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Abstract: Mass concentration data for particulate matter with an aerodynamic diameter less than
or equal to 2.50 µm (PM2.5) combined with backward trajectory cluster analysis, potential source
contribution function (PSCF), and concentration weighted trajectory (CWT) methods were used
to investigate the transport pathways and potential source regions of PM2.5 on the west coast of
Bohai Bay from 2009 to 2018. Two pathways responsible for the transportation of high PM2.5 levels
were identified, namely a southerly pathway and a northwesterly pathway. The southerly pathway
represented the major transport pathway of PM2.5 for all seasons. As a regional transport pathway,
it had the greatest impact in winter, followed by autumn. The southerly transport pathway passed
over the Shandong and Hebei provinces before reaching Tianjin: Air masses were transported
within the boundary layer (below 925 hPa), representing a slow-moving air flow. The northwesterly
pathway mostly occurred in winter and autumn and passed over desert and semidesert regions in
Outer Mongolia, the sand lands of Inner Mongolia, and Hebei. The air masses associated with the
northwesterly pathway represented fast-moving airflows responsible for long-range transportation of
PM2.5. Two potential source regions that contributed to high PM2.5 loadings on the west coast of Bohai
Bay were identified, “southerly source regions” and “northwesterly source regions”. The southerly
source regions, with weighted CWT (WCWT) values in winter greater than 140.00 µg/m3, were
anthropogenic source regions, including southern Hebei, western Shandong, eastern Henan, northern
Anhui, and northern Jiangsu. The northwesterly source regions, with WCWT values in winter of
80.00–140.00 µg/m3, were natural source regions, encompassing central Inner Mongolia and southern
Mongolia. In addition, the southerly transport pathway passed though anthropogenic source regions,
while the northwesterly transport pathway passed though natural source regions. The impacts of
anthropogenic source regions on PM2.5 loadings on the west coast of Bohai Bay were greater than
those of natural source regions.

Keywords: backward trajectory; transport pathway; potential source region; PM2.5; west coast of
Bohai Bay

1. Introduction

Due to rapid economic development and urbanization in the past few decades, there has been
an escalating increase in energy consumption in China, with a corresponding deterioration of air
quality [1]. The term “complex atmospheric pollution” has emerged in the last decade, because
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atmospheric pollutants in China are complex mixtures of various sources [2]. One of the major air
pollutants is particulate matter (PM), particularly PM2.5 (with an aerodynamic diameter less than
or equal to 2.50 µm), which remains a nationwide problem despite considerable abatement efforts.
Beijing–Tianjin–Hebei is the most prominent area of air pollution in China [3]. Further, PM2.5 is also the
major air pollutant in Beijing–Tianjin–Hebei [4]. The long-range transport of particulate matter adds
to locally emitted PM2.5, increasing the ambient concentrations of PM2.5 and therefore exacerbating
human health effects [5–7]. Effective PM2.5 control strategies require knowledge of transportation and
source regions of PM2.5. PM2.5 concentrations on the west coast of Bohai Bay also are often elevated
abnormally and rapidly because of transportation, especially in winter and autumn. It is therefore
important to determine transport pathways and potential source regions of PM2.5.

The regional transportation and source regions of PM have been of increasing concern in the
last two decades [8–12]. It is an indisputable fact that PM is transported across regions [13,14].
The regional transportation of PM depends on meteorological conditions, topography, and emissions
sources. The sources of atmospheric pollutants in China are complicated and various, and they
include anthropogenic and natural sources, primary and secondary sources, and local and regional
sources [15]. Wang et al. [16] used trajectory clustering and a potential source contribution function
(PSCF) to identify three principal transport pathways for high concentrations of PM10 in Beijing during
springtime from 2001 to 2003. A similar analysis in XiAn was also performed by them [17]. In addition,
a comparison between the dust sources affecting Beijing and XiAn showed that northwesterly sources
are more important for XiAn, and arid and semiarid regions in Mongolia are more important for Beijing.
Xin et al. [18] used 3D cluster analysis and a PSCF to identify the long-range transport pathways and
potential sources of PM10 in the Tibetan Plateau uplift area and found that a seasonal variation of
transport pathways and contributions from sources outside Xining were significant in spring and
winter. Zhu et al. [19] held that four transport pathways of high PM10 exist in Beijing based on
backward trajectories and PM10 concentration records from 2003 to 2009. Both natural sources of dust
and sand in southern Mongolia and western Inner Mongolia and anthropogenic sources in Shanxi and
Hebei had significant impacts on the high concentrations of PM10 in Beijing. During 2009–2012, the
regional contributions of PM10 from Shandong, Tianjin, and Henan increased, whereas those from
Inner Mongolia and Mongolia decreased compared to 2003–2009 [20]. The highest concentrations of
PM2.5 in Beijing were associated with southern, southeastern, and short-north trajectories. In addition,
the annual mean contribution of 35.50% PM2.5 was attributed to long-distance transportation during
2005–2010 [21]. Wang et al. [16] suggested that the transport pathways corresponding to the highest
daily average concentrations of PM10 and NO2 for Tianjin were concentrated in the northwest airflow
from inland areas in winter, spring, and autumn. Further, Tianjin, Hebei, and Shandong were the
major local potential source regions of these two pollutants. However, little work focused on transport
pathways and potential source regions of PM2.5 has been done on the west coast of Bohai Bay.

