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Abstract: Environmental chambers have proven to be essential for atmospheric photochemistry
research. This historical perspective summarizes chamber research characterizing smog. Experiments
with volatile organic compounds (VOCs)-nitrogen oxides (NOx) have characterized O3 and aerosol
chemistry. These led to the creation and evaluation of complex reaction mechanisms adopted
for various applications. Gas-phase photochemistry was initiated and developed using chamber
studies. Post-1950s study of photochemical aerosols began using smog chambers. Much of the
knowledge about the chemistry of secondary organic aerosols (SOA) derives from chamber studies
complemented with specially designed atmospheric studies. Two major findings emerge from
post-1990s SOA experiments: (1) photochemical SOAs hypothetically involve hydrocarbons and
oxygenates with carbon numbers of 2, and (2) SOA evolves via more than one generation of reactions
as condensed material exchanges with the vapor phase during “aging”. These elements combine
with multiphase chemistry to yield mechanisms for aerosols. Smog chambers, like all simulators,
are limited representations of the atmosphere. Translation to the atmosphere is complicated by
constraints in reaction times, container interactions, influence of precursor injections, and background
species. Interpretation of kinetics requires integration into atmospheric models addressing the
combined effects of precursor emissions, surface exchange, hydrometeor interactions, air motion
and sunlight.
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1. Introduction

Atmospheric processes are a blend of meteorological phenomena, air chemistry and interactions
with the hydro-, pedo- and biosphere. Natural chemical processes are further complicated by the
addition of anthropogenic gas and particle sources emitted into the atmosphere. Contemporary
reductionist philosophy seeks separation of these components for a simplifying strategy to characterize
parts of widely different elements of atmospheric phenomena in time and space. Research strategies
have applied separate, fundamental results of physics, chemistry and biology to construct conceptual
models leading to current understanding of the atmospheric chemical dynamics. An adjunct to
these applications includes laboratory simulation of different processes believed to be relevant to the
atmosphere [1]. Contemporary simulation technology has recognized the spatial and temporal scale
of atmospheric processes from the microscale, including chemical kinetics and cloud micro-physics,
to planetary scale fluid dynamics of rotating stratified fluids.

Simulation of processes indirectly relevant to atmospheric chemistry began with laboratory
experiments of J. Tyndall in 1868 [2] followed with C.T.R. Wilson’s 1897 cloud chamber studies [3].
Tyndall experimented with particle production in irradiated gases in a tubular reactor. The gases
exposed to light revealed the potential for photochemical processes, perhaps the first hint of secondary
aerosol production possible from irradiated trace species in air. Wilson’s experiments elucidated the
nature of homogeneous nucleation in supersaturated vapors and found the mediating effects lowering
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supersaturation that were required for vapor condensation by ions. These experiments partially formed
the basis for several atmospheric studies of ions, nuclei formation and cloud formation.

Physicochemical phenomena in the atmosphere depend on the interactions of processes involving
the atmosphere’s energy balance and distribution, fluid dynamics, cloud physics and chemistry,
and underlying (heterogeneous) surface exchange. Expanding knowledge of photochemical processes
in the atmosphere called attention to the potential for experimentally separating chemical processes
from these other processes. The genesis of simulating tropospheric photochemistry began with
suspicions of the presence of oxidants (ozone) in the Los Angeles atmosphere [4]. In the 1950s,
Haagen-Smit’s [5] famous 2-liter flask experiments surfaced confirming the presence of ozone (O3) in
smog, and empirically exploring the role of nitrogen oxides (NOx = NO + NO;) and hydrocarbons
(HC) in oxidant chemistry. These studies aroused the regulatory concern of both the local pollution
control authorities and industrial or motor vehicles representatives leading early on to the creation of a
cooperative research entity in 1954, the Air Pollution Foundation. Renzetti’s review [6] describes a
succession of early laboratory experiments following up on Haagen-Smit’s experiments. Subsequent
studies of the smog photochemistry expanded in chambers up to 50 liters volume. In 1961 a major,
sustained US commitment to gas-phase smog chamber studies was implemented at the University of
California Riverside (UCR) Statewide Air Pollution Research Center (SAPRC, later renamed APRC).
This initiative fostered the design and development of major smog chamber facilities.

A complementary concern from urban observations of smog was the presence of suspended
particles leading to severe visibility impairment and the potential for exacerbation of ischemic or specific
respiratory disease [7]. Particle concentrations following the diurnal changes in photochemical smog
pointed to a chemical link distinct from smoke or dust emissions. This conjecture was verified early on
in laboratory experiments of Renzetti and colleagues [8-10], who irradiated auto exhaust in a reactor
with and without sulfur dioxide (SO,). They found that SO, was readily oxidized by photochemical
oxidants with water to form sulfuric acid along with organic material. Earlier, Mader et al. [11] found
organic particles in filtered smoggy Los Angeles air, along with sulfate. The presence of sulfur oxides
in polluted air and nucleation forming H»SO4 or sulfate salts in the 1950s followed a long history of
knowledge dating back centuries [12].

Atmospheric measurements showing photochemical phenomena motivated investigators to
begin studying aerosol production in laboratory photochemical systems after the 1960s [13-17].
Photochemical aerosol studies initially focused on sulfate [18-21]. Later, simulation experiments
on organic carbon particles began to appear, for example, [22-25]. Most of these experiments were
conducted in batch photochemical reactors or environmental (smog) chambers that were operated at
various institutions.

Following the photochemical research of the 1950s [26], the mechanisms responsible for oxidant
formation was hypothesized to involve the O3-NOy inorganic cycle often attributed to Chapman [27]
combined with free radical interactions of reactive nitrogen (NOy) and non-methane hydrocarbons
(part of volatile organic compounds—VOCs). The free radical chemistry, especially for hydroxyl radical
(OH), was determined to be critical in chain reactions leading to maintaining oxidant concentrations
beyond the Chapman cycle.

Conceptually, the rapidly evolving post-1960s photochemical kinetic studies fostered the interest
in using smog chambers as a means of study of atmospheric photochemistry. Simulating microscale
processes relevant to the atmosphere included the complex chemistry of trace gases and aerosol
particles in the air [28,29]. In the 1960s, the studies of gas-phase and aerosol chemistry paralleled one
another. Gas-phase photochemical processes involving NOy and VOC relevant to urban conditions
took precedence through the 1980s with combined bench scale experiments and smog chamber
research actively pursued at the at SAPRC, for example, and later at the University of North Carolina,
Carnegie Mellon University and the US Environmental Protection Agency (EPA). Experiments for
aerosol photochemistry took place using indoor or outdoor chambers at SAPRC (later the UCR Center
for Environmental Research and Technology, CE-CERT), the California Institute of Technology and
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Carnegie Mellon University. These paralleled similar research at the University of North Carolina,
and in Europe and Asia [30-35].

Smog chamber experiments have complemented laboratory chemical kinetics research and enabled
the verification of various smog chemistry mechanisms for air quality models, as well as for the
exploration of source emission controls on photochemistry in different environmental conditions [28,36].
Aerosol chamber studies have advanced the knowledge of secondary particle production from gaseous
species in different environments [37].

The goal of this narrative is to first summarize the technical capabilities of environmental
simulation chambers required for experimentation, and other studies that have qualified chamber
results relevant to the atmosphere. A survey is given of chamber facilities operated throughout the
early 21st century. To illustrate the importance of chamber research, a summary is provided for
some of the many contemporary contributions to knowledge of smog chemistry resulting from these
experiments. Atmospheric relevance of smog chambers for kinetics studies and as simulators end the
narrative. The details of research leading to various gas-phase photochemical-aerosol mechanisms are
left to the wisdom derived from many reviews in the literature exemplified in Table 1.

Table 1. Some reviews of studies relevant to atmospheric chemistry (2000-2019).

Review Year Content
. . . Textbook-comprehensive review of gas and aerosol
Finlayson-Pitts and Pitts [2] 2000 chemistry relevant to the atmosphere through the 1990s.
Atmospheric chemistry of O3 with analysis of smog
Dodge [36] 2000 chambers and their results.
Atkinson [38] 2000 Photochemical mechamsr}n review with relevance to
atmospheric chemistry.
George et al. [39] 2005 Comprehensive review of h.eterogeneous
atmospheric chemistry
Textbook-comprehensive gas and aerosol chemistry with
Seinfeld and Pandis (3rd ed.) [29] 2006 summary of meteorological and climate relevance through
early 2000s.
. Review of photochemical aerosol formation with reference to
Kroll and Seinfeld [40] 2008 smog chamber studies through mid- 2000s.
Hallquist et al. [37] 2009 Review of secor}dary organic a.erosol (SOA) formation
including photochemical processes.
Carlton et al., [41] 2009 Secondary organic aerosols (SOA) from isoprene oxidation.
Lim et al. [42] 2010 Aqueous chemistry and formation of SOA.
Stockwell et al. [43] 2012 Chemical mechanisms and models for Os.
. . Review of contemporary atmospheric organic chemistry
Glasius and Goldstein [44] 2016 status and future emphasizing SOA.
Bianchi et al. [45] 2019 Review of autoxidation and highly oxygenated organic

molecules (HOM) in atmospheric chemistry.

