest air using an oxidation flow reactor. Atmos. Chem. Phys., 16, 2943, 2016.