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Abstract: Coastal cities in China are frequently hit by tropical cyclones (TCs), which result in
tremendous loss of life and property. Even though the capability of numerical weather prediction
models to forecast and track TCs has considerably improved in recent years, forecasting the intensity of
a TC is still very difficult; thus, it is necessary to improve the accuracy of TC intensity prediction. To this
end, we established a series of predictors using the Best Track TC dataset to predict the intensity of TCs
in the Western North Pacific with an eXtreme Gradient BOOSTing (XGBOOST) model. The climatology
and persistence factors, environmental factors, brainstorm features, intensity categories, and TC
months are considered inputs for the models while the output is the TC intensity. The performance of
the XGBOOST model was tested for very strong TCs such as Hato (2017), Rammasum (2014), Mujiage
(2015), and Hagupit (2014). The results obtained show that the combination of inputs chosen were
the optimal predictors for TC intensification with lead times of 6, 12, 18, and 24 h. Furthermore, the
mean absolute error (MAE) of the XGBOOST model was much smaller than the MAEs of a back
propagation neural network (BPNN) used to predict TC intensity. The MAEs of the forecasts with 6,
12, 18, and 24 h lead times for the test samples used were 1.61, 2.44, 3.10, and 3.70 m/s, respectively,
for the XGBOOST model. The results indicate that the XGBOOST model developed in this study
can be used to improve TC intensity forecast accuracy and can be considered a better alternative to
conventional operational forecast models for TC intensity prediction.

Keywords: eXtreme Gradient BOOSTing (XGBOOST); Western North Pacific; tropical cyclone;
intensity

1. Introduction

A tropical cyclone (TC) is an inherent atmospheric feature of tropical and subtropical regions.
TCs generate strong winds and waves, and also often include heavy rain and storm surges that result
in significant damage to coastal communities. The frequency of TCs in the Western North Pacific
(WNP) is very high compared to other regions [1]. As a result, coastal communities around the WNP
suffer serious casualties and property losses annually [2–4]. The area covered by the Northwest Pacific
Basin is to the north of the equator and to the west of 180◦ E, and includes the South China Sea.
The forecast skill of TC intensity in this region has displayed no signs of significant improvement by
using numerical simulation methods in recent years [5]. Thus, this study focuses on improving the
forecast skill of TC intensity in the WNP.
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The characteristics that affect TC intensity are nonlinear and thus difficult to predict [2]. In recent
years, many researchers have studied TC intensity prediction primarily using numerical forecasting
and statistical methods [6–10]. Numerical forecasting is the main tool used to forecast TCs around the
world, and systems such as the European Centre for Medium-Range Weather Forecasts-Integrated
Forecasting System (ECMWF-IFS) [11], the Japan Meteorological Agency’s global spectral model
(JMA-GSM) [12], and the National Centers for Environmental Prediction-Global Forecast System
(NCEP-GFS) [13] have been developed as operational techniques. Statistical intensity forecast methods
such as Climatology and Persistence (CLIPER) [14] and the Statistical Hurricane Intensity Prediction
Scheme (SHIPS) [15] have also been developed as operational techniques. However, advancements
in TC intensity prediction have been relatively slow, although notable work has been done in the
past 20 years on predicting TC paths [16]. One of the reasons for this is that the internal structure of
storms is not yet sufficiently understood. TCs have an asymmetric structure, which may be caused by
thermal and dynamic factors such as uneven distribution of sea surface temperature and humidity,
horizontal or vertical shear, and asymmetric distribution of convection [2,17]. Changes in TC intensity
are controlled by many environmental and oceanic variables, including oceanic heat, vertical wind
shears, and underlying surfaces changes [9]. Because these factors exhibit nonlinear characteristics,
TC intensity is difficult to predict accurately using traditional statistical and numerical forecasting
methods [2]. Thus, conventional linear statistical methods have difficulties when applied to nonlinear
systems (e.g., forecasting TC intensity). At present, artificial neural network (ANN) methods can be
used to effectively solve complex nonlinear issues, and numerous studies have concentrated on novel
modeling techniques to improve the accuracy of TC intensity predictions [18–20].

In recent years, studies have clearly showed the potential of machine learning systems such as
back propagation neural networks (BPNNs) to forecast TC intensity [18]. However, the traditional
BPNN is unstable and less accurate than a probabilistic neural network (PNN) [2], which is a radial
basis function neural (RBFN) network that is strongly fault-tolerant, and has adaptive capabilities.
The k-nearest-neighbor (K-NN) machine learning algorithm has also been applied to predict TC
intensity based on microwave imager data [21]. A comparison of TC intensity prediction accuracy
using multilayer perceptron (MLP), multiple linear regression, RBFN, and ordinary linear regression
indicated that MLP had the smallest prediction error [22]. The MLP model may thus also be considered
an alternative to the conventional operational forecast models for predicting TC intensity [23].
Other research predicted cyclone wind intensity in the South Pacific using Elman recurrent neural
networks [24] and proved that the accuracy of TC intensity forecasts using a double hidden layer
neural network is higher than that found by using a single layer neural network [25]. These previous
models for predicting TC intensity have therefore been popular with researchers.

Although these models have been used widely by many researchers to forecast TC intensity, each
method has unique shortcomings in various areas, including predictive accuracy, model interpretability,
and computational efficiency. For example, BPNN performs well for most of these standards; however,
the accuracy of BPNN model predictions does not satisfy the needs of operational applications.
Therefore, more accurate TC intensity prediction models are needed. Several researchers have stated
that the extreme gradient boosting (XGBOOST) machine learning method, which is based on the
gradient boosting decision tree (GBDT), is a promising classification model [26]. GBDT is an iterative
decision tree algorithm comprising multiple decision trees, with the sum of the results of all decision
trees constituting the final result. It is frequently applied to solve classification and regression
problems [27]. In the process of gradient boosting machine model operation, the objective of every
iteration is to reduce the residuals of the previous iteration. In order to eliminate the residual, the
gradient boosting machine model builds a new model in the direction of the gradient of residual
reduction. However, the objective function of the GBDT has no penalty term and may therefore be
overfitted. The error function of the GBDT is the first derivative, which has a slow convergence
speed. Based on the GBDT model, the XGBOOST model has the following changes: (1) Penalty terms
are incorporated into the objective function of XGBOOST to prevent overfitting; and (2) the error
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function of XGBOOST is the second derivative, which can converge faster on the training set. These
advantages and the fact that it has a very strong predictive ability and has recently been successful in
many machine learning competitions led us to choose the XGBOOST model to forecast TC intensity
in the WNP. Sheridan et al. used the XGBOOST model to quantify structure-activity relationships,
with fast convergence speed being exhibited [28]. The XGBOOST model has also been used to predict
agricultural crop yields [29]. In addition, it provides the following advantages: (1) It utilizes parallelism,
is easy to use, and has impressive prediction accuracy; and (2) it has an intrinsic capability to manage
the highly diverse and complex features of predictors. The structure of a TC and the factors affecting
its development are very complicated; the XGBOOST model is highly suited for such conditions.