2. Requirements for Chamber Technology

Simulation of atmospheric chemical processes involves separation of an array of interactions
that result in ambient concentrations of gaseous and particulate species. These interactions involve
phenomena that range of time scales from a few seconds to several days, and spatial scales from less than
a cm to km’s. They include rapid homogeneous or heterogeneous reaction pathways superimposed
on a “background” of ever-present trace species concentrations, the intermittent presence of aerosols
and hydrometeor clouds, contaminant emissions, dilution via mixing of air with different properties.
Simulation schemes obviously apply to conditions favoring extremely small time and space constraints.
They are designed to isolate “pure” chemical phenomena from the many other phenomena taking
place in the atmosphere and the atmospheric boundaries. This approach asserts that such a separation
leads to descriptions from building blocks relevant to the atmosphere; in so doing, they advance our
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understanding of the atmosphere, and enable a predictive capability from integrated process modeling
(see also Section 4).

The study of atmospheric photochemistry derives from observations and early experiments of
Haagen-Smit and colleagues, and scientists affiliated with the Los Angeles Air Pollution Control
District. These studies focused on the NOx-VOC system, air pollutant agents from a variety of sources.
Early on, a decision was made to separate the gas-phase processes from aerosol processes even though
they were obviously observationally coupled in the atmosphere. The separation of gas and particle
processes in the 1950s evidently followed from a conclusion that visibility and haze were connected to
smoke sources distinct from photochemical reactions. By the 1970s the coupling between haze and
gas-phase photochemistry was widely recognized as an issue in characterizing smog.

Observations of the atmospheric NOx-VOC photochemical cycle showed that simulation would
require several hours to trace the chemical reactions to some end point past a maximum oxidant
concentration. This precluded most laboratory designs that focused on kinetics on a scale of minutes
or less even though flow reactors with short gas residence times 100-250 seconds have been used to
obtain chemical information relevant to the atmosphere [46—49].

The value of chamber simulations lies with the ability to measure under controlled conditions the
complex chemical kinetics taking place in as much detail as instrumentation will permit. Since the
1950s, gas-phase measurement technologies have improved dramatically for extracted samples as
well as continuous in situ observations. Advances in measurement methods, including spectroscopy
and chromatography, have supplanted early use of wet chemical methods and Haagen-Smit’s [5]
rubber cracking rate for ozone (O3) concentration changes. Continuous aerosol particle measurement
capability has followed gas-phase technology closely in recent decades, complementing extractive
methods of substrate sampling and batch chemical analysis.

2.1. Ideal Design Considerations

A high-fidelity simulation of atmospheric photochemistry requires that several conditions be
considered. These include:

1. Initial and endpoint concentrations of reactive species should approach those observed in
the atmosphere.

2. Initial input of gas mixtures (or aerosols) should be well-defined so that spurious reactions caused
by reactant contamination are controlled entering the vessel.

3. The light source for irradiation should simulate sunlight, or at a minimum, the light wavelengths
known to be key for excitation of airborne species.

4. The duration of an experiment should approach at least most of a day or a span of several hours.

5. Air in the chambers should be well mixed to minimize concentration gradients in the chamber.

6.  Documentation and control of environmental variables like pressure, humidity and temperature
should be assured or variability at least documented.

7. Loss of reactants, degassing or byproducts of surface reactions at the vessel walls should be
accounted for as an influence on the measured reactant-product profiles.

8.  Instrumentation for characterizing reactions should be as complete as practical from speciated
VOCs and NOy (reactive nitrogen species) to oxidants, and particle physicochemical characteristics
or other stable products and inference of free radical or other intermediate species.

The designers of simulators have responded to these requirements with approaches adopting
batch reactors (chambers) or flow reactors with nominally inert surfaces which are transparent to
light below ~<450 nm wavelength. Chambers have been located either indoors as part laboratory
capabilities or outdoors. They have been constructed of pyrex (borosilicate glass), quartz, stainless
steel or Teflon films that are transparent to light to sunlight, particularly in the range of 200-450 nm
wavelength, or artificial lighting from sources that simulate sunlight. Finlayson-Pitts and Pitts [28]
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summarize the pros and cons of these materials including their transparency to radiation and wall
effects discussed below.

Simulation chambers have been deployed outdoors or indoors using light sources that include
sunlight, black light from filtered mercury lamps, sun lamps, and xenon or argon arc lamps.
Light intensities varying with configuration require measurement inside the chambers to document
the wavelength coverage of the source, and require periodic verification of intensity compared with
sunlight. Some of the indoor chambers include temperature and relative humidity (RH) control,
and vacuum capability to expand the range of experiments accessible in the chamber. Outdoor
chambers generally exclude temperature and RH control. Some chambers are capable of injecting
water vapor as a means of RH variation during an experiment. Chambers have been operated as static
vessels or dynamic systems with gas flow to simulate fresh reactant injection during the aging of the
irradiated mixture.

The reactant and product concentrations need to be constrained in experiments such that the
reactant gases are in the ppb-ppm range and O3 maxima are less than ~400 ppb and NOy should
be similarly constrained. Free radical concentrations or stable intermediates in chambers will be far
lower, challenging investigators to measure them either directly or inferring them through tracers.
If particle formation is investigated, concentrations of 1-100 ug/m3 should be present as products.
Desired measurements include continuous observation of total number concentration of particles and
particle size distributions.

Concentrations of gases injected into chambers are historically higher than current urban
atmospheric conditions, but are similar to observations in Los Angeles in the 1970s as an upper
limit. The input gases for simulation chambers are blends containing pure NOy or mixtures of NOx
and VOC with super-purified air to define the starting point of a sequence of reactions. Injection of
gases can include outdoor air, source emissions such as internal combustion engines, or purified gas
streams to investigate reactions associated with single VOC species or mixes that are similar to those
from sources. Chambers are designed with the means of purifying inlet gases, including air, to remove
NOy and VOC contamination to less than ppb levels.

Concentrations of NOy and VOC reactants are varied to achieve different VOC/NOy ratios in
excess of 2. This ratio is well known to be an important parameter for establishing conditions near
ambient, and limits of conditions of VOC or NOy sensitivity [28].

Studies of secondary organic aerosol (SOA) formation involve injection of specific VOC or mixtures
of VOCs, beyond those usually adopted for oxidant formation. Also, the capability for adding “seed”
aerosols for catalyzing new particle formation, or atmospherically representative particles to investigate
the heterogeneous growth of particles. Other injection or generation capabilities include adjustment
for humidity and “background or baseline” aerosols. During or after injection of the gas mixture needs
to be well-mixed by fans or other methods to insure no gradients exist in the reactor volume.

Chambers are operated over time periods of a few hours to more than ten hours in various
runs, simulating the early morning build-up of smog chemistry through midday and later. The later
periods beyond the O3 maximum are problematic in the potential ambiguities of various reaction
pathways occurring with declining sunlight and hourly “aging” of the gas or aerosol mixture. Multiday
experiments with dilution have been attempted in outdoor chambers [50], but such experiments are
subject to cumulative increasing ambiguities from wall effects and potential air stratification without
mixing assistance.

Because of their importance for ensuring the fidelity of homogeneous chemistry believed to
represent the atmosphere, two essential features need to be addressed: light sources and wall surface
effects. Leighton and later Finlayson-Pitts and Pitts [26,28] discussed the solar radiation spectrum in
detail and the actinometric range of interest for tropospheric O3 chemistry. Finlayson-Pitts and Pitts,
and others [28,51,52] summarized the various light sources used in smog chambers, including filtered
UV lamps, sunlight, black light and xenon arc lamps. Light sources have different irradiation intensity
distributions that constrain their simulation of the solar spectrum. For example, black light lamps are
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widely used because they are inexpensive and have a good UV cutoff at ~300nm. However, they do
not represent the solar light intensity well in the visible regime, which is potentially important for
photolysis [53]. Darnall et al. [54] noted the differences expected from constant and diurnal varying
light. Light sources have been studied extensively to obtain chamber-specific data with light conditions
to constrain the gas-phase reaction progress to take account of these variables.