Back trajectory analysis is a powerful tool for establishing the spatial domain of air parcels arriving
at receptor sites. Statistical methods such as trajectory clustering, PSCFs, and CWT have been widely
used to identify the pathways and sources of air pollution [22–24]. Moody and Galloway [25] were the
first to exploit trajectory coordinates as clustering variables, and various other clustering algorithms
have been developed in recent studies [26,27]. A PSCF is a simple but effective method to investigate
potential sources. This method tends to give good angular resolution but poor radial resolution because
the trajectories converge as they approach the receptor [28]. The method combining concentrations
developed by Seibert et al. [29] calculates the geometric mean concentration of each grid cell, which is
then weighted by the residence time. Stohl [30] refined this method by redistributing the concentration
fields, and Hsu et al. [31] further refined it into a CWT method.

The objective of this research was to investigate the transport pathways and potential sources
of PM2.5 on the west coast of Bohai Bay on the basis of seasons from 2009 to 2018. PM2.5 pollution
transport pathways were analyzed based on back trajectory cluster analysis. Furthermore, potential
PM2.5 source regions were determined through both the PSCF and CWT methods. Finally, the results
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provided through the PSCF and CWT methods were compared to China’s anthropogenic PM2.5

emissions inventory.

2. Material and Methods

2.1. Site Location and Data

The area of interest in this study is located on the west coast of Bohai Bay (39◦06′ N, 117◦10′ E)
(Figure 1). The land slopes downwards gradually from northwest to southeast. Tianjin is confined
by Taihang Mountain to the west, the Bohai Sea to the east, Yanshan Mountain to the north, and a
plain to the south. It is one of the four municipalities of China and is one of the fast-growing economic
megacities in the Beijing–Tianjin–Hebei urban agglomeration. Rapid economic development has
resulted in an increase in the emissions of aerosol and a concomitant increase in aerosol levels in
ambient air.
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Figure 1. Location of the study area (the red star represents the west coast of Bohai Bay).

The hourly average PM2.5 mass concentration data for Tianjin from January 2009 to February 2018
used in this study were obtained from the National Urban Air Quality Real-Time Publishing Platform
(http://106.37.208.233:20035/) (January 2014–February 2018) and the Tianjin atmospheric boundary
layer observation station (January 2009–December 2013). The PM2.5 data from the National Urban Air
Quality Real-Time Publishing Platform, which was released by the China National Environmental
Monitoring Center, represented the average PM2.5 levels in Tianjin. The mean PM2.5 concentration
values were computed from 13 state-controlled monitoring sites in Tianjin. The PM2.5 concentration
data released by the China National Environmental Monitoring Center began in 2014. In order to
analyze the long-term characteristics of PM2.5, the monitoring data from the Tianjin atmospheric
boundary layer observation station of the China Meteorological Administration from 2009 to 2013 were
combined. Both datasets were obtained from oscillating microbalance measurements. An equivalence
trail was carried out between them from 2014 to 2016. The results of this trail were used to correct the
PM2.5 concentration data from 2009 to 2013.

The anthropogenic emissions PM2.5 data from 2016 were from a multiresolution emissions
inventory for China (http://www.meicmodel.org/dataset-meic.html). The spatially disaggregated
anthropogenic emissions inventory grids emissions were from power generation, industry, residential
heating, and transportation at a resolution of 0.50◦ × 0.50◦ latitude–longitude. The hourly wind speed
and direction data used to create wind roses were obtained from the Tianjin Meteorological Service.
In a meteorological sense, March to May, June to August, September to November, and December to
February (the following year) were defined as spring, summer, autumn, and winter, respectively.

http://106.37.208.233:20035/
http://www.meicmodel.org/dataset-meic.html
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2.2. Backward Trajectory and Cluster Analysis

The individual 3D trajectories were calculated using NOAA HYSPLIT4.9 with Global Data
Assimilation System (GDAS) meteorological data, which supplies 3-h, global 1◦ latitude–longitude
datasets of the pressure surface. Seventy-two-hour back trajectories were calculated at 6-h intervals
(00:00 h, 06:00 h, 12:00 h, and 18:00 h UTC) for every day in the period of interest, for an arrival height
of 200 m. At a height of 200 m, particles are well mixed under various weather conditions [32], and
elevated or degraded air masses could both reach the 200-m receptor height.