In this study, XGBOOST-based frameworks for TC intensity prediction in the WNP were established
based on China Meteorological Administration-Shanghai Typhoon Institute (CMA-STI) data for the
period 1979–2017. These data were used because they include significant amounts of coastal sounding
data, which are useful for analyzing TCs in the WNP. Analyses of the dynamics of the development
of TC intensity were conducted by comparing the differences between the predicted and real data.
Predicting TC intensity using the XGBOOST model not only results in a series of predictors, but also
improves the accuracy of the predictions. The primary objectives of this study were to (1) extract
various features for predicting TC intensity from CMA-STI data; (2) establish a TC dataset (1979–2017)
based on machine learning and explore XGBOOST frameworks for predicting TC intensity with
lead times of 6, 12, 18, and 24 h; and (3) demonstrate that this method outperforms several baseline
techniques. The results of this study provide a novel and feasible method with which to improve TC
intensity prediction accuracy.

2. Data and XGBOOST Model

In this section, we present the framework for TC intensity prediction in the WNP based on
XGBOOST. The ECMWF Re-Analysis (ERA) Interim and CMA-STI best track datasets, which are used
to evaluate the performance of our method, are described in Section 2.1. The processing methods and
the performance of our framework are reviewed in Section 2.2, and the performance of the XGBOOST
model is discussed in Section 2.3.

2.1. Data

The TC intensity information in the CMA TC best-track dataset was determined using
meteorological satellite cloud image data and estimated using the Dvorak technique [30]. The CMA-STI
Best Track Dataset for the WNP from 1979–2017 was downloaded from the China Meteorological
Administration (http://www.typhoon.gov.cn/). The dataset included latitude, longitude, 2-min mean
maximum sustained wind near the center of the TC, intensity category, and minimum pressure near
the center of the TC. Moreover, the WNP TCs in this study are defined as TCs that either have passed
through or were generated in the WNP region. The TC had to have had a minimum life history of 48 h.

The environmental datasets were produced by the European Centre for Medium-Range Weather
Forecasts (ECMWF) [31]. The spatial and temporal resolutions of the data are 1◦ × 1◦ and four times
daily, respectively. From the ERA Interim dataset, we selected variables including the relative humidity,
temperature, divergence, and u- and v-wind at 200, 250, 300, 350, 400, 450, 500, 700, 750, 775, 800, 825,
and 850 hPa. We selected the sea surface temperature from the ERA Interim dataset to estimate the
maximum potential intensity (MPI).

The TC samples from 1979–2005 were selected during the training process, whereas the TC
samples from 2006–2017 were selected during the testing phase. Table 1 lists the number of samples
at 6, 12, 18, and 24 h, all of which were divided into two: A training sample and a testing sample.
The experimental process was mainly divided into four parts: preprocessing data, building predictors,
tuning parameters, and running XGBOOST. Figure 1 illustrates the process of the experiment.

http://www.typhoon.gov.cn/
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Table 1. Numbers of training samples and testing samples of TC intensity prediction experiment for
1979–2017 over the WNP.

Lead Time (h) Training Samples (1979–2005) Testing Samples (2006–2017)

6 20114 7708
12 19269 7383
18 18429 7058
24 17594 6735
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Figure 1. Flow-process diagram.

2.2. Potential Predictors

Data preprocessing: We collected data comprising time, latitude, longitude, 2-min mean maximum
sustained wind near the TC center, intensity category, and minimum pressure near the TC center from
the CMA-STI Best Track Dataset, multiplied the latitude and longitude data by 0.1, and deleted the
samples of the nulls in the dataset.

We used four types of potential predictors, including persistence and climatology factors,
environmental factors, brainstorm features, intensity categories, and TC months to establish the WNP
intensity model.

The CLIPER method, which has been employed extensively in TC tracking and intensity
forecasting methods, was preferentially selected based on the climatology and persistence method [32].
The persistence factors were based on the past 24 h motion of the TC, while the climatology factors
were from the meteorological elements of the TC. The 20 persistence factors (PFs) are listed in Table 2
and the 52 climatology factors (CFs) are listed in Table 3.
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Table 2. Detailed description of the 20 persistence factors. TC: tropical cyclone.

Predictors Description

T1, T2, T3, T4 Latitude, longitude, minimum pressure near the TC center, and 2-min mean
maximum sustained wind near the TC center at the current time

T5, T6, T7, T8 Latitude, longitude, minimum pressure near the TC center, and 2-min mean
maximum sustained wind near the TC center 6 h prior

T9, T10, T11, T12 Latitude, longitude, minimum pressure near the TC center, and 2-min mean
maximum sustained wind near the TC center 12 h prior

T13, T14, T15, T16 Latitude, longitude, minimum pressure near the TC center, and 2-min mean
maximum sustained wind near the TC center 18 h prior

T17, T18, T19, T20 Latitude, longitude, minimum pressure near the TC center, and 2-min mean
maximum sustained wind near the TC center 24 h prior

Table 3. Detailed description of the 52 climatology factors.