Wall effects are of major concern for in tracing particle forming reactions in chambers. These effects
not only involve the biases established from gas-phase NOx-VOC-oxidant reactions, but also interactions
involving volatile and non-volatile products in the formation, coagulation or evaporation of aerosol
particles, as well as physical removal of particles by deposition. For gas-phase systems, wall effects
have been studied in detail to determine ways for correcting the observations for such effects.
Dodge et al. [55] and Bufalini et al. [56] discussed the implications of contamination in chambers as
a concern. Lonneman et al. [57] and Kelly et al. [58] investigated VOC contamination from Teflon
films. Grosjean [59] noted wall losses as an uncertainty in chamber operations, and Yarwood et al. [60]
examined NOy wall losses as part of more recent chamber experiments. Trump et al. [61] constructed
a model for chamber losses. Empirically, the uncertainties associated with wall interactions can be
addressed by baking out chambers [62], or treatment with dilute concentrations of Os.

Particularly concerning for atmospheric simulation is the potential for free radical interactions
from chamber walls, especially the HONO disassociation to give a spurious OH supply. Carter et al. [63]
hypothesized a release of free radicals from chamber walls with temperature and irradiation.
Carter et al. [64,65] investigated this question further. Their studies were complemented with
work of Besemer and Nieboer [66] and Sasamaki and Akimoto [67]. Rohrer et al. [68] noted the release
of HONO from chamber walls as a continuing issue from the use of chambers. Iraci et al. [69] proposed
a series of experiments that could add more information about gas-phase wall interactions.

As a practical measure, the influence of wall effects of deposition and adsorption—desorption of
NO, NO, and O3, or release of free radicals (e.g., OH from HONO reactions is said to be reduced by
minimizing the surface to volume ratio of the chamber.). Empirical adjustments can be made to account
for wall effects in gas-phase studies [61,66]. Alternatively, investigators have designs employing low
surface to volume ratios to minimize the influence of walls on the photochemistry.

Experiments of photochemical aerosol formation add complexity of particle interactions with
chamber walls along with gas interactions. Aerosols formed in chambers can be lost by diffusion to
the wall, or sedimentation of larger particles. Loss of charged particles to the walls from electrostatic
attraction also has been documented [70,71]. Vapor and aerosol loss in secondary aerosol formation
was discussed early on [72]. More recent studies of organic vapor-particle loss on Teflon surfaces
have reported the potential for low bias in particle yields [73-78]. For low-volatility or semi-volatile
organics, wall loss is complicated by mass transfer and reactions on seed or SOA surfaces, which can
be accounted for empirically [79]. With the difficulty in comparing chambers and their results
for wall-loss of organics, Brune [80] has proposed an empirical “index” for interrelating chamber
conditions. Pierce et al. [81] proposed a theoretically-based model for loss from wall effects, coagulation
and condensation-evaporation in chambers. Sunol et al. [82] presented a comprehensive model for
characterizing secondary organic aerosol (SOA) formation in chambers, including accounting for
wall effects.

2.2. Some Chamber Facilities

The design of smog chambers has taken into account the ideal requirements above in various
ways to create practical containments for experimentation. The methodology adopted for design and
conduct of experiments are discussed [17]. Since the 1950s, there are several smog chambers that
have been constructed for both homogeneous gas-phase reactions and photochemical aerosol studies.
These facilities have served a range of experiments for major efforts to develop well-documented data
bases for mechanism studies and evaluation. The chambers available before 2000 for gas-phase studies
are listed in Dodge [36]. The listing includes examples of both indoor and outdoor facilities with
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varying volumes and media, NOy levels and VOC selected for simulating polluted air. Dodge noted
more than 1000 individual runs performed at her listed facilities have been available for developing or
evaluating gas-phase oxidant forming mechanisms.

After the 1970s, smog chambers also were used to follow up earlier investigations of photochemical
aerosol formation that were assumed to be relevant to the atmosphere. The post-1980s focused much
more on secondary organic aerosols (SOAs) rather than the inorganic species, sulfate and nitrate. Table 2
gives a list of chambers for this application, which are located all over the world. These obviously
could also be used for gas-phase kinetics studies as well. Table 2 includes the institution location,
the volume of the container, light source, indoor-outdoor configuration, material of construction,
operating temperature and references to their descriptions. They range in volume from less than 1
m? to nearly 300 m3. Some of the facilities have dual (side-by-side) chambers that permit parallel
experiments with differing input conditions.

Aerosol experiments have included not only NOy- oxidant-related VOC mixtures to produce
oxidant, but have added a variety of aerosol-forming VOC (single and mixtures [8,83,84]) and SOy as
SO, ~ sulfuric acid to seek knowledge of the aerosol-forming kinetics expected in the atmosphere.

Table 2. Some Smog Chambers Used for Photochemical Gas-Aerosol Studies (updated table from
Hallquist et al. [37]).

Location Type Volume (m3) Material Tem(po(;zz;ture Reference 2
. . Indoor photoreactor Cocker [86];
California Inst. of Technology black light 28 (dual) Teflon (FEP) 290-303 Ng [87]
California Inst. of Technology Outdoor photoreactor 65 FEP ambient Leone et al. [88]
. . Indoor photoreactor Teflon Stanier [89];
Carnegie Mellon Univ. black light 10 (PTFE/FEP) 288-313 Robinson et al. [90]
Forschungazentrum Julich, .
Germany (SAPHIR) Outdoor photoreactor 270 FEP ambient Rohrer et al. [68]
Forschungazentrum . Mentel et al. [91];
Julich, Germany Dark chamber 250 PTFE/FEP ambient Saathoff et al. [92]
Forschungazentrum Saathoff et al. [93];
Karlsruhe, Germany (AIDA) Dark chamber (clouds) 4-84 Metal 183-323 Jonsson et al. [94]
Fundacion Centro de Estudios Rodenas et al. [95];
Ambientales del Mediterranean Outdoor photoreactor 200 FEP ambient Klotz et al i" 6j g
Spain (EUPHORE) otzetal
Leibniz Institute for Indoor photoreactor X
Tropospheric Research Germany black light 19 FEP 289-308 linuma et al. [7]
Paul Scherrer Indoor photoreactor PSI [30];
Insitute Switzerland Xenon arc 2 FEP 290-298 Paulsen et al. [98]
. . Indoor photoreactor Temime et al. [99];
University College Cork Ireland black light 6.5 FEP 293-305 Healy et al. [100]
University of Manchester UK Indoor photoreactor 18 FEP 288-313 Centre for Atmos. Sci. [101]
Halogen/xenon arc
University of California Indoor photoreacto Carter et al. [85];
Riverside (CECERT) US xenon arc/black light 90 (dual) FEP 278-323 Song et al. [102]
University of California Photoreactors (several indoor and . . Dodge [36];
Riverside (APRC) US outdoor) xenon arc/black light 68 PTFE/FEP ambient Tobias and Ziemann [103]
o . 120; 137 (dual); . Jeffries [104-106];
University of North Carolina US Outdoor photoreactor 150 (dual) FEP ambient Lee et al. [107]
Indoor photoreactor
US EPA Black light 14.5 FEP/TFE 293-298 Edney [108]
Outdoor . . 5
CSIRO photoreactor 20 (dual) FEP ambient Wiegand [109]
. Indoor photoreactor . .
CSIRO Energy Technol Australia black light 18 FEP ambient Hynes et al. [110];
CSIRO Australia Indoor photoreactor ~24 FEP ambient White et al. [52]
black light
CNRS-ICARE (HELIOS), France Outdoor 90 FEP ambient Renetal. [111]
Nat'l Igst. Environ. Indoor photoreactor 6 PFA _ Akimoto et al. [62]
Studies Japan Xenon arc
Nat'l Iqst. Environ. Indoor photoreactor 18 FEP ambient Sato et al. [112]
Studies Japan
Tsinghua University China Indoor photoreactor 2 FEP 283-333 Wu etal. [113]
Key Lab. Organic Geochem. Indoor photoreactor » )
Guangzhou China black light 3 FEP 283-313 Wang etal, [34]
Key Lab. of Atmos. Inst. Comp. ,
and Optical Radiation China Indoor photoreactor 0.83 FEP 298 Huetal. [114]
. Indoor photoreactor =
Kyungpook Natl Univ. Korea black light 7 FEP 291-306 Babar et al. [35]
Korea Institute of Science Indoor photoreactor . Bae et al. [31];
and Technol. black light 58 (dual) FEP ambient Moon et al. [115]

a: References include example studies identified [37]; added references that describe the photoreactors from

recent literature.
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An example dual chamber facility constructed at the University of California Riverside is shown
in Figure 1 [85].