To explore the impact of air mass transport on PM2.5, backward trajectories of air parcels
were clustered using the Euclidean distance method based on the TrajStat software developed by
Wang et al. [33]. The Euclidean distance method is often used to define the distance between two
trajectories using latitude and longitude locations as variables. The “eyeball” method (Wang et al.,
2009; Wang et al., 2015) is used to determine the cluster numbers in this software. In this analysis,
a cluster number of 6 was decided. The 6 clusters provided the most appropriate representation of air
mass classifications according to the “eyeball” method. Trajectories with PM2.5 > 75.00 µg/m3 were
considered to be polluted trajectories, which is China’s national class II standard of PM2.5 daily mean
concentration [34].

2.3. Potential Source Contribution Function (PSCF)

Potential source regions of concentration back trajectories for PM2.5 can be identified through a
PSCF, which analyzes trajectory pathways [35–37] (Zeng and Hopke, 1989; Polissar et al., 1999; Begum
et al., 2005). To calculate the PSCF, the whole geographic region covered by the trajectories is divided
into an array of grid cells whose size is dependent on the domain of the back trajectories. The PSCF
values for these grid cells are calculated by counting the trajectory segment endpoints that terminate
within each cell. The number of endpoints that fall in the ijth cell are marked as nij. The number of
endpoints in the ijth cell having the same arrival times at the sampling site corresponding to pollutant
concentrations higher than an arbitrary criterion are denoted as mij. The PSCF value for the ijth cell is
defined as

PSCFij = mij/nij (1)

The PSCF value can be interpreted as a conditional probability that describes the spatial distribution
of probable source locations. Cells with high PSCF values are potential source areas and should
coincide with a pollutant emissions region within the domain. These cells are indicative of areas of
“high potential” for contributions to receptor site pollution. However, cells with low PSCF values do
not indicate low emissions, because emissions may not be transported to the receptor site.

The PSCF grids cover a domain between 20 and 70◦ N and 75 and 130◦ E, with a 0.50◦ × 0.50◦

resolution. To reduce uncertainty in cells with small nij values, an arbitrary weight function W (nij)
is multiplied into the PSCF value [38–41] (Polissar et al., 2001a,b; Karaca et al., 2009; Xu et al., 2010).
Equation (2) was used to obtain the weight function in this study:

Wi j =


1.00 80 < ni j
0.70 20 < ni j ≤ 80
0.42 10 < ni j ≤ 20
0.05 ni j ≤ 10

(2)

At last, the WPSCF is expressed as

WPSCF = Wi j × PSCF (3)
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2.4. Concentration Weighted Trajectory (CWT)

A limitation of the PSCF method is that grid cells could have the same PSCF value when sample
concentrations are either only slightly higher or much higher than the criterion. As a result, it cannot
distinguish strong sources from moderate ones. Therefore, CWT [17,29,30] was used in this study.
CWT can more easily distinguish source strength by assigning the concentration values at the receptor
site to their corresponding trajectories. In the CWT method, a grid is superimposed over the domain of
trajectory computations. Each grid cell is assigned a residence-time-weighted concentration from the
measured sample associated with the trajectories that crossed that grid cell, as follows:

Ci j =
1∑M

l=1 τi jl

∑M

l=1
clτi jl, (4)

where Cij is the average weighted concentration in the ijth cell, l is the index of the trajectory, M is the
total number of trajectories, Cl is the concentration observed on arrival of trajectory l, and τijl is the
time spent in the ijth cell by trajectory l. A high value for Cij implies that air parcels traveling over the
ijth cell are associated with high concentrations at the receptor.