Predictors Description

V1, V2, V3, V4 Difference between the latitude at the current time and the latitude 6, 12, 18, and
24 h prior

V5, V6, V7, V8 Difference between the longitude at the current time and the longitude 6, 12, 18,
and 24 h prior

V9, V10, V11, V12 Difference between the minimum pressure near the TC center at the current time
and the minimum pressure near the TC center 6, 12, 18, and 24 h prior

V13, V14, V15, V16
Difference between the 2-min mean maximum sustained wind near the TC center at
the current time and the 2-min mean maximum sustained wind near the TC center

6, 12, 18, and 24 h prior

V17, V18, V19, V20 Zonal velocity between the current time and the 6, 12, 18, and 24 h prior

V21, V22, V23, V24 Meridional velocity between the current time and the 6, 12, 18, and 24 h prior

V25, V26, V27, V28 Synthetic speed 1 of movement between the current time and the 6, 12, 18, and 24 h
prior

V29, V30, V31, V32 Zonal acceleration between the current time and the 6, 12, 18, and 24 h prior

V33, V34, V35, V36 Meridional acceleration between the current time and the 6, 12, 18, and 24 h prior

V37, V38, V39, V40 Synthetic acceleration 2 between the current time and the 6, 12, 18, and 24 h prior

V41, V42, V43, V44 Zonal displacement between the current time and the 6, 12, 18, and 24 h prior

V45, V46, V47, V48 Meridional displacement between the current time and the 6, 12, 18, and 24 h prior

V49, V50, V51, V52 Resultant displacement between the current time and the 6, 12, 18, and 24 h prior
1 For example, in the expression V25 =

√
V172 + V212, V25 represents the synthetic speed of movement between

the current time and the 6 h prior, V17 is the zonal velocity between the current time and the 6 h prior, and
V21 is the meridional velocity between the current time and the 6 h prior. 2 For example, in the expression
V37 =

√
V292 + V332, V37 represents the synthetic acceleration between the current time and the 6 h prior, V29 is

the zonal acceleration between the current time and the 6 h prior, and V33 is the meridional acceleration between
the current time and the 6 h prior.

Feature engineering is a superset of activities that include feature extraction and feature selection.
Each of these is an important step and none should be ignored. We could generalize the importance;
from our experience, the relative importance of the steps would follow the order feature construction
> feature extraction > feature selection [33]. To extract features from raw data without considering
their importance for the time being, brainstorm features (BFs) correspond to feature construction.
Brainstorming refers to a spontaneous group discussion conducted with the objective of solving a
problem or formulating good ideas. To accurately predict TC intensity, we extracted several key
features from a large number of studies in the literature. Potential predictors in the Statistical Typhoon
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Intensity Prediction Scheme (STIPS) include several quadratic terms and cosine function [34]. Thus,
the BFs in the XGBOOST model include cosine of the latitude at the current time, square of the 2-min
mean maximum sustained wind near the TC center at the current time, cube of 2-min mean maximum
sustained wind near the TC center at the current time, and so on. The 59 BFs are listed in Table 4.

Table 4. Detailed description of the 59 brainstorm features.

Predictors Description

B1 Cosine of the latitude at the current time

B2, B3, B4, B5 Cosine of the latitude 6, 12, 18, and 24 h prior

B6, B7, B8, B9 Differences between B1 and B2, B1 and B3, B1 and B4, and B1 and B5

B10 Square of the 2-min mean maximum sustained wind near the TC center at the
current time

B11, B12, B13, B14 Square of the 2-min mean maximum sustained wind near the TC center 6, 12, 18,
and 24 h prior

B15 Logarithm value of B10

B16, B17, B18, B19 Logarithm value of B11, B12, B13, and B14

B20 Cube of 2-min mean maximum sustained wind near the TC center at the current
time

B21, B22, B23, B24 Cube of 2-min mean maximum sustained wind near the TC center 6, 12, 18, and
24 h prior

B25 Ratio of minimum pressure near the center of the TC center and 2-min mean
maximum sustained wind near the TC center at the current time

B26, B27, B28, B29 Ratio of minimum pressure near the TC center and 2-min mean maximum
sustained wind near the TC center 6, 12, 18, and 24 h prior

B30 1/B25

B31, B32, B33, B34 1/B26, 1/B27, 1/B28, 1/B29

B35 Ratio of minimum pressure near the TC center and B10

B36, B37, B38, B39 Ratio of minimum pressure near the TC center and B11, B12, B13, B14

B40 1/B35

B41, B42, B43, B44 1/B36, 1/B37, 1/B38, 1/B39

B45 Ratio of minimum pressure near the TC center and B20

B46, B47, B48, B49 Ratio of minimum pressure near the TC center and B21, B22, B23, B24

B50 1/B45

B51, B52, B53, B54 1/B46, 1/B47, 1/B48, 1/B49

B55 Logarithm value of minimum pressure near the TC center at the current time

B56, B57, B58, B59 Logarithm value of minimum pressure near the TC center 6, 12, 18, and 24 h prior

To assess the potential impact of moisture, wind fields, and SST on TC intensity, we selected the
environmental factors listed in Table 5. The treatment of the environmental factors was similar to
those of DeMaria and Knaff [34,35]. The MPI was calculated according to the method described by
DeMaria and Kaplan [36]. The SST selected from the ERA Interim dataset was interpolated to the TC
center following the best track from 1979–2017 to determine the relationship between the SST and the
intensity. Then the exponential MPI function was described by (MPI = A + B eC(T−T0)). The results
were A = 18.42 m/s, B = 51.47 m/s, C = 0.09687 ◦C−1, T0 = 30.0 ◦C. The maximum value of MPI is 80
m/s. In addition to the environmental factors mentioned by DeMaria and Knaff, we added a cubed
term to the environmental factors.
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Table 5. Detailed description of the 24 environmental factors.