Movable top

: . frame allows
2 Banks of : W teactors 1o
Blacklights Y . collapse
A et under
200 KW i This volume kept clear Sy pressure
Arc Light to mantain light control
y uniformity
20
Two air Handlers  fi. : [Mixing System
are located in the <o -» = “| Under floor
corTErsoneadi </ :': vevanfanisnnnalanssannnsnnonnnnnnnnnniion il g NEGIL SR R L of reactors
sideof the light | [ /
o pla). v .".. Floor Frame
204t \ N N
Temperature confrolled room flushed >coess S]\EMS M 'x Gas sample lines to
with purified air and with reflective Door Instrament laboratory below
material on all inner surfaces

Figure 1. Example of Indoor Smog Chamber Configuration for the study of gas and aerosol
photochemistry. CE-CERT, University of California Riverside System and the US Environmental
Protection Agency (Reprinted from Carter et al., [85] with permission from Elsevier).

The photograph in Figure 2 is an example of another indoor facility at the Paul Scherrer Institute (PSI)
in Switzerland. This chamber is part of cooperative research programs in Europe (e.g., EUROPHORE [95]
or EUROCHAMP [116]). Special applications of chambers also have been reported, including portable
bag experiments [117] to attempt to isolate the chemistry controlling oxidations of hydrocarbons,
or characterize the reactivity of source emissions [118]. Exploration of in situ biogenic emissions from
plants and interactions of plant VOCs with oxidant chemistry [119-121]. Other applications have used
photochemical reaction products to investigate toxicity to humans [106,122]. Smog chambers have also
been used to investigate photochemical pesticide degradation. Many pesticides contain chlorine, so that
degradation can release this element to the O; cycle [53,123,124].

Figure 2. Photograph of the Indoor Smog Chamber at the Paul Scherrer Institute (Copyright Paul

Scherrer Institute).

A second essential element for smog chamber research is the instruments for measurement of gases
and aerosol particles. Measurements are sampled for external measurement or sampled in situ. Generic
gas-phase experiments have relied on measurement of conventional O3, NO and NO, concentrations
and speciation for VOCs including hydrocarbons, oxygenates and organic nitrogen compounds (e.g.,
peroxyacetyl nitrate—PAN). Methods for measurement of these gases are described [28].



Atmosphere 2019, 10, 401 9 of 36

Smog chamber experiments provide a means for identifying precursor composition, intermediate
species or organic products using different measurement techniques. These include gas
chromatograph-mass spectrometer (GC-MS) characterization of VOCs, and instruments such as
Fourier transform infrared spectroscopy (FTIR) or differential optical absorption spectrometry (DOAS).
High-sensitivity options for VOC determination also include proton transfer spectrometry (PTS) [125].
Contemporary instruments for continuous monitoring include The Hantzsch instrument [126] for
formaldehyde, and long path absorption photometer (LOPAP) for HONO [127]. Peroxide or
hydroperoxide species can be determined using chemical ionization spectroscopy (CIMS) [128].
Use of high-performance liquid chromatography (HPLC) with detection using peridase [129] could
also be adapted for hydroperoxide determination in smog chambers. Radical species such as OH and
HO; can be determined using fluorescence assay with gas expansion (FAGE) [130].

Aerosol experiments in chambers add complexity to measurement options. In addition to the
gas-phase measurements, particle chemistry needs to be characterized, including physical properties
such size distributions and chemical composition [131]. The range of particle size found in experiments
(<0.01 um—~5 pm diameter) has required the use of not only condensation nuclei counters (<~0.05 um),
but also differential mass analyzers (0.05 um-~5 pm). Chemical composition of particles uses extracted
samples obtained by filters for laboratory analysis, including inorganic and organic components by ion
chromatography (IC), GC-MS, or aerosol mass spectrometry (AMS). Peroxides in particles have also
been measured by LOPAP [132].

Organic species from reactants to condensed phase products require a variety of techniques
including sampling for derivatization of species and subsequent laboratory analysis. Some of
these adopt improvements in mass spectroscopy [133] including so-called “soft” ionization methods
for large organic species (atmospheric pressure chemical ionization, API-MS [134], or electrostatic
ionization, ESI- MS [135]). High-resolution time-of-flight mass spectrometers-HR T-of-F AMS have been
applied to measure both gas-phase and condensed species atmospheric or smog chamber application
(e.g, [136,137]). Gross et al. [138] used this instrument to measure continuously oligomers from
SOA formation.

Quite apart from measurement capability, issues of sampling organic species from smog in recent
years have been addressed It is widely known from ambient air sampling that reactive gas adsorption
on tubing needs to be minimized and particles need to be sampled with attention to loss of volatile
components of inorganic and organic species [139]. In the same way, sampling from chambers can bias
measurements from tube wall losses. The wall loss from Teflon films applies also to various kinds of
sample tubing, which in turn can bias low estimates of particle formation yields [140]. To facilitate
combined sampling for gases and particles, a filter inlet (FIGAERO) has been adopted for mass
spectrometric, chromatographic and other sensor applications. This sampler should make combined
gas and particle characterization more efficient [136].

Aside from chemical kinetics evaluation, smog chambers have been used studies and
documentation of instrument intercomparisons and interferences. Examples of these include NO,,
HO, and OH [141-143].

2.3. Limitations of Laboratory Chemical Simulation

There are obvious limitations to the smog chamber characterization of atmospherically relevant
chemistry. The first are internal in nature, as discussed above, including simulation of sunlight
from artificial light sources, completeness of mixing and chamber surface reactions. The second are
external in nature concerning the coupling of chemical processes to other atmospheric phenomena.
Internal limitations beyond surface reactions or reactant contamination are summarized next; external
ambiguities are discussed below and later in Section 4. Finlayson-Pitts and Pitts [28] noted that the
issue of wall effects is believed to be moot by some investigators. This is rationalized in that the
relevance to the atmosphere is moderated by the fact that the atmosphere is adjacent to underlying
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surfaces. Photochemical processes along with aerosols take place with a wide range of surface area per
unit volume of air near the ground (having widely varying properties).

Uncertainty introduced in translation from controlled laboratory experiments using defined or
known gas mixtures vs. irradiation of urban or rural air is not necessarily well-established; experiments
have elucidated this question with dual chambers or interpretation of smog evolution compared with
oxidant forming mechanisms. In a sense, a “proof” of the relevance of chamber studies results from a
correspondence with atmospheric concentrations and composition over durations including diurnal
and longer term averages in urban or rural air (see also Section 4). The same heuristic argument is true
for the influence of semi-continuous injections of reactants during experiments. The fact that, at least
qualitatively, the diurnal changes in reactants and products are similar to those in the atmosphere
is interpreted that this emission injection is accounted for in chemical transport models (see also
Section 4).

Uncertainty in the translation of smog chamber experiments to current atmospheric conditions is
also related to the latter ambient concentration levels. Emission control of precursor gases over the years
has reduced urban concentrations substantially, and rural concentrations are generally much lower than
current urban levels. Dodge [36], for example, noted this issue in 2000 and recommended experiments
for low NOy and VOC concentrations and low VOC/NOy ratios paralleling contemporary conditions.

Another question of smog chamber experiments and the atmosphere is the presence of a
“background” of photochemical reactants and products to begin each sunlight cycle. Most chamber
experiments focus on highly purified air introduced with known pure VOC and NO gases, or in the case
of aerosols pure salts or acids as seed species. In principle, the background issue could be dealt with to
first order by conducting gas-phase experiments with a range of reactant concentrations and VOC/NOy
ratios; this precludes an ability to simulate a background of partially reacted species, including free
radicals, some of which may be unidentified. The latter may be moot, since these species in aged air
are likely to be very short-lived and not relevant to a background residual of a day or more, some of
which mixes down to the ground from the upper atmospheric boundary layer or free troposphere.

An illustration of the lifetimes expected for various VOC exposed to OH, NOj3 radicals or O3
range from minutes to years (e.g., Table 1 from [38]), showing that background photochemistry of
VOCs could be factor over multiple time scales. An early attempt to deal with the evolution of smog
over a sequence of time scales to a few days was reported [50]. They used a dual outdoor chamber to
simulate multiday degradation by a sequence of daily dilution in the chamber. Their results suggest a
qualitative diurnal repetition of O3 forming reactions, but wall effects are likely to cumulatively affect
the product concentrations.

The residence time for aerosols in the atmosphere varies from hours to several days depending
on particle size and surface deposition rates or cloud or rainout [29]. For background perturbations
associated with photochemical aerosol formation, the superposition of photochemical processes on
known existing aerosol populations ranging from dust and carbonaceous material combined with
inorganic salts poses a challenge for interpretation of the laboratory results to tropospheric aerosols.
Nevertheless, the experiments using acid or metal oxide seeds simulates a real-world condition for
catalyzing photochemical aerosol formation.

Another possible way to deal with background is to investigate the photochemical reactions
of complex mixtures derived from combustion processes for comparison with the so-called “pure”
systems. Chamber experiments of this kind have included reactions of internal combustion and diesel
engine exhaust, as well as biomass burning [8,77,144-152].