To minimize the inaccuracy caused by the small number of polluted trajectories, arbitrary weight
functions are needed to reduce uncertainty, and the empirical weight function Wij for PSCF can also be
used in the CWT method. The WCWT is defined as

WCWT = Wi j ×Ci j. (5)

3. Results and Discussions

3.1. Variation in PM2.5 Concentrations

Seasonal and annual variations of PM2.5 concentrations from 2009 to 2018 in Tianjin are shown in
Figure 2. The PM2.5 time series shows that annual PM2.5 levels varied between 68.41 and 67.88 µg/m3

from 2009 to 2012, reaching their maximum value (79.51 µg/m3) in 2013 and then declining steadily ever
since. Throughout the whole study period, PM2.5 levels exceeded the class II standard of the Chinese
National Air Quality Standards (75.00 µg/m3) [34] and exhibited considerable seasonal variations.
On average, high PM2.5 concentrations in Tianjin always occurred in the winter, followed by autumn
and spring, then summer. The mean concentrations and concentrations above the 75th percentile
were higher in winter than in the other three seasons. The highest winter mean PM2.5 concentration
(109.98 µg/m3) was observed in 2016, while the lowest winter mean value of 57.20 µg/m3 was observed
in 2017.
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Figure 2. Seasonal and annual variations of particulate matter with an aerodynamic diameter less than
or equal to 2.50 µm (PM2.5) concentrations. The circles show seasonal mean values together with the
95th, 75th, 50th, 25th, and 5th percentiles. The numbers on the top of the figures represent the annual
mean values.

3.2. Transport Pathways

Six clusters were produced by the clustering algorithm for Tianjin from March 2009 to February
2018, and the cluster-mean back trajectories and their air pressure profiles are shown in Figures 3
and 4. Distributions of PM2.5 concentrations associated with six trajectory clusters on a seasonal
basis are presented in Figure 5. The velocity of air mass movement could be judged according to
the length of the trajectory. Long trajectories corresponded to fast-moving air masses, while short
trajectories corresponded to slow-moving air masses. According to the mean PM2.5 mass concentration
of Tianjin corresponding to each cluster, the cluster-mean backward trajectories were divided into
clean pathways and pollution pathways. A cluster-mean backward trajectory corresponding to a
PM2.5 concentration in Tianjin > 75.00 µg/m3 was defined as a pollution pathway. On the contrary,
a cluster-mean backward trajectory corresponding to a PM2.5 concentration in Tianjin < 75.00 µg/m3

was defined as a clean pathway. A cluster-mean back trajectory was also defined as a pollution pathway
if the amount of pollution trajectories in this cluster accounted for more than one-sixth of the total
number of pollution trajectories.
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Figure 4. Air pressure profiles of the backward trajectories in (a) winter, (b) spring, (c) summer and
(d) autumn.

In winter, it was found that four out of the six cluster trajectories, represented by clusters 3, 4,
5, and 6, were pollution pathways. Among these four major pathways, the one shown as cluster 3
accounted for 17.40% and was the most polluted. More than 85% of its sample concentrations exceeded
the daily class II standard of PM2.5, and the mean concentration (168.00 µg/m3) was far above the daily
standard concentration (Figure 5). Cluster 3 originated from Hebei, went through Shandong, and
reached Tianjin. This was a regional transport pathway within a boundary layer (Figure 4a). Its short
length suggested low wind velocity. Low wind velocity and relatively low boundary layer heights in
winter may exacerbate air pollution, contributing to a severe haze episode. The second most polluted
pathway was cluster 6, which meant the concentration was 120.00 µg/m3. More than 75% of the sample
concentrations exceeded daily class II standard concentrations (Figure 5). The air masses associated
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with cluster 6 were from Central Mongolia, moved southeasterly over the Inner Mongolian Plateau
and into Hebei, and finally turned northeast to Tianjin. The air masses of cluster 6 from the southwest
were transported in the boundary layer and slowed down in the first 24 h. Cluster 4, which meant
the concentration was 92.00 µg/m3, was the prevalent trajectory pathway in winter (26.51%). The air
masses associated with both clusters 4 and 5 initially traveled southeasterly over desert and semidesert
regions of Mongolia and the Hunshandake sand lands of Inner Mongolia. Cluster 4 air masses then
went southeasterly though Hebei and Beijing to Tianjin. Cluster 5 finally turned northwest though
Hebei to Tianjin. Clusters 4, 5, and 6 all passed though Mongolia and Inner Mongolia: A study by
Zhao et al. [42] showed that long-range transport from Inner Mongolia also had an adverse effect
on PM2.5 in Shanghai. Clusters 1 and 2 were clean pathways for Tianjin in winter. The air masses
associated with clusters 1 and 2 originated from Lake Baikal and Outer Mongolia. Cluster 1 air masses
moved rapidly and traveled at heights greater than 750 hPa for the 10 h before arrival in Tianjin.
Cluster 2 represented a relatively slow-moving air mass, particularly in the 24 h preceding its arrival
in Tianjin. It reached Tianjin through the Bay of Bohai and was considered to be a relatively clean
trajectory. It can be seen from Table 1 that the highest percentage of polluted trajectories (37.70%) and
the highest PM2.5 loading (182.00 µg/m3) were observed in cluster 3, followed by clusters 4 and 6.
In addition, 89.60% of total trajectories in cluster 3 were polluted trajectories, and 25.00% and 10.70%
of total polluted trajectories were from the cluster 4 and cluster 6 trajectories, respectively: 77.60% of
the trajectories in cluster 6 were polluted.
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The red circles indicate the arithmetic mean. The red dashed lines represent the Chinese national class
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In spring, the pollution pathways associated with trajectory clusters 2, 4, and 5 accounted for
20.41%, 16.27%, and 12.80% (Figure 3). Cluster 2 was the major pollution pathway, followed by
clusters 4 and 5. The mean concentrations of clusters 2, 4, and 5 were 87.00 µg/m3, 70.00 µg/m3, and
76.00 µg/m3 (Figure 5). Clusters 2 and 5 were both short pathways and were transported into the
boundary layer. Cluster 2 air masses were from Northern Shandong and traveled southerly, finally
going northerly through Shandong to Tianjin. Cluster 5 air masses originated from the Bohai Sea and
then traveled northwesterly through Shandong to Tianjin. Thus, the pathways through Shandong
were noticeable for Tianjin in the spring. Cluster 4 was from Central Mongolia, moving southeasterly
over Inner Mongolia, Shanxi, and Hebei and finally turning northeasterly to Tianjin. The air masses of
cluster 4 were transported below 925 hPa and slowed down in the first 20 h before reaching Tianjin
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(Figure 4b). The one shown as cluster 2 had the largest percentage (37.90%) of polluted trajectories
and a higher mean loading (114.00 µg/m3) (Table 1). More than half of the trajectories in cluster 2
were pollution trajectories. Although the mean concentration of cluster 4 in spring did not exceed the
class II standard concentration, the pollution trajectories in cluster 4 accounted for 18.10% of the total
pollution trajectories. Cluster 5 contributed 17.00% of the total pollution trajectories.