Predictor Description

E1 Maximum potential intensity
E2 E1 squared
E3 E1 cubed
E4 MPI times 2-min mean maximum sustained wind
E5 Area-averaged 850–700-hPa relative humidity within 200–800 km of TC center
E6 Area-averaged 500–300-hPa relative humidity within 200–800 km of TC center
E7 Area-averaged 200-hPa zonal wind within 200–800 km of TC center
E8 Area-averaged 200-hPa temperature within 200–800 km of TC center
E9 Area-averaged 200-hPa divergence within 1000 km of TC center

E10 Area-averaged 500–850-hPa wind shear within 200–800 km of TC center
E11 E10 squared
E12 E10 cubed
E13 Area-averaged 200–850-hPa wind shear within 200–800 km of TC center
E14 E13 squared
E15 E13 cubed
E16 Area-averaged 500–850-hPa zonal wind shear within 200–800 km of TC center
E17 E16 squared
E18 E16 cubed
E19 Area-averaged 200–850-hPa zonal wind shear with 200–800 km of TC center
E20 E19 squared
E21 E19 cubed
E22 E13 times sine of the latitude
E23 E10 times sine of the latitude
E24 Area-averaged 850-hPa relative vorticity within 1000 km of TC center

Because the TCs in different seasons have different characteristics, we chose the TC month as a
predictor. Intensity category (IC) predictors contain five moments: the current time, past 6 h, past 12 h,
past 18 h, and past 24 h. We constructed all the features as shown in Table 6.

Table 6. Potential climatology, persistence, and environmental factors.

Predictors Description

PF Persistence factors (20)
CF Climatology factors (52)
BF Brainstorm features (59)

MON TC month
IC Intensity category
EF Environmental factors (24)

2.3. Performance for the XGBOOST Model

2.3.1. XGBOOST Model Function

XGBOOST was established by Chen et al. [26]. The XGBOOST model has been applied to predict
energy consumption [37] and traffic at intersections [38], and to search for parsimonious solutions [39].
The XGBOOST model combines M Classification and Regression Trees (CART)

{
T1(xi, yi) · · ·TM(xi, yi)

}
,

where xi is a given training set of predictors related to a TC for predicting the intensity (yi) in the future:

ỳi =
∑M

m=1
fm(xi), fm ∈ F (1)
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where fm is a tree and F represents the space of the entire CART. The optimization regularization
objective is obtained by Equation (2):

obj(θ) =
∑n

i
l(yi, ỳi) +

∑M

m
τ( fm) (2)

where l represents the differentiable loss function that shows the difference between the target yi and
predicted ỳi. τ represents a regularization parameter. This variable is designed to prevent a complex
model structure and to avoid overfitting. τ(Sm) = ϕN + 1

2θ
∑T

j−1 α
2
j , where N represents the number

of leaf nodes and α is the score of the leaf node. ϕ and θ are used to describe the level of regularization.
In addition to using regularization term, predictor subsampling was used to prevent overfitting [26].

The prediction process adds the results of each tree to obtain the final results in the XGBOOST
model. We need to determine the parameters of each tree ( ft), which includes the structure of the tree
and the scores obtained by each leaf node. The additive training method adds the result of a tree to the
model at a given time. The predicted value (ỳ(t)i ) obtained in step t can be used to obtain the algorithm
process:

ỳ(t)i =
∑M

m=1
fm(xi) = ỳ(t−1)

i + ft(xi). (3)

The optimal tree is selected to achieve the optimization effect in each step:

obj(θ)(t) =
∑n

i
l
(
yi, ỳ(t−1)

i + ft(xi)
)
+ τ( ft). (4)

Second-order Taylor expansion occurs in the upper form:

obj(θ)(t) =
∑n

i
l
(
yi, ỳ(t−1)

i

)
+ gi ft(xi) +

1
2

hi f 2
t (xi) + τ( ft), (5)

where gi = ∂
ỳ(t−1)

i
l(yi, ỳ(t−1)

i ) shows the first derivative on the loss function, and hi = ∂2
ỳ(t−1)

i

l(yi, ỳ(t−1)
i )

represents the second derivative on the loss function. By deleting the constants, the equation for step t
is obtained as follows:

obj(θ)(t) =
∑n

i
gi ft(xi) +

1
2

hi f 2
t (xi) + τ( ft). (6)

The regularization term (τ( ft) = ϕN + 1
2θ

∑T
j−1 α

2
j ) is added to the cost function. Substituted into

the objective function, it is sorted out as follows:

obj(θ)(t) =
∑n

i=1 gi ft(xi) +
1
2 hi f 2

t (xi) + ϕN + 1
2θ

∑T
j−1 α

2
j

=
∑N

j=1

[(∑
i∈I j

gi
)
a j +

1
2

(∑
i∈I j

hi + θ
)
α2

j

]
+ ϕN

(7)

The larger the parameters θ and ϕ, the better is the tree. I j =
{
i
∣∣∣q(xi) = j

}
is the instance dataset of

leaf node j, q(x) is the optimal leaf node weight, while α∗j is shown as the optimal objective function:

α∗j = −
G j

H j + θ
(8)

obj∗ = −
1
2

∑N

j=1

G j

H j + θ
+ ϕN (9)

where G j =
∑

i∈I j
gi and H j =

∑
i∈I j

hi.
It is difficult to achieve this result in practical application. Therefore, we choose one layer of the

tree to optimize, calculate the gain before and after node splitting, and select the point with the greatest
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gain as the splitting point. In the XGBOOST algorithm, if a node is divided into two leaf nodes, the
fractional gain is as follows:

Gain =
1
2

 G2
L

HL + ϕ
+

G2
R

HR + ϕ
−

(GL + GR)
2

HL + HR + ϕ

−ϕ (10)

where IL and IR show the instance dataset of the left and right nodes after the split, GL =
∑

i∈IL
gi,

GR =
∑

i∈IR
gi, HL =

∑
i∈IL

hi, HR =
∑

i∈IR
hi, and I = IL ∪ IR.

It is very difficult to choose the best predictor from among the many factors affecting TC intensity.
However, the XGBOOST model is capable of this task. It has a wide range of adjustable parameters. We
limited the scope of this experiment to using RStudio to execute XGBOOST. The eta parameter reduces
the weight of the features to make the calculation process more conservative, prevent overfitting, and
use the shrinkage step in the update process. The gamma parameter is the minimum loss reduction
required to make a further partition on a leaf node of the tree. The max_depth parameter represents
the maximum depth of a child tree. The min_child_weight parameter shows the minimum sum of
the instance weight needed in a child. Subsample represents the ratio of the observed subsamples.
The colsample_bytree parameter represents the ratio of the variables used to construct each tree.