Smog chamber experiments generally address “dry” (RH < 70%) gas-phase or seed-catalyzed
chemistry. These processes do not account for the potential of heterogeneous or condensed phase
chemistry known to take place in the atmosphere. The role of clouds or fog for introducing uncertainty
from light variation is exemplified by daily variation in sunlight for outdoor chambers. Perturbation in
sunlight from cloud or haze intervention presumably acts to suppress photochemical aerosol formation
and could be investigated as part of an experimental protocol. Reactions from microscale interactions
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with moist particles add complexity to irradiated chemical processing. Hallquist et al. [37] comment
on cloud interactions that include the influence of RH on gas-particle partitioning, changes in water
content with change in RH of droplets, or ice nucleation with organic content. This list does not address
the potential for photochemical oxidant absorption and reaction with organics in droplets [153,154].
Since the Hallquist et al. review, studies using humidity-controlled smog chambers and bulk laboratory
methods have been reported [41,42].

3. Knowledge Gained from Chambers

Even with its limitations, chamber simulation of photochemical processes has contributed in
many ways to advancing knowledge about the atmosphere. Smog chambers constructed since the
1950s have gone well beyond qualitative characterization of oxidant formation in the presence of VOC
and NO precursors. A large number of gas-phase kinetic simulations complementing other laboratory
techniques have produced quantitative kinetic data for conditions near the atmosphere. Dodge [36]
and Finlayson-Pitts and Pitts [28] have reviewed the kinetic and mechanistic studies published through
the late 1990s. Smog chamber experiments have provided fertile ground for advancing knowledge of
photochemical aerosol formation as well.

3.1. Atmospheric Photochemical Processes

A major contribution of smog chamber data for gas-phase processes involves their use in
verification and evaluation of mechanisms relevant to the atmosphere. A large body of kinetic data
for oxidation reactions was collected relating to VOCs and NOy species since the 1950s [38,155-157].
These have provided the ingredients constructing detailed mechanisms for oxidant production [158-162].
Potentially relevant reactions could involve more than 20,000 reaction pathways with thousands of
trace species. Jenkin et al. [161] and Saunders et al. [162] constructed a gas-phase mechanism (Master
Chemical Mechanism-MCM v3) involving NOy and 120 VOCs which translated to 7000 reactions with
2500 species.

Detailed mechanisms required too many computer resources for most atmospheric modeling
applications. In practice, compressed or condensed mechanisms were adopted that evolved from
highly parameterized schemes for O3 chemistry in the 1970s to more specific descriptions after the
1980s. Examples of compressed mechanisms include the SAPRC 07 (CS07A) model, or the RADM
chemical models [162,163]. Both detailed and truncated mechanisms have been evaluated with smog
chamber data. The detailed mechanism experiments added to the advanced understanding of the
complex chemistry. Experiments with truncated mechanisms provided knowledge of the potential
inaccuracies involved in constraining the oxidation chemistry.

In the US, three “streamlined” chemical models have been developed since the late 1970s. These are:
(a) Carbon Bond (CB; [164-166]); (b) Regional Acid Deposition Model—RADM [163] (also the RADM
derivative, Regional Atmospheric Chemistry Mechanism—ACM [167]); and (c) SAPRC series [158,159].
The Carbon Bond mechanism is perhaps most commonly used in the US regulatory environment,
and has evolved through several modifications since their first versions; e.g., CB05 [166].

According to Dodge [36], the sequence of reactions involving NOy, O3, OH, HO,, HO, and CO is
essentially the same except for the reaction of OH and NO,. The models adopt parameterized chemistry
for VOC, particularly biogenic compounds and aromatics whose kinetic degradation mechanisms have
been adjusted from smog chamber experiments to estimate O3 concentrations. Dodge’s Table 1 [36]
lists over a thousand smog chamber runs exploring VOC-NOj systems that have been archived and
have been used for guiding the fidelity of compressed model elements. Several hundred runs have
been recorded and used to evaluate oxidant forming mechanisms since the 1970s.

An important conceptual outgrowth of application of chamber experiments that resulted
in the NOx-VOC-Oj relationship traces back to Haagen-Smit’s research, and the reports of
Romanovsky et al. [15] and Hamming et al. [14]. This relationship was represented from chamber
experiments as the widely cited Haagen-Smit “mountain” diagram, shown, for example, in Figure 3.
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The diagram shows the two idealized regimes of initial NOy sensitivity and VOC sensitivity vs. the
maximum O3 expected nominally during late morning to mid-day hours. The NO sensitive regime is
in the high initial VOC/NOy regime to the left of the line of slope of VOC/NOy ~8:1. The VOC sensitive
regime of relatively low initial VOC/NOx is to the right of the ridge line. These regions are separated by
isopleth contours that show maximum O3 formation with VOC/NOy ratio. The idealized relationship
on Figure 3 was demonstrated early on from a selection of experiments with different VOC/NOjy ratios.
The relationship was calculated using the empirical kinetic modeling approach (EKMA) chemical
model [168]. The mapping in the figure established a qualitative basis for precursor management that
would estimate the average maximum expected Oz concentration. This approach evolved from simple,
empirical (mainly VOC) roll-back schemes for O3 precursor reduction [169].
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Figure 3. Textbook-handbook O3 Isopleth Diagram showing the non-linear relationship between O3
precursors and O3 concentrations as curved iso-lines calculated from the EKMA mechanism) [168].

The current regulatory practices have evolved to adapt models for diurnal change in precursors
using chemical transport models accounting for daily oxidant chemistry with precursor emissions and
meteorological conditions for air transport and mixing [170]. Compressed kinetics calculations found
in several air quality models, including the urban airshed (chemical transport) model (UAM) [171],
the regional, RADM, “engineering” version [172] and versions of community multiple (spatial and
temporal) scale chemical transport model (CMAQ) [173]. This portfolio of models is said to approximate
by computer the “real” lower troposphere (see also Section 4).

3.1.1. Mechanism evaluation

Evaluation of photochemical mechanisms ideally would involve comparisons between the
mechanistic calculations and smog chamber measurements of as many reactant and product species as
practical for as long as possible. In most cases the evaluation is constrained for a given irradiation to
concentration changes in a few hours for O3, NO, NO,, VOC species, products like formaldehyde or
peroxyacetylnitrate (PAN) [174,175]. Recent evaluations can also address a variety of intermediate
products including free radicals and peroxides.

A typical time series for smog chamber chemistry of a single aromatic compound over a period of
a few hours is shown in the panels of Figure 4 with four different mechanism calculations. The upper
panels follow O3, NO, NO, and PAN; the lower panel shows the decline of o-xylene concentrations
in the chamber. Here NO decreases exponentially after 0800 LDT, followed with a growth in NO,
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concentration to a peak, and an Oj peak later in the run. Ozone then declined after ~1500 LDT.
PAN concentration peaks at approximately noon.
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Figure 4. Smog chamber time series including a gas-phase reaction sequence of NOy and m-xylene,
August 1, 1983, comparing data from the UNC outdoor chamber with CB04-2002, CB05, SAPRC-07 and
MCMVv3.1 calculations. The solid lines are the observations. Dotted lines are the model calculations
(reprinted from [176], with permission from CSIRO publishing).

For comparison, the time variation from kinetics mechanisms is calculated and compared with
the smog chamber runs. In this case, the CB mechanisms tend to under predict the O3 concentration,
including the maximum and SAPRC and MCM over predict the measurements for O3; MCM is relatively
poor for estimating the maximum O3 concentration in this experiment. The model predictions for NO
and NO; also show variable departure from the measurements. Comparison between the smog chamber
observations and the different model chemistry has led to selective constraints on principal reaction
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pathways and rate constants. These results combined with similar testing with different chamber data
facilitated improvements in mechanisms for simulating photochemistry in the atmosphere.

In another example, Carter and Lurmann [177] discuss a systematic evaluation of the SAPRC-90
detailed mechanism [158] with smog chamber data. One approach in their study is a test to see how
well the mechanism predicts O3 concentrations for a range of different VOCs. Carter’s scatter plot in
Figure 5 compares chamber measured O3 produced (O3-NO) after a period of time (5 h) with model
calculated values [178]. The graph indicates the model calculation gives (O3-NO) production to within
approximately 30% for a range of single VOC chamber experiments. This result is found even though
the reactivity of the chosen VOCs varies widely.
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Figure 5. Experimental vs. calculated O3 formed plus NO oxidized for selected single compound-NOy
experiments. Calculations were made using a version of the SAPRC-90 mechanism [178].