Table 1. Trajectory percentage and mean PM2.5 concentrations based on all trajectories and
pollution trajectories.

Season Cluster
Number of All

Trajectories
per Cluster

Percentage of
Pollution

Trajectories in Each
Cluster (%)

Percentage of Pollution
Trajectories in Total

Pollution Trajectories Per
Season (%)

Mean Concentration and
Standard Deviation of
Pollution Trajectories

(µg/m3)

Winter

1 620 12.10 6.40 147 ± 74
2 323 34.40 9.50 116 ± 43
3 490 89.60 37.70 182 ± 82
4 690 42.20 25.00 167 ± 91
5 393 31.30 10.60 176 ± 109
6 161 77.60 10.70 140 ± 53

Spring

1 553 21.90 14.40 117 ± 44
2 574 55.40 37.90 114 ± 37
3 588 14.30 10.00 106 ± 33
4 454 33.50 18.10 116 ± 48
5 325 44.00 17.00 112 ± 33
6 250 8.40 2.50 107 ± 46

Summer

1 324 18.20 6.90 108 ± 27
2 395 42.80 19.70 117 ± 38
3 717 40.00 33.40 114 ± 35
4 714 10.90 9.10 99 ± 21
5 499 19.40 11.30 107 ± 40
6 388 43.30 19.60 108 ± 30

Autumn

1 588 71.40 42.40 142 ± 57
2 377 9.30 3.50 144 ± 73
3 538 32.00 17.40 119 ± 40
4 593 24.30 14.50 144 ± 73
5 320 60.10 19.70 129 ± 42
6 226 10.60 2.40 117 ± 37

In summer, the higher levels of PM2.5 concentration in Tianjin coincided with trajectories grouped
in clusters 2, 3, and 6, which were all southerly short pathways and accounted for 48.97% of the total
number of trajectories (Figure 3). The mean concentrations of clusters 2, 3, and 6 were 77.00 µg/m3,
72.00 µg/m3, and 74.00 µg/m3. Cluster 2 and cluster 3 originated from northwestern and eastern
Shandong, respectively, and traveled north in the 24 h preceding their arrival in Tianjin. Cluster 6
originated from Hebei and traveled south to Shandong and then north to Tianjin. The transport heights
of pollution pathways were all less than 850 hPa (Figure 4c). Cluster 3 had the largest percentage
(33.40%) of polluted trajectories, and the pollution pathways accounted for 40.00% of all pathways for
cluster 3 (Table 1).