2.3.2. Training Method

In this study, we selected different input factor combinations to build six TC intensity prediction
models and found that the XGBOOST model resulted in the most accurate prediction (Table 7). In model
A1, the input parameters are PF, IC, and BF from 1979–2017. In model A2, the input parameters are
PF, IC, BF, and CF predictors from 1979–2017. In model B1, the input parameters are PF, IC, BF, and
MON from 1979–2017. In model B2, the input parameters are PF, IC, BF, MON, and CF predictors from
1979–2017. In model C1, the input parameters are PF, IC, BF, MON, and EF from 1979–2017. In model
C2, the input parameters are PF, IC, BF, MON, EF, and CF predictors in 1979–2017.

Because parameter settings are very important for running XGBOOST, we used the expand.grid()
function to select the best combination of parameters. We obtained the best execution for XGBOOST
when eta, gamma, max_depth, min_child_weight, subsample, and colsample_bytree were (0.01, 0.1, 1),
(0.1, 0.5, 0.8), (2, 4, 6, 8), (2, 4, 8), 0.8, and 0.95 respectively. This setting resulted in 108 combinations of
parameters. For the 1979–2005 training samples, ten-fold cross-validation methods [40] were used to
obtain the best combination of parameters.

Table 7. List of test cases with datasets.

Models Input Parameter Output Parameter

A1 PF, IC, BF

Intensity at lead times of
6, 12, 18, and 24 h.

A2 PF, IC, BF, CF
B1 PF, IC, BF, MON
B2 PF, IC, BF, MON, CF
C1 PF, IC, BF, MON, EF
C2 PF, IC, BF, MON, EF, CF

2.3.3. Evaluating the capability of the XGBOOST models

We selected the correlation coefficient (CC), mean absolute error (MAE), and normalized root
mean square error (NRMSE; as a percentage) as the parameters with which to evaluate the capability
of the XGBOOST models during the training and testing phases.

NRMSE =

√
1
n

∑i=n

i=1

(
θobs,i − θ f ore,i

)2
/
(
θobs,max − θobs,min

)
(11)
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CC =
∑i=n

i=1

(
θobs,i − θobs

)(
θ f ore,i − θ f ore

)
/

√∑i=n

i=1

(
θobs,i − θobs

)2 ∑i=n

i=1

(
θ f ore,i − θ f ore

)2
(12)

MAE =
1
n

∑i=n

i=1

∣∣∣θobs,i − θ f ore,i
∣∣∣ (13)

where θobs,i is the observed value at the ith sample, θ f ore,i is the forecasted value at the ith sample, n is
the number of all predicted samples, θobs is the average observation, and θ f ore is the average value of
the forecast.

3. Experimental Results of XGBOOST Models

In the XGBOOST model experiments, the real-time WNP intensities for 6-, 12-, 18-, and 24-h
prediction were studied. The TC intensity variable is expressed by the 2-min mean maximum sustained
wind near the TC center. The TC intensity in the WNP is considered the prediction object. As WNP
TCs located near the coastal regions of China produce negative effects annually, the WNP was given
particular consideration. TCs in the WNP include those developed by the South China Sea. All TCs in
the WNP were selected and considered as test objects to establish a forecast program for TC intensity.
The XGBOOST model was established to provide a new method with which to predict TC intensity
using various samples beneficial for improving the robustness of the model.

3.1. Prediction Results of XGBOOST Models

As Figure 2 shows, the learning performance of the XGBOOST model is very good during the
testing phase. The CCs between the predicted values and the observed values are greater than 0.89.
In the testing phases, the CCs of the A1 and A2 models at the 24 h lead time are minimal compared to
those of other models. As the A1 model has only PF, IC, and BF factors, the TC intensity characteristics
cannot be fully displayed. The results in Figure 2 generally indicate that all six models successfully
predicted TC intensity in the WNP at lead times of 6, 12, 18, and 24 h.
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Figure 3 illustrates the MAEs of the TC intensity at 6, 12, 18, and 24 h lead time when the XGBOOST
model is used. According to the statistics, the MAEs of 6 to 24 h forecast for the A1-model test samples
are 1.77, 2.75, 3.64, and 4.41 m/s, respectively. The MAEs of 6 to 24 h forecast for A2-model test samples
are 1.77, 2.71, 3.56, and 4.35 m/s, respectively. The MAEs of 6 to 24 h lead time forecast for B1-model
test samples are 1.69, 2.58, 3.38, and 4.09 m/s, respectively. The MAEs of 6 to 24 h lead time prediction
for B2-model test samples are 1.67, 2.57, 3.35, and 4.06 m/s, respectively. The MAEs of 6 to 24 h lead
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time forecast for C1-model test samples are 1.64, 2.50, 3.24, and 3.91 m/s, respectively. The MAEs of 6
to 24 h lead time forecast for C2-model test samples are 1.61, 2.44, 3.10, and 3.70 m/s, respectively. In all
models, MAE increases with the prediction time. The MAE ranges of the As, Bs, and Cs models are
below 4.50 m/s.
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3.2. TC Intensity Prediction Accuracy

The main task of TC intensity prediction is to determine whether future forecasts of intensity
will be accurate. According to the CMA-STI, the strength levels for most TCs in the WNP are Super
Typhoon (SuperTY; wind speed of TC center ≥ 51.0 m/s), Strong Typhoon (STY; 41.5 m/s ≤ wind speed
of TC center ≤ 50.9 m/s), Typhoon (TY; 32.7 m/s ≤ wind speed of TC center ≤ 41.4 m/s), Strong Tropical
Storm (STS; 24.5 m/s ≤wind speed of TC center ≤ 32.6 m/s), and Tropical Storm (TS; 17.2 m/s ≤wind
speed of TC center ≤ 24.4 m/s) while a few TCs are Tropical Depression-level (TD; 10.8 m/s ≤ wind
speed of TC center ≤ 17.1 m/s). In general, forecasting TCs that are at the SuperTY, STY, TY, STS, STS,
and TS levels are important because they are the strongest TCs in the WNP and result in more serious
disasters. Four TCs were selected to represent the TC intensity of the different grades: Hato from
2017, Rammasum from 2014, Mujiage from 2015, and Hagupit from 2014. These TCs resulted in huge
economic and property loss.