3.1.2. Relative Reactivity

An important result from smog chamber experiments concerns the influence of differences in
reactivity of different VOC species. The reactivity of VOCs relates to the rate and amount of O3
or major oxidation products formed in the reaction sequence. VOC reactivity also affects reactions
on overall free radical concentrations and the rate of NOy removal. Reactivity has been defined in
different ways [178]. One simple measure is the reaction of OH on VOCs measured in terms of the OH
radical rate constant (kOH). Another is the incremental reactivity, defined in terms of the change in O3
formation caused by the addition of a small amount of a VOC to the emissions in an O3 formation
event; maximum incremental reactivity has been used as a useful index for mechanistic analyses [178].

There is a multitude of anthropogenic VOCs present in the atmosphere (e.g., alkenes, alkanes,
aromatics and oxygenates). To characterize the influence of VOCs, initial practical approach was
to combine species together using non- methane hydrocarbon (NMHC) concentration common to
ambient air. The next step in complexity was to separate the VOC by the major ambient contributors
by concentration. Then increased attention could be given to the reactivity of the individual species as
potential contributors to the chemical process. The smog chamber experiments with various VOC
species provided information about the capability of a mechanism to estimate reactivity. Then the
correspondence of VOC reactivity differences in the atmosphere could be estimated from application
of the mechanism in a chemical transport model.
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Smog chamber experiments can give insight about the production of O3 from a variety of single
VOCs as suggested in Figure 5. Alternatively, reactivity can be tested for a mixture by adding a VOC
to the mixture and recording a change in O3 production. If adding a VOC to a mixture has sufficiently
large effect on reducing free radical levels, then the addition may cause less O3 to be produced than in
its absence. Conversely, if the VOC added increases radical levels then more O3 would be produced
than in the VOC’s absence. Reactions of VOCs also increase rates of NOy removal, for example,
by forming alkyl nitrates, inhibiting ozone production when NOy levels are low [179]. With NOy,
present, this VOC “sensitivity” is a practical consideration for managing atmospheric O3 production,
especially for conditions of high VOC/NOy concentrations, or NOy sensitive conditions. When NOx
concentrations are sufficiently low, O3 concentrations are very sensitive to NOx and less sensitive to
VOC as reflected ideally in Figure 3.

Smog chamber experiments with NOy-VOC combinations are well-suited to test mechanisms
used to calculate reactivity scales. Based on reactivity comparisons, scaling with incremental reactivity
has been used to improve the SAPRC model results with experimental data in different gas-phase
kinetic mechanisms [158,159].

3.2. Photochemical Aerosols

In this section, the gas-phase smog chemistry is extended to include photochemical aerosol
formation. Contemporary smog chamber experiments have followed the initial work between the
1950s and 1990. Chamber experiments have proven to be an important asset in developing knowledge
about atmosphere relevant particle chemistry. They provide a means to: (a) establish how much
particle mass is formed compared with reactants lost to gas-phase products and container walls
(b) obtain yield data for parameterized SOA mechanisms for use in chemical transport or airshed
models; (c) understand the link between gas-phase and particle chemistry, including physical and
chemical properties of SOA; and (d) evaluate chemical mechanisms to predict SOA production rates
for semi-volatile and low volatility species.

Recognition of aerosol formation from irradiated, atmospherically relevant gas mixtures in smog
chamber experiments was noted after the 1950s as discussed earlier [8,18,21]. These experiments
inferred that there existed a clear linkage of oxidant chemistry and aerosol formation in smog instead
of alternative sources such as smoke plumes. The experiments focused on sulfuric acid formation even
though organics were present in the reacting mixture. Workers also recognized that particle nitrate
could be formed through a pathway of nitric acid from the oxidant cycle [180]. Like their inorganic
counterparts, organic aerosols are produced in the atmosphere as SOA. In the troposphere, high carbon
number VOC precursors generally exist in the ppt-ppb level even in urban conditions.

Studies of the yield of photochemical reactions to produce low volatility material suggested
that insufficient high carbon number vapors were present to explain major amounts of apparent
photochemical SOA in smog, except for cyclic olefins and aromatics found in gasoline and other fuels.
Grosjean and Friedlander [25] reported smog chamber measurements for some cyclic olefins that
supported development of an aerosol-forming mechanism. Reactions analogous to those involving
aromatics or cyclic VOC oxidize biogenic vapors. Isoprene, a relatively low-molecular-weight
species, was thought to form products (low in carbon number) non-condensable at atmospheric
concentrations. However, higher molecular weight species such as the terpenes (e.g., pinenes) could
produce photochemically derived condensable products in ambient conditions where the reactants are
present in concentrations less than ppb.

Smog chamber experiments have enabled the study of mechanisms relevant to photochemical
aerosol-well beyond the early experiments of Los Angeles smog. Atmospheric chemical reactions
of VOCs contribute to their degradation to final endpoints of CO and CO;. Intermediate stages of
degradation by mass are mainly short-lived gas phase and condensed products. The photochemical
formation of organic particles from carbon number species >C; was established after the 1970s both in
smog chamber experiments and in the field [23,25,181-187]. The main thermodynamic criterion for
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aerosol formation was a low vapor pressure for products that would partition significantly into the
condensed phase. The time series for particle production in chambers coupled with O3 as an index for
oxidation; the increase in O3 concentration parallel with aerosol production are noted in comparison
between the gas-phase product-time profiles in Figure 4. The relationship between O3 (or odd oxygen)
and SOA concentrations also has been documented in ambient air, e.g., in the southeastern US [188]
and in Mexico City [189].

A contemporary picture of the linkages between O3 photochemistry and photochemical aerosols
is shown in Figure 6. For inorganic acid species, sulfuric acid and nitric acid, the photochemistry
derives from oxidation via OH or HyO; or Os. Secondary organic particle (SOA) formation follows
from radical reactions or ozonolysis and depends on producing low vapor pressure (low volatility)
species from higher volatility VOC vapors, partitioning semi-volatile product between the vapor and
condensed phase. Reactions follow from an initial oxidation step generating products containing one
or more oxygenated functional groups. Early on, one of the atmospheric pathways identified was
an O3 attack on unsaturated VOC through formation of Criegee intermediates and ozonides [190]
followed hypothetically by formation of oxygenated species of reduced vapor pressure [29]. Particle
formation as a part of gas-phase oxidation reactions has been identified with OH, RO, RO and NO3
radicals, and heterogeneous reactions on existing particle surfaces [29].
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Figure 6. Interaction between the photochemical processing to form O3 and other oxidants through the
VOC-NOy system combined with aerosol formation through SO,, NOy and VOC species. SOA chemical
deposition is not included in the diagram (reproduced from [191], with permission of the Licencor
through PLSclear).

Smog chamber and other reactor studies have indicated the presence of highly oxygenated
material in photochemical aerosols than expected from oxidant attacks on large VOC molecules.
As indicated in Table 3 addition of oxygenated functional groups to VOCs dramatically reduce vapor
pressure, changing the partition between vapor and condensed phase. Vapor pressure reduction in
smog chamber experiments has a direct effect on particle yields [192].
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Table 3. Vapor pressure change of an organic compound with addition of a common functional group,
based on group contributions calculated by Pankow and Asher [192]. (Reproduced from Kroll and
Seinfeld [40] with permission from Elsevier).

Functional Group Structure Change in Vapor Pressure (298 °K) 2
Ketone -C(O)- 0.10
Aldehyde -C(O)H 0.085
Hydroxyl -OH 5.7 x 1073
Hydroperoxyl -OOH 25x1073
Nitrate ONO, 6.8 x1073
Carboxylic acid -C(O)OH 3.1x10™
Peroxyacid -C(O)OOH 32x1073
Acyl peroxynitrate C(O)OONO, 2.7 %1073
Extra carbon -CH,- 0.35b

a: Multiplier with hydrocarbon root. b: For comparison between changes in polarity by addition of a functional
group and changes in size of the carbon skeleton.

The yields of aerosol mass produced from photochemical reactions of VOCs (change in mass
of aerosols/change in mass of VOC) relate to the amount of aerosol mass produced (Mo ug/m3).
Yield curves for smog chamber reactions of C6-C9 species are illustrated in Figure 7. These curves are
non-linear nature but indicate that the larger the yield or the larger the change in VOC, the larger the
expected amount of aerosol relative to total VOCs present [193]. For single VOC species, the yield
Mo relationship is qualitatively similar for many species, but the yield curves vary beyond simply
a carbon number depending on the nature of the VOC vapor. At the turn of the 20th—21st century,
two “discoveries” opened the door to an aggressive research program in photochemical aerosol
formation. The first was the finding from smog chamber experiments that isoprene, a C5 unsaturated
hydrocarbon, could form aerosols partly as a consequence of heterogeneous reactions with an acid
catalyst [194,195] or other seed material [196-198]. “Seeding” may also be related to acid gases present
in irradiated gas producing SOA [199]. The second finding derived in part from smog chamber
and other experiments, indicated that aerosol “aging” in atmospheric conditions such that reactions
modulated with a sequence of oxidation or cleavage reactions, and condensation to evaporation of
semi-volatile species in successive chemical generations [40,89,200]
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Figure 7. Yield curves for C4-Cg aromatic compounds from smog chamber experiments compared with
VOC yield fitting. Yield is proportional to a mass-based stoichiometric coefficient and a partitioning
coefficient. The shallower fitted yield curve at low M, is that for benzene [193].
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In the case of SOA formation from isoprene, Paulot et al. [201] and Surratt et al. [202] identified
key intermediates in the oxidation process, including IEPOX (isoprene epoxydiols) and MPAN
(methyl-acryloylperoxynitrate) that have also been found in the atmosphere. These intermediates
play an important role in successive generation of oxygenated semi-volatile species from isoprene.
They also open a pathway for organosulfate aerosol production from isoprene. Where isoprene is rich
in VOC concentrations, organosulfate appears in the atmosphere as a fraction of the organic particles
present [203].