In autumn, clusters 1, 3, and 5 were the pollution pathways, the mean concentrations of which
were 115.00 µg/m3, 66.00 µg/m3, and 98.00 µg/m3. Cluster 1 originated from Shandong and went
northerly to Tianjin, the transport height of which was less than 925 hPa (Figure 4d). Cluster 3
originated from Inner Mongolia and passed over the Bohai Sea and Shandong before reaching Tianjin.
This was the only pollution pathway through the sea. However, in the 24 h preceding its arrival in
Tianjin, the air masses of cluster 3 arrived in Shandong and moved slowly, the heights of which were
below 925 hPa. Cluster 5 in autumn, similarly to cluster 6 in winter, was from Central Mongolia, moved
southeasterly over the Inner Mongolian Plateau and into Hebei, and finally turned northeasterly to
Tianjin. The air masses of cluster 5 from the southwest direction were transported below 925 hPa
and slowed down in the 24 h preceding their arrival in Tianjin. The highest probability (71.40%) of
pollution trajectories occurred in cluster 1, which contributed 42.00% of polluted trajectories (Table 1).
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The mean loading of polluted trajectories in cluster 1 was 142.00 µg/m3, 60.10% of the trajectories in
cluster 5 were pollution trajectories, and 19.70% and 17.40% of pollution trajectories came from cluster
5 and cluster 3, respectively.

3.3. Wind Dependence of PM2.5 Loadings

The seasonal wind roses with PM2.5 loadings on the west coast of Bohai Bay using hourly data
for 2009–2018 are shown in Figure 6. The prevailing winds for winter were between the north and
the northwest. Most of winds were abundant, with the south and southeast as the prevailing wind
directions in summer. The variation in wind direction in different seasons is because this area is
located in a monsoon zone, with prevailing winds from northern directions during winter and from
southern directions during summer. Winds from the northwest and north originate from or pass over
economically underdeveloped regions in China with relatively lower PM2.5 emissions intensities.
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PM2.5 loadings showed pronounced dependence on the wind, especially in the heavily polluted
autumn and winter. As shown in Figure 6a, high PM2.5 concentrations were mainly concentrated in low
wind speed (0–2 m/s) areas and were associated with winds from the south and west. Southern winds
and western winds were normally from the Shanxi, Shandong, and Hebei provinces. Regardless of the
wind directions, PM2.5 loadings were below 40.00 µg/m3 when the wind speeds were greater than 6 m/s.
Most of the high PM2.5 loadings in autumn were associated with winds from the south and southwest,
and wind speeds were all in the range of 0–5 m/s. The situation in spring and summer showed a
similar but less pronounced directional dependence compared to winter and autumn. High PM2.5

loadings were observed with northeasterly to easterly flows in spring (Figure 6b) and northwesterly
to westerly flows in summer (Figure 6c). Overall, the southwesterly winds had an adverse effect on
PM2.5 loadings in different seasons for Tianjin. In contrast, wind from the northwest to north sectors
normally showed mean PM2.5 loadings lower than 40.00 µg/m3.
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3.4. Potential Source Regions

The PSCF maps covering the study period that are shown in Figure 7 were plotted in order to
identify the probable locations of potential source regions contributing to PM2.5 levels in Tianjin on the
west coast of Bohai Bay. In general, the main source areas were all in the south of Tianjin. The potential
source areas for winter were larger than for other seasons. In winter, the major source areas of PM2.5,
with WPSCF values of 0.80–1.00, were in the junction of Hebei, Henan, and Shandong. Northern
Shandong, southern Hebei, northeastern Henan, northern Shanxi, central Inner Mongolia, and northern
Mongolia were also potential source areas of PM2.5, with WPSCF values of 0.50–0.80. This was mainly
because these areas, except for Inner Mongolia and Mongolia, are economically developed industrial
areas, and pathways of air masses ended at Tianjin. The Gobi Desert in central Inner Mongolia and
northern Mongolia was a natural source of PM2.5. In autumn, the major potential sources were located
in eastern Henan, northwestern Shandong, and northern Hebei (Figure 7d). North central Hebei,
central Shandong, Shanxi, northern Jiangsu, and northern Anhui were the second potential source
areas. The domains of major sources in winter and autumn were all concentrated in the southwest
of Tianjin, which revealed that transport from the southwest was more important for heavy PM2.5

pollution in winter and autumn. The potential source regions determined from the PSCF analysis
coincided with the results from the wind dependence of PM2.5 loadings. However, the major potential
source areas varied seasonally. In spring, major sources of PM2.5, with WPSCF values of 0.50–0.70,
were in Shandong, eastern Henan, and northern Anhui and Jiangsu, and for summer were in northern
Jiangsu and western Shandong.
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Figure 7. Weighted potential source contribution function (PSCF) maps of PM2.5 in (a) winter, (b) spring,
(c) summer and (d) autumn during 2009–2018. The black star represents Tianjin.