3.2.1. Six-Hour (6 h) Lead Time

The 6 h lead time intensity predictions of the TCs Hato, Rammasum, Mujiage, and Hagupit
are shown in Figure 4. In these figures, models A, B and C predicted trends that are similar to the
observations, but the models forecasted the TCs with a slight shift at the peak along the observations.
Figure 4 shows that models A1, A2, B1, and B2 forecasted TC intensities with larger oscillations than
the observations. Overall, the predicted values of models C1 (trained by the PF, IC, BF, MON, and EF)
and C2 (PF, IC, BF, MON, EF, and CF) are more consistent with the observed values than models A and
B. For the observed and predicted intensities for the lead times from 6 to 24 h, we found that the results
of the forecast not only satisfy the required forecast but are also in agreement with them within the
time domain.
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3.2.2. Twelve-Hour (12 h) Lead Time

The 12 h lead time intensity predictions of TCs Hato, Rammasum, Mujiage, and Hagupit are
shown in Figure 5. In these figures, the results of TC intensity predictions from models C1 and C2 are
roughly the same as the observations, but there are slight differences at the peak. Models B1 and B2
predicted TC intensities with slight oscillations along the observations; they forecasted TCs with a
slight shift at the peak along the observations. Figure 5 shows that models A1 and A2 forecasted TC
intensity with oscillations larger than those in the observations. Overall, the predictions from models
C1 (trained by the PF, IC, BF, MON, and EF) and C2 (PF, IC, BF, MON, EF, and CF), are generally more
consistent with the observed values when contrasted with the predictions from models A1, A2, B1,
and B2.

3.2.3. Eighteen-Hour (18 h) Lead Time

The 18 h lead time predictions of the intensity of TCs Hato, Rammasum, Mujiage, and Hagupit are
shown in Figure 6. In this figure, the predictions of TC intensity from models C1 and C2 are roughly
coincident with the observations, but there are slight differences at the peak and turnaround. Models
B1 and B2 predicted TC intensities with slight oscillations along the observations, and specifically
forecasted the TCs with a slight shift at the peak along the observations. Figure 6 shows that models A1
and A2 forecasted TC intensities with larger oscillations than the observations. Overall, the predicted
values of models C1 (trained by the PF, IC, BF, MON, and EF) and C2 (PF, IC, BF, MON, EF, and CF)
are close to the observed values.
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models A1, A2, B1, and B2. However, models C1 and C2 predicted relatively stable TC intensities 
compared to the TC intensities predicted by models A1, A2, B1, and B2. The trends in the predicted 
TC intensities from models C1 (trained by the PF, IC, BF, MON, and EF) and C2 (PF, IC, BF, MON, 
EF, and CF), are closest to the red line when compared with the predictions from models A1, A2, B1, 
and B2. Although the predicted values from models C1 and C2 are consistent with the overall trend 
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Figure 6. Observed and predicted sequence values of TC intensity with an 18-h lead time for (a) Hato,
(b) Rammasum, (c) Mujiage, and (d) Hagupit, respectively. The following color coding is used: red
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(B2, 18 h lead time), green (C1, 18 h lead time), and brown (C2, 18 h lead time).
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3.2.4. Twenty-Four-Hour (24 h) Lead Time

The predictions of the intensity of TCs Hato, Rammasum, Mujiage, and Hagupit, with a 24 h lead
time, are shown in Figure 7. Overall, the forecasted TC intensities oscillated significantly in models A1,
A2, B1, and B2. However, models C1 and C2 predicted relatively stable TC intensities compared to the
TC intensities predicted by models A1, A2, B1, and B2. The trends in the predicted TC intensities from
models C1 (trained by the PF, IC, BF, MON, and EF) and C2 (PF, IC, BF, MON, EF, and CF), are closest
to the red line when compared with the predictions from models A1, A2, B1, and B2. Although the
predicted values from models C1 and C2 are consistent with the overall trend in the observations, there
is turbulence in some places, such as where TC Hato was rapidly declining. In models A and B, we
found that the forecasted TC intensities diverged from the observations in the TCs Hato, Rammasum,
and Mujiage.Atmosphere 2019, 10, x FOR PEER REVIEW 15 of 21 
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3.3. Comparison of the Different Models

To evaluate the performance of the XGBOOST model with 6 h lead time, we used two parameters:
CC and NRMSE. The results of the two indices are shown in Figure 8a. They show that the CC range
in models A, B, and C is 0.98–0.99 and that of the NRMSE is 3.00–3.50%. Among these models, that
with the largest CC value and the smallest NRMSE value for TC intensity with a 6 h lead time is model
C2, which includes the variables PF, IC, BF, MON, EF, and CF. In addition, the results show that the
combination dataset increased the accuracy of the XGBOOST model for the 6 h forecast. The results for
a 12 h lead time are shown in Figure 8b. We found that the CC values in models A, B, and C ranged
from 0.95–0.97 and that their NRMSE values ranged from 4.50–5.50%. Among models A, B, and C,
the best combination of predictors for TC intensity with a 12 h lead time is model C2, with PF, IC,
BF, MON, EF, and CF. In addition, the results show that the combination dataset should enhance the
precision of the XGBOOST model for the 12 h forecast. The performance of the XGBOOST model with
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an 18 h lead time is shown in Figure 8c. We found that the CC values in models A, B, and C ranged
from 0.92–0.95 and that the NRMSE values ranged from 6.00–7.02%. For models A, B, and C, model C2,
with PF, IC, BF, MON, EF, and CF, produced the most accurate TC intensity predictions with an 18 h
lead time. The results of the XGBOOST model with a 24 h lead time are shown in Figure 8d. The CC
values of most of the models are distributed in the range 0.89–0.94 and the NRMSE values in the range
7.00–8.50%. Model C2, which was trained by the TC intensity parameter datasets PF, IC, BF, MON, EF,
and CF, indicated the best prediction capability: the CC and NRMSE are 0.93 and 7.18%, respectively.Atmosphere 2019, 10, x FOR PEER REVIEW 16 of 21 

 

 
Figure 8. TC intensity predictions with (a) 6 h lead time; (b) 12 h lead time; (c) 18 h lead time; and (d) 
24 h lead time. The abscissa and the ordinate represent the correlation coefficient and normalized root 
mean square error, respectively. 