Iustrated in Figure 8 are smog chamber results for aerosol production from isoprene oxidation in
two NOy regimes. In both cases, particles measured by volume are formed after NO and isoprene
are lost to the mixture. In the low NOy case, particle concentration reaches a maximum after 4 h
with estimated >50% loss of isoprene, and weak O3 production of a few ppb. In the high NOx case,
a substantial amount of Oj is produced, peaking at 3 h. Particle volume grows with O3, but levels
at ~3 h. Kroll et al. [194] interpret the photochemical pathways in the NOy regimes in terms of the
OH attack on the unsaturated carbon bond of isoprene producing degradation products from peroxy
radical chemistry, including reduced volatility oxygenated species.
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Figure 8. Examples of SOA production measured in terms of average particle volume change with
irradiation time. Particle formation at low initial NOx concentration in air (< 1ppb), 63.6 ppb isoprene
without inorganic seed (a) compared with high initial NOy concentrations (98 ppb NO; 31 ppb NO5);
42.7 ppb isoprene, and 6.4 ug/m3 (NH4),S04 seed (b) (Reprinted from [194] with permission from the
American Chemical Society).
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The SOA chemistry of isoprene and other VOCs involves oxidized products some of which lead
to the formation of polymeric material, oligomers or humic-like substances [40,204], whose production
pathways vary with NOx concentration. The aging of semi-volatile SOA is seen to involve a series
of reaction “generations” with increasing oxygenation. “Aging” of semi-volatile VOCs by multiple
generation chemical processes is potentially important on the order of a day timescale [83,205,206].

Most kinetics experiments and derived mechanisms rely on the first generation of reactions and not
subsequent processes. The evolution of particle composition during aging is hypothesized to involve
organic species over a wide range molecular weight and oxygen content. The potential for interactions
between high and low carbon number species created difficulty in seeking detailed mechanisms for
aerosols to complement the gas-phase mechanisms. Two rules of thumb seem to hold for SOA from
photochemical reactions—volatility and partitioning vapor pressure reduction, and increasing O/C
ratio in particles with aging. The Donahue et al. [207] and Chacon-Madrid et al. [208] modeling
approach embodies partitioning, and defines a volatility basis set (VBS) that involves saturation vapor
concentration and the O/C ratio compared with the H/C ratio.

A third finding in recent years resurrects an important discussion of aqueous reactions to form
sulfate [209]. As noted earlier, the oxidation of SO, to form sulfuric acid is well known to involve
aqueous reactions of OH, HyO, and Os; Nitrate formation is influenced by equilibrium considerations
involving HNO3, NHj3 (or other cations) and H,O [210]. As noted above, heterogeneous processes
on particles exist beyond catalyzed reactions [37]. The formation of SOA from aqueous reactions
in the 1980s [153] has surfaced in recent studies. Evidence has emerged for photochemical (and
non-photochemical) SOA production through aqueous, catalyzed reactions of water soluble organics,
including glyoxal and hemiacetal, provided the medium for forming low-volatility compounds that are
potentially embodied in wet, existing particles at high relative humidity, or clouds and fog [42,211-213].

Laboratory study of aqueous reactions producing SOAs in the presence of hydrometeors is
problematic for conventional smog chambers. However, smog chamber studies at varying humidities
have added insight into SOA characterization, since generated particles are hygroscopic and contain
major amounts of water at relative humidity above ~70% [214,215]. Reactions on wet aerosols or
hydrometeors are mediated by organic surface coatings that complicate the liquid-gas interface [216,217].

SOA Thermo-kinetic Models

Most photochemical aerosol models to date have relied on the application of smog chamber
measurements for yield and a measure of VOC reduction, combined with thermodynamic estimates of
phase partitioning. Formulation of chemical kinetic mechanisms for formation condensable species has
lagged in development because of uncertainties in multi-generations of reaction pathways and products.

The assessment and interpretation of photochemical SOA production [218] guides researchers
constructing kinetic models integrating gas-phase reactions and condensed phase processes. The aerosol
dynamics involves not only chemical reactions, but also the physicochemical shaping the particle
size-composition distribution. Kinetic modeling of aerosol dynamics traces back to the 1970s.
For example, Middleton and Brock [219] reported a simulation that accounted for particle growth,
coagulation, condensation-evaporation and nucleation, but without chemical production, per se.
Examples of kinetic models for photochemical aerosol formation potentially applicable to atmospheric
processes and supported with smog chamber data include those of [84,220-223]. Jathar et al. [224] have
reported a three-dimensional kinetics model for use in air quality modeling. Current kinetic models
used in CMAQ include CB05, RACM 2, SAPRC 07 and AERO-AEQ6 [225]. Vernecek et al. [226] reported
the analysis of a preliminary version of the SAPRC-16 mechanism in CMAQ airshed modeling.

Continued progress to develop an aerosol kinetic model coupled with gas-phase chemistry called
GECKO-A is an international collaborative enterprise [227,228]. This effort intends to synthesize
available laboratory and field measurements with current kinetics mechanisms and models to produce
a community-based model analogous to MCM. As part of this research, increased attention is likely to
feed back to laboratory investigators that chamber studies are restricted to concentrations too high
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for relevance to contemporary ambient conditions. Autoxidation reactions [45,229], for example,
may come into play in semi-volatile VOC oxidation to form highly oxidized molecules.

Evaluation of SOA models using smog chamber data follows from a history of evaluations of
gas-phase mechanisms. Unlike the gas-phase mechanisms, however, SOA experiments can only
rely on certain coarse comparisons. First, their reproducibility of results from chamber to chamber,
and from semi-empirical model comparisons. Chamber experiments need to include not only the
gas-phase measurements of temporal reactant and product change, but also aerosol properties such
as nuclei concentration, mass or volume concentration and size distributions or AMS observations.
Intercomparisons and evaluation studies have been reported that improve existing kinetics codes,
for example [81,230,231].

4. The Atmosphere—Judging the Simulation Quality

As noted above, the gas-phase and aerosol mechanisms have been added to computer models to
simulate the real atmosphere. The chemical components are tested for their relevance to atmospheric
conditions in different ways. The relevance of gas-phase chemistry is well established through extensive
and sustained measurements of ozone, its precursors and intermediate products, including the reactive
nitrogen cycle and certain oxygenated organic compounds [28,43]. The presence of sulfate and nitrate
and ammonium in atmospheric aerosols is also thoroughly documented in the literature [29,232,233].

The relevance of photochemical SOA has relied on four different routes: (a) establishing the
amount and temporal variation of SOA present relative to primary carbon sources, (b) measurement
of tracer compounds that are expected from photochemical processes, (c) tracing daily time series
of gases and particles across the earth’s surface, and (d) comparison of chemical transport (airshed)
models with ground and aloft observations for gas-phase species, organic carbon and SOA.

The first goal establishes the apparent amount of SOA present relative to contributions from
primary sources such as fuel combustion. The SOA variation by season would hypothetically
associate photochemical aerosol presence with a seasonal maximum with Os. At least two methods
exist for this determination. The first uses the difference between black and organic carbon ratios
(OC/BC) from primary emissions (or OC/CO) vs. ambient values from which the secondary OC
can be determined [188,234]. The second method derives from measurements using an AMS [235].
These observations have enabled the characterization of OC in terms of the ratios hydrocarbon rich
(HOA) to reflect hydrocarbon- like species and oxygen rich organic aerosol (OOA) to identify with
oxidized secondary species [236]. The OC/BC ratio methods and the AMS establish that SOA is a major
component of OC in atmospheric aerosols, both in urban and rural-remote conditions.