Since the PSCF method can only reflect the contribution rate of the potential source regions,
that is, the proportion of pollution trajectories in each grid, it cannot reflect the pollution degree
of the potential source regions. In order to study the contribution of pollutants in potential source
regions, the CWT method was used to reflect the pollution degree of different trajectories. The results
for PM2.5 loadings identified through the CWT method in Figure 8 were somewhat different from
the results analyzed through the PSCF method. WCWT values do not represent the regions’ actual
contributions. Instead, they demonstrate the relative importance of the source regions [31]. In winter,
the highest WCWT values covering the map were distributed in southern Hebei, western Shandong,
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and northeastern Anhui. Those areas were the main contribution sources associated with the highest
PM2.5 loadings (exceeding 140.00 µg/m3), and the border between Anhui and Shandong was even
higher than 200.00 µg/m3. This demonstrated that contributions of transportation and source regions
from southern Tianjin were significant. As shown in Figure 8a, there were also secondary source areas in
winter, namely central Inner Mongolia and southern Mongolia. These areas are normally characterized
by land forms of sand and the Gobi Desert. Besides the impact of local and regional potential sources,
long-range transport also played some role in PM2.5 loadings in winter. This depended on both the
prevailing northwest wind in Tianjin and potential source areas to the northwest, contributing to the
long-rang transport of PM2.5. In spring and summer, the maximum WCWT was much smaller than in
winter. The significant potential source regions in spring were identified south of Tianjin, including
southern Hebei, Shandong, eastern Henan, northern Anhui, and Jiangsu. In addition to the above
areas, a small part of the Yellow Sea was also included in the summer (adjacent to Jiangsu province).
In autumn, the highest WCWT values (exceeding 100.00 µg/m3) were mainly located in southern Hebei,
western Shandong, eastern Henan, the northwest corner of Anhui, and parts of Jiangsu. The second
potential source areas were Shanxi, central Shandong, and northern Jiangsu.

12 
 

 
Figure 8. Weighted concentration weighted trajectory (CWT) map of PM2.5 in (a) winter, (b) spring, (c) 
summer and (d) autumn during 2009–2018. The black star represents Tianjin. 

The PSCF and CWT analyses gave similar potential source locations, but the contributions of 
these locations were different. The major potential source areas derived from the CWT method were 
larger than those of the PSCF method, especially in autumn and summer. Regional sources might 
play a more pronounced role in the distribution of PM2.5 in Tianjin. The most possible major source 
regions of PM2.5 were located within about 800 km south of Tianjin, and no significant long-range 
transport processes contributed to PM2.5 loadings in Tianjin except for in winter and autumn. 

3.5. Comparison to Anthropogenic Emissions Inventory 

The spatially disaggregated Chinese anthropogenic emissions inventory for PM2.5 in 2016 is 
shown in Figure 9. Most of the PM2.5 emission sources were concentrated in the 
Beijing–Tianjin–Hebei region and its surrounding areas, including Beijing, Tianjin, Hebei, 
Shandong, Shanxi, and Henan (see Figure 9). Beijing–Tianjin–Hebei and its surrounding areas are 
urbanized and industrialized regions with high anthropogenic PM2.5 emissions. In North China, 
there are densely populated regions, numerous metallurgical works, and coal-related industries. 
Other regions with high concentrations of emissions sources are the Yangtze River Delta, which 
includes Shanghai, Jiangsu, and Zhejiang, and some parts of the southwest.  

Figure 8. Weighted concentration weighted trajectory (CWT) map of PM2.5 in (a) winter, (b) spring,
(c) summer and (d) autumn during 2009–2018. The black star represents Tianjin.

The PSCF and CWT analyses gave similar potential source locations, but the contributions of
these locations were different. The major potential source areas derived from the CWT method were
larger than those of the PSCF method, especially in autumn and summer. Regional sources might play
a more pronounced role in the distribution of PM2.5 in Tianjin. The most possible major source regions
of PM2.5 were located within about 800 km south of Tianjin, and no significant long-range transport
processes contributed to PM2.5 loadings in Tianjin except for in winter and autumn.

3.5. Comparison to Anthropogenic Emissions Inventory

The spatially disaggregated Chinese anthropogenic emissions inventory for PM2.5 in 2016 is
shown in Figure 9. Most of the PM2.5 emission sources were concentrated in the Beijing–Tianjin–Hebei
region and its surrounding areas, including Beijing, Tianjin, Hebei, Shandong, Shanxi, and Henan
(see Figure 9). Beijing–Tianjin–Hebei and its surrounding areas are urbanized and industrialized
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regions with high anthropogenic PM2.5 emissions. In North China, there are densely populated regions,
numerous metallurgical works, and coal-related industries. Other regions with high concentrations of
emissions sources are the Yangtze River Delta, which includes Shanghai, Jiangsu, and Zhejiang, and
some parts of the southwest.
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pathway on PM2.5 concentrations in Tianjin was also less than that of the southerly pathway.  