4. Discussion 

In order to determine the impact of different factors on the forecast results, we designed six 
models: A1 (PF, IC, BF), A2 (A1 + CF), B1 (A1 + MON), B2 (A2 + MON), C1 (B1 + EF), and C2 (B2 + 
EF). The research results indicate that when climatology and persistence factors, brainstorm and 
predictive features, intensity category, and TC month are used as model inputs, the best TC intensity 
forecast accuracy with 6, 12, 18, and 24 h lead times occurs in the six models. We theorize that there 
are three main reasons for this. 

Firstly, we found that the XGBOOST model with the TC month feature is better than one without 
it because of differing relationships between the predictors and TC intensity in each month, which 
made it necessary for monthly experiments to be performed. Huang et al. divided all the samples 
into five parts and built a monthly ANN model (June–October). They found that the results of the 
monthly ANN model were better than those of the CLIPER method for TC intensity forecasts [41]. 
Several researchers consider the months from July to November as the period in the year with the 
most TC activity [42]. In this study, for the first group, the B2 model with the predictor TC month 
with a 24 h lead time had good MAE, CC, and NRMSE results: 4.06 m/s, 0.91, and 7.84%, respectively. 
The A2 model without the TC month predictor and 24 h lead time had the following results: MAE of 
4.35 m/s, CC of 0.90, and NRMSE of 8.31%. For the second group, when we trained the PF, IC, BF, 
and MON datasets (B1 model), the MAE of the 24 h forecast for the test samples was 4.09 m/s; when 
we trained the PF, IC, and BF datasets (A1 model), the MAE of the 24 h forecast for the test samples 
was 4.41 m/s. Thus, the month feature is very important to process TC predictions. Secondly, our next 
finding was that an XGBOOST model with environmental factors is better than one without those 
features. For the first group, when it was trained with the PF, IC, BF, MON, and EF datasets, the MAE 
of the 24 h forecast for the test samples was 3.91 m/s; when trained with the PF, IC, BF, and MON 
datasets, the same MAE was 4.09 m/s. For the second group, the MAE of the 24 h forecast in model 
B2 for the test samples was 4.06 m/s; the MAE of 24 h forecast in model C2 for the same samples was 
3.70 m/s. Finally, climatology predictors also affect the forecast results from the XGBOOST model. 
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4. Discussion

In order to determine the impact of different factors on the forecast results, we designed six
models: A1 (PF, IC, BF), A2 (A1 + CF), B1 (A1 + MON), B2 (A2 + MON), C1 (B1 + EF), and C2 (B2
+ EF). The research results indicate that when climatology and persistence factors, brainstorm and
predictive features, intensity category, and TC month are used as model inputs, the best TC intensity
forecast accuracy with 6, 12, 18, and 24 h lead times occurs in the six models. We theorize that there are
three main reasons for this.

Firstly, we found that the XGBOOST model with the TC month feature is better than one without
it because of differing relationships between the predictors and TC intensity in each month, which
made it necessary for monthly experiments to be performed. Huang et al. divided all the samples
into five parts and built a monthly ANN model (June–October). They found that the results of the
monthly ANN model were better than those of the CLIPER method for TC intensity forecasts [41].
Several researchers consider the months from July to November as the period in the year with the most
TC activity [42]. In this study, for the first group, the B2 model with the predictor TC month with a
24 h lead time had good MAE, CC, and NRMSE results: 4.06 m/s, 0.91, and 7.84%, respectively. The A2
model without the TC month predictor and 24 h lead time had the following results: MAE of 4.35 m/s,
CC of 0.90, and NRMSE of 8.31%. For the second group, when we trained the PF, IC, BF, and MON
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datasets (B1 model), the MAE of the 24 h forecast for the test samples was 4.09 m/s; when we trained
the PF, IC, and BF datasets (A1 model), the MAE of the 24 h forecast for the test samples was 4.41 m/s.
Thus, the month feature is very important to process TC predictions. Secondly, our next finding was
that an XGBOOST model with environmental factors is better than one without those features. For
the first group, when it was trained with the PF, IC, BF, MON, and EF datasets, the MAE of the 24 h
forecast for the test samples was 3.91 m/s; when trained with the PF, IC, BF, and MON datasets, the
same MAE was 4.09 m/s. For the second group, the MAE of the 24 h forecast in model B2 for the test
samples was 4.06 m/s; the MAE of 24 h forecast in model C2 for the same samples was 3.70 m/s. Finally,
climatology predictors also affect the forecast results from the XGBOOST model. The climatology
predictors developed by Neumann [43] are feasible and have reasonable bases in meteorology [44].
For example, such predictors include: latitude and longitudes at present and 12, 24, 36 and 48 h prior,
pressures at present and 12, 24, 36 and 48 h prior, directions of the storm motions at present and 12,
24, 36 and 48 h prior. In addition to the above information, when we established the climatology
predictors, we added the difference between the latitude at the current time and the latitude 6, 12, 18,
and 24 h prior, the difference between the longitude at the current time and the latitude 6, 12, 18, and
24 h ago, the difference between the 2-min mean maximum sustained wind near the center of the TC at
the current time and the latitude 6, 12, 18, and 24 h prior, etc. (Table 3). The MAE for the 24 h forecast
in model A1 for the test samples was 4.41 m/s, while that value in model A2 was 4.35 m/s. The MAE of
24 h forecast in model B1 for the test samples was 4.09 m/s, while the MAE of the 24 h forecast in model
B2 for the test samples was 4.06 m/s. The MAE of the 24 h forecast in model C1 for the test samples
was 3.91 m/s, while that value was 3.70 m/s in model C2.