The chemical tracer method provides direct evidence for SOA chemistry from identification of
products from smog chamber studies, supporting their relevance to atmospheric processes. Tracer
species for photochemical reactions, and their temporal variation represent key specific evidence of
mechamisms. Organic tracers have identified characteristic molecular species with low volatility
present in aerosols in special field campaigns. Species include certain oxygenated gases and condensed,
or semi-volatile species such as the pinonic acid or pinonaldehyde from pinene oxidation, glyoxals,
or isoprene epoxydiols or methyl tetrols from isoprene oxidation [108,237-239]. Organosulfates like
Cs5H1,04S as intermediates also have been identified as tracers for biogenic SOA from smog chamber
experiments [240,241]. While this approach has proven to be useful for some SOA chamber-based
reactions, the method is constrained by sampling and analytical limitations for identifying and
quantifying complex organic products expected in the first generation of oxidation and beyond [242].

As an alternative, the SOA contribution can be estimated from the difference between particles
from primary OC sources and ambient species concentrations. Zheng et al. [243] report an example
of this approach. Their analysis of urban conditions in the southeastern US identifies wood burning,
transportation and meat cooking (and other, including SOA) to account for ~ 89% of the fine particle
mass concentration, but the amount attributed to SOA and unknown sources was not resolved.



Atmosphere 2019, 10, 401 21 of 36

The third approach involves measurements of photochemical indicators in time and space
in comparison with temporal measurements in smog chambers. These comparisons have been
done for several modeling schemes. Conceptually the Lagrangian approach offers an analogy
with smog chamber experiments. The USEPA developed a design for Lagrangian studies in the
1970s [244]. An experimental design was conceived in the 1973 Los Angeles Reactive Pollutant Program
(LARPP), which used instrumented helicopters following the motion of tetroons for air mass tracking.
Feigley et al. [245,246] conducted smog chamber experiments that were aimed at creating a comparative
basis for measurements of O3, NOy and VOCs in the study conducted over Los Angeles in late summer
and fall of 1973.

A similar Lagrangian-like experiment was conducted about the same time in Los Angeles [247].
This experiment involved the use of a blimp platform for Oz, NO and NO, instrumentation, and
two indicators of particle production. The blimp was chosen for a capability to approximately mimic
travel with an air mass across the Los Angeles Basin, which corresponds to a smog chamber run. The
results of the flight are shown in Figure 9. The flight originated in relatively clean air near the Pacific
Ocean; the blimp traveled in smog with the winds at a height of 150-300 m mslsl inland across the city.
The portion of the flight that follows a track with air mass movement is between time 0 and 160 min.
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Figure 9. Lagrangian-like northwest to west trajectory observations from the blimp midday flight,
September 6, 1973. The portion following air mass movement analogous to smog chamber O3
and particulate profiles is 0-165 min. The smog-chamber-like time series began and ended near
Torrance, CA (US) [247] (reprinted with permission of the Air and Waste Management Association,
WWWw.awma.org).

The experiment showed the rapid rise of O3 and NOx early in the flight, followed by peaking
of O3 mixing ratio after about 100 min. Both condensation nuclei concentrations—CN (~<0.05 pm
diameter) and the particle light scattering coefficient (bs.) (mainly related to 0.1-5 um diameter) depend
on primary particle sources and secondary chemical production. The results of this experiment and
parallel data for vertical concentration profiles demonstrate the complexity of interacting atmospheric
processes over Los Angeles, far beyond the simulations in smog chambers. Notable among these are
meteorological features involving the winds, thermal stratification, and transport differences with
height [247,248].

The results of the blimp experiment indicated qualitatively the O3 production and NOy peaking
took place as expected. In addition, evidence early in the experiment suggested link between light
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scattering and Os. The results support the presence of photochemical processing for both gases and a
portion of particles. These in turn support the relevance of smog chamber experiments as simulators
for atmospheric processes.

The fourth approach involves the application of chemical transport models as simulators
embodying approximations of known atmospheric processes and the air-surface exchange (including
emissions) occur continuously at various temporal and spatial scales [249]. The models most useful
for mechanism relevance are those that have a time and space resolution of hours and a km or less.
These contain gas-phase photochemical mechanisms and aerosol components that evolved mainly after
the 1980s. The mechanisms are evaluated for fidelity of simulating the atmosphere with a combination
of ambient measurements at the surface and aloft. The comparisons are supported with determination
of the veracity of emissions data and meteorological observations. The chemical transport modeling
can be extended to global averages over time and space constraints relevant to long-term phenomena;
these are not discussed here, but are accessed in other venues [250-252].

Measurements for model testing exist from long-term averages from air monitoring of Os,
NOy, VOCs, and particle mass concentration and composition. In addition, there are data from
several experiments including major efforts characterizing O3 photochemistry [253] and sulfate and
nitrate [254,255]. Particulate carbon in the presence of reactive gases also has been studied extensively
in various projects [256-258].

Model performance compared with the observations as a reference has been reported as part
of evolving model development and applications. Ideally comparisons are most useful for models
with temporal resolution of an hour or less and spatial resolution of approximately a kilometer.
Examples of deterministic model testing with photochemical mechanisms include those reported for
CMAQ [259-263]. As an example for a 2002 Canadian exercise using a model similar to RADM [170],
annual average O3 concentrations model estimates are 15-35% of observations. Typically, for average
atmospheric sulfate, models are within 27-50%; performance is worse for nitrate 44%, and 85% for
organic carbon. This difference between gas comparisons reflects in part the extensive experience with
gas-phase models compared with other photochemical species. Other analyses have suggested that
the volatility-based models underestimate measured SOA concentrations [40,260]. Another example,
a study of Volkamer et al. [264] in Mexico City, showed that reactive VOCs from anthropogenic sources
produced much greater amounts of SOA than calculated from a volatility-based model.

Results of the kind noted indicate that the gas-phase and inorganic aerosol mechanisms adopted
for chemical transport models support the photochemistry derived in part from smog chambers.
For SOA, the aerosol chemistry in models needs additional work to give results expected from
ambient measurements. The model and field campaigns provide a stimulus for continuing research on
photochemical aerosols through linkages with smog chamber and other operations in collaborative
programs like FIXCIT [265] and GECKO-A [227].

5. Summary

Construction and use of laboratory models of processes believed to represent the Earth’s
atmosphere has been a major tool for atmospheric research. Simulation of atmospheric photochemical
kinetics began in the 1950s. These experiments have relied heavily on environmental (smog) chambers,
first for gas-phase studies and later for characterization of aerosol particle production. Smog chamber
studies concentrate on oxidant production from reactions of NOy and VOCs and sometimes sulfur
oxides. Much of the effort has been devoted to the VOC participation in the chemistry as free radicals
and other species. These have led to an understanding of the role of VOC reactivity in O3 formation.
The results of literally thousands of experimental runs have provided not only insight into reactions
relevant to the atmosphere, but quantitative evaluation of mechanisms created from basic kinetics data.

Smog chamber experiments are essential in the knowledge about secondary aerosol production
related to the atmosphere. The results of many experiments have characterized particle formation in
terms of volatility of oxidation products. Low-volatility species from high-carbon-number VOC at the
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ppb level readily form aerosol particles. Formation of particles from higher-volatility VOC species
depends on oxidation pathways hypothesized to involve multi-generation of steps. Important ratios
for describing photochemical aerosols are O/C and H/C.

Mechanisms derived from smog chamber experiments are constrained by the ability to interpret
results for relevance to the atmosphere. Chamber constraints include: (a) chamber wall effects
for both gas-phase and aerosol processes, (b) reaction time limits to a day or less, (c) intermittent
variations in solar radiation that modulate the photochemical rates, and (d) inability to deal with the
atmospheric background of aged gases and particles, which affect the mechanistic interpretation in
poorly known ways.

Photochemical mechanisms developed from theory and experiments are adapted in chemical
transport models for numerically simulating the atmosphere. The results to date from various
intercomparisons between atmospheric measurements and models indicate that gas-phase and
inorganic particle photochemistry simulates well parts of atmospheric chemistry. However, mechanism
development and simulation of SOA formation in the atmosphere remains incomplete.

The reviews listed in Table 1 give several recommendations for continued research on
photochemical processes, including the use of smog chamber experiments and collaborative studies in
the atmosphere. Among the recommendations are:

-  FPocus on multiday gas and particle chemistry, including temperature and humidity interactions.

—  Conduct chamber and other experiments at concentrations approaching current levels atmospheric
levels in rural and remote areas.

—  Strengthen aerosol models with kinetic mechanisms for condensed products.

—  Identify in more detail intermediate products including oxygenated species of gas-phase
and particle reactions and identify added atmospheric tracer species for confirming
laboratory mechanisms.

—  Examine and evaluate the potential importance of background conditions in the atmosphere as
they may interact with the controlled experiments.

—  Give more attention to photochemistry of the free troposphere as a function of altitude, including
hydrometeor interactions.
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