Figure 9. Spatial distributions of anthropogenic emissions of PM2.5 for China in 2016. The black star
represents Tianjin.

According to the above research, the potential sources of Tianjin were mainly composed of two
regions (Figure 10). The major sources were the south of Tianjin, including southern Hebei, western
Shandong, eastern Henan, northern Anhui, and northern Jiangsu. The secondary sources, which were
northwesterly sources, encompassed central Inner Mongolia and southern Mongolia. The potential
source regions determined from the PSCF and CWT analyses coincided with the emissions of PM2.5 in
North China and the results from the wind dependence of PM2.5 loadings. Based on the above results,
we preliminarily considered that the major source areas were anthropogenic sources and the secondary
source areas were natural sources. This conclusion was consistent with the fact that dust aerosols are
transported to Beijing from northwestern regions in spring [43,44], and anthropogenic aerosols are
transported from the south [45,46]. The pathways were classified into two broad categories according
to the distribution of directions of pollution clusters in Tianjin. Thus, the southerly pathway and
northwesterly pathway were two major transport channels contributing to high PM2.5 concentrations in
Tianjin. The southerly transport pathway from major sources, namely the regional transport pathway,
played an important role in PM2.5 concentrations in all seasons in Tianjin. It had the greatest impact
on PM2.5 levels registered during winter, followed by autumn, and had the least impact in summer.
Air masses originating from major sources probably were transported within the boundary layer and
moved slowly to Tianjin. The northwesterly transport pathway from secondary sources, namely the
long-range transport pathway, affected PM2.5 concentrations in the winter, autumn, and spring. This
conclusion was different from that reached by Liang et al. [20] in Beijing, where a long-rang transport
from the northwest was identified as the prevailing PM2.5 pollution transport in spring and in summer.
The influence of the northwesterly pathway on PM2.5 concentrations in Tianjin was also less than that
of the southerly pathway.
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4. Conclusions

Transport pathways and potential source regions of PM2.5 on the west coast of Bohai Bay were
identified through cluster trajectory, PSCF, and CWT methods based on 2009–2018 data. The annual
PM2.5 levels varied between 68.41 and 67.88 µg/m3 from 2009 to 2012, reaching their maximum value
(79.51 µg/m3) in 2013 and then declining steadily ever since. High PM2.5 concentrations always
occurred in the winter, followed by autumn and spring.

Two transport pathways of high PM2.5 concentrations in the west coast of Bohai Bay (in the broad
sense) were identified, namely a southerly pathway and a northwesterly pathway. The southerly
pathway represented the major transport pathway of PM2.5 for all seasons. It had the greatest impact in
winter, followed by autumn. The air masses associated with the southerly pathway were transported
within the boundary layer (below 925 hPa) and moved slowly to Tianjin. The southerly transport
pathway passed over the Shandong and Hebei provinces before reaching Tianjin. The northwesterly
pathway belonging to long-range transport mainly affected PM2.5 concentrations in winter and moved
faster. The northwesterly pathways passed over desert and semidesert regions in Outer Mongolia, the
sand lands of Inner Mongolia, and Hebei.

The potential source regions contributing to high PM2.5 loadings on the west coast of Bohai
Bay could be grouped into two broad categories, the “southerly source regions” (southern Hebei,
western Shandong, eastern Henan, northern Anhui, and northern Jiangsu) and the “northwesterly
source regions” (central Inner Mongolia and southern Mongolia). The “southerly source regions” were
decided upon after a comparison to the Chinese spatially disaggregated anthropogenic emissions
inventory and were identified as anthropogenic source regions, while the “northwesterly source
regions” were regarded as natural source regions. Moreover, the major transport pathway passed over
anthropogenic source regions, while the secondary transport pathway passed though natural source
regions. The impacts of anthropogenic source regions on PM2.5 loadings on the west coast of Bohai Bay
were much greater than those of natural source regions. However, additional studies on the secondary
reaction of PM2.5 on the west coast of Bohai Bay are warranted to elucidate the variability in potential
source regions of PM2.5.

It can be seen from the above results that adjacent source regions had a relatively great impact
on PM2.5 concentrations on the west coast of Bohai Bay. Therefore, the meteorological characteristics
of each pollution pathway, such as temperature, and the specific contribution of the adjacent source
regions need to be studied further in detail.
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