As the prediction time increases, the accuracy of the TC intensity predicted using the XGBOOST
model gradually decreases. The result indicates that the MAE and NRMSE values gradually increase
with prediction time, whereas the value of CC gradually decreases. For example, the CCs of the 6,
12, 18, and 24 h forecasts for test samples in model C1 were 0.99, 0.97, 0.95, and 0.93, respectively.
The NRMSEs of these forecasts were 3.15, 4.86, 6.25, and 7.59, respectively, and the MAEs were 1.64,
2.50, 3.24, and 3.91 m/s, respectively. However, the reduction/growth amplitude of each model in the
CC/NRMSE differs as the prediction time increases. The relationship between the CC and NRMSE
for TC intensity forecast with a 6, 12, 18, and 24 h lead time is shown in Figure 8. The results show
that the distance between the C models and the A models in the graph increase with the prediction
time. On combining Figure 8a–d, it can be seen that the C models approach the lower right-hand
corner with increase in lead time. For example, the CCs of the 6, 12, 18, and 24 h forecasts for the test
samples in model C2 were 0.99, 0.97, 0.95, and 0.93, respectively. The NRMSEs of these forecasts were
3.09, 4.72, 6.00, and 7.18, respectively. This means that the CCs of the C models approach one and the
NRMSEs approach zero with increasing lead time. When all parts of Figure 8 are combined, the A
models approach the top left-hand corner with increase in lead time. For example, the CCs of the 6,
12, 18, and 24 h forecasts for the test samples in model A2 were 0.98, 0.96, 0.93, and 0.90, respectively,
whereas their NRMSEs were 3.39, 5.28, 6.87, and 8.31, respectively. This means that the CCs of the A
models have lower correlations, with values much less than one, whereas the NRMSEs are higher.

The prediction results show that the XGBOOST method is appropriate for predicting TC intensities.
Table 8 shows the MAEs of the maximum wind speed forecasts with a 24 h lead time using each
method. The prediction error of the XGBOOST model is comparable to that of a previously used model
for 24 h predictions. The MAEs for a 24 h lead time in seven machine learning methods—k-nearest
neighbor [21], neural network [45], fuzzy neural network [46], artificial neural network [5], multilayer
feed forward neural nets [25], Elman recurrent network [24], and probabilistic neural network [2]—were
determined for test samples and found to be 8.22, 3.44, 3.52, 4.74, 2.98, 3.58, and 2.93 m/s, respectively.
Because the predictors used in the previous studies are not exactly the same as the predictors in this
paper, we used a BPNN to predict the TC intensity under the same sample input parameter. The MAEs
for a 24 h lead time in six BPNN methods—A3 (input parameters the same as model A1), A4 (input
parameters the same as model A2), B3 (input parameters the same as model B1), B4 (input parameters
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the same as model B2), C3 (input parameters the same as model C1), and C4 (input parameters the
same as model C2)—were determined for test samples and found to be 5.48, 5.25, 5.41, 5.23, 5.05, and
4.57 m/s, respectively. The MAEs of 24 h lead time in six models (A1, A2, B1, B2, C1, and C2) for
the test samples were 4.41, 4.35, 4.09, 4.06, 3.91, and 3.70 m/s, respectively. The prediction results
of the XGBOOST models were better than those made by the BPNN model with the same sample
requirements. The XGBOOST model has many advantages, including a simple training process,
low computer-processing costs, and fast convergence, compared to ANNs [47]. Therefore, using the
XGBOOST model is very advantageous for predicting TC intensity. This significant finding thus
supports performing predictions within 24 h using the XGBOOST model as a new method for TC
intensity prediction.

Table 8. Mean absolute error of tropical cyclone intensity for several forecast methods with a 24 h
lead time.

Method Input Parameter MAE (m/s)

A1 (XGBOOST model) PF, IC, BF 4.41
A2 (XGBOOST model) PF, IC, BF, CF 4.35
B1 (XGBOOST model) PF, IC, BF, MON 4.09
B2 (XGBOOST model) PF, IC, BF, MON, CF 4.06
C1 (XGBOOST model) PF, IC, BF, MON, EF 3.91
C2 (XGBOOST model) PF, IC, BF, MON, CF, EF 3.70

A3 (back propagation neural network (BPNN) model) PF, IC, BF 5.48
A4 (BPNN model) PF, IC, BF, CF 5.25
B3 (BPNN model) PF, IC, BF, MON 5.41
B4 (BPNN model) PF, IC, BF, MON, CF 5.23
C3 (BPNN model) PF, IC, BF, MON, EF 5.05
C4 (BPNN model) PF, IC, BF, MON, CF, EF 4.57

5. Conclusions

In this study, we established a series of predictors using the Best Track TC dataset to predict
the intensity of TCs in the Western North Pacific (WNP) and conducted the following experiments
to improve intensity prediction accuracy. First, we designed a feature set using the brainstorming
and CLIPER methods. Then, we used the CMA of the WNP near China as a data source and
predicted the 6, 12, 18, and 24 h intensities of TCs for the period 1979–2017 under six scenarios using the
XGBOOST model. Finally, we tested the performance of the XGBOOST model using the strongest recent
TCs—specifically, Hato, Rammasum, Mujiage, and Hagupit. The following results were obtained:

(1) The prediction accuracy of the XGBOOST model improved by climatology and persistence
factors, environmental factors, brainstorm features, intensity category, and TC month. We analyzed
the prediction of TC intensity using the XGBOOST model under six scenarios; all of them produced a
mean absolute error (MAE) < 4.50 m/s, a correlation coefficient (CC) > 0.89, and a normalized root
mean square error (NRMSE) < 10.00%. Among models A (A1 and A2), B (B1 and B2), and C (C1 and
C2), we determined that model C2 was the most accurate predictor of TC intensity in the six scenarios.

(2) The NRMSE, MAE, and CC parameters were used to evaluate the performance of the XGBOOST
model in the WNP. The MAEs of the 6, 12, 18, and 24 h lead times for the test sample forecasts were
1.61, 2.44, 3.10, and 3.70 m/s, respectively; the CCs were 0.99, 0.97, 0.95, and 0.93, respectively; and
the NRMSEs were 3.09, 4.72, 6.00, and 7.18%, respectively. The MAE and NRMSE values gradually
increased with lead time, whereas the CC value gradually decreased. The prediction accuracy of our
XGBOOST model was found to be higher than that of traditional BPNN models for the same predictors
and independent prediction samples.
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