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Abstract: The Multifractal Detrended Fluctuation Analysis (MF-DFA) is used to examine the scaling
behavior and the multifractal characteristics of the mean daily temperature time series of the
ERA-Interim reanalysis data for a domain centered over Greece. The results showed that the time
series from all grid points exhibit the same behavior: they have a positive long-term correlation and
their multifractal structure is insensitive to local fluctuations with a large magnitude. Special emphasis
was given to the spatial distribution of the main characteristics of the multifractal spectrum: the
value of the Hölder exponent, the spectral width, the asymmetry, and the truncation type of the
spectra. The most interesting finding is that the spatial distribution of almost all spectral parameters
is decisively determined by the land–sea distribution. The results could be useful in climate research
for examining the reproducibility of the nonlinear dynamics of reanalysis datasets and model outputs.

Keywords: air temperature; nonlinear dynamics; Multifractal Detrended Fluctuation Analysis;
reanalysis data

1. Introduction

Many processes in nature are governed by nonlinear laws and they can be considered to be
nonlinear systems that are described by nonlinear differential equations. A nonlinear system can be
described effectively by the time series of a characteristic set of the system’s parameters. A noticeable
characteristic of many time series that result from nonlinear systems is the self-similarity, where, when
part of the time series is enlarged, it is exactly the same as, or approximately similar to, the whole time
series. Self-similarity is a very important feature of fractal time series and it is apparent in many scales
of time and magnitude. In nature, there are many time series with a fractal structure and, ever since
the primary studies of Benoite B. Mandelbrot [1,2], a great number of studies and books about fractals
have been published [3–5].

Nonlinear systems’ time series often exhibit a complex behavior that poses significant difficulties
for their study using conventional linear methods, such as autocorrelation function analysis or
spectral analysis. The presence of non-stationarities makes these methods totally unreliable for the
detection of such time series properties [6]. On the other hand, the Detrended Fluctuation Analysis
(DFA), introduced by Peng et al. [7], is a reliable method for finding the scaling properties of time
series and detecting long-range correlations even in time series that appear to be non-stationary [8].
Scientists from various disciplines have exploited the advantages of DFA in their respective disciplines,
such as financial market analysis [9,10], medical time series [11], DNA sequences [12], and natural
and social phenomena [13–15]. Atmospheric processes interact in a complex way and obey nonlinear
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laws [16]. Thus, meteorological parameter records (e.g., temperature, humidity, precipitation, wind
speed) exhibit a fractal structure and their fractal scaling behavior can be studied using the DFA
method. A great number of studies have applied DFA successfully to meteorological time series.
More specifically, DFA has been used in the study of climate for temperature time series [17–22],
relative humidity [23,24], precipitation amount [25], drought and flood indices [26], ozone data [27–30],
incident flux of solar radiation [31], examining the variability of the atmosphere for a very wide
temporal range [32], and the North Atlantic Oscillation [33], among others.

A basic prerequisite for the application of the DFA method is that there is a single scaling
exponent for all scales (i.e., monofractal time series). However, in nature, very often time series
have a fractal structure that demands a multitude of scaling exponents for different scales in order
to be described completely. These time series are called ‘multifractal’, and they can be analyzed
using a generalization of the DFA method—the multifractal DFA (MF-DFA)—that was introduced
by Kandelhardt et al. [34]. A thorough presentation of multifractal statistics and an application of
nonlinear dynamics to weather and climate is presented by Lovejoy and Schertzer [35]. In general,
meteorological time series have a multifractal structure and the MF-DFA has been used for the
analysis of temperature time series [36], precipitation amount data [37–39], wind speed records [40–42],
climate studies [43,44], agrometeorological data [45,46], particulate matter data [47], and paleoclimatic
records [48], among others.

Following the findings of Kalamaras et al. [49], which are based on observational temperature
records over Greece, the scope of this study is to examine the behavior and the spatial distribution of
multifractal spectrum characteristics using temperature time series from a reanalysis dataset. In the
following section, the characteristics of the area under study are presented along with the extracted
subset of the temperature time series from the ERA-Interim dataset. In the methodology section, there
is a detailed reference for the main multifractal spectrum features. In the results and discussion sections,
the resulting multifractal spectra are examined in association with climatic features and compared
with the principal results presented in [49].

2. Area of Study and Data

The area under study is Greece, which is located at the southern part of the Balkans in southeast
Europe. Despite the fact that it covers a relatively small geographic area, it exhibits a significant
climatic variability [50] due to its complex topography and its location. This is clearly demonstrated
by Karras [51], who applied the Thornwaite method of climatic classification in Greece and found
29 distinct climate regions. A characteristic example of this climate variety is the remarkable climatic
difference between the northwestern Greek regions and the southeast insular parts of Greece as is
clearly illustrated in the Hellenic National Meteorological Service (HNMS) climate atlas. These climatic
differences may be identified by the analysis of temperature time series over Greece [52]. Therefore,
there is an increased interest in the spatial distribution of the multifractal properties of meteorological
time series from different parts of Greece.

The daily temperature time series in this study were extracted from the ERA-Interim reanalysis
dataset of the European Centre for Medium-Range Weather Forecasts (ECMWF). It should be noted
that the mean daily 2 m temperature data values were calculated as the mean value of the four available
synoptic hours per day (00, 06, 12, and 18 UTC). The covered area is 34.50◦ N–42.00◦ N and 18.75◦

E–28.50◦ E using a 0.75◦ × 0.75◦ grid, and the relevant points are illustrated in Figure 1. Therefore, 154
(11 × 14) grid points were used, that cover uniformly the Greek area for a 35-year period (January 1979
to December 2014). The 2 m temperature values of the ERA-Interim dataset were estimated using
not only surface temperature observations but also other data sources, mainly satellite observations.
From the assimilation of the observations, ERA Interim produces four analyses per day at 00, 06, 12,
and 18 UTC. Therefore, there are four temperature values per day and per grid point and, in this
study, each daily temperature value is the average of these four values for each grid point. Moreover,
each temperature value encompasses observations before and after the specified observation time,
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i.e., for the production of the 00 UTC analysis, observations taken between 15 UTC on the previous
day and 03 UTC on the present day were used and, similarly, observations taken between 03 and
15 UTC were used for the analysis of 12 UTC. The use of temperature data from reanalysis datasets
has additional advantages related to data completeness and the quality control of the time series.
A complete description of the ECMWF ERA-Interim dataset can be found in [53] and [54].
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3. Methods

This study consists of two parts:

• In the first part, the multifractal characteristics of reanalysis daily temperature are studied
using MF-DFA;

• In the second part, the spatial distribution of the main multifractal spectral characteristics
is examined.
The MF-DFA is used to study the scaling properties of the temperature time series. A brief
description of the method is given below, while a more detailed description is elaborated in [34].

• Initially, the time series are deseasonalized by subtracting the mean value of each calendar day
from the corresponding values of the time series. For instance, in a daily temperature time series
covering the period 1979–2014, the deseasonalized value of temperature on a specific date is
calculated by subtracting the mean value of this day of all years (i.e., the mean from 36 values).

• Subsequently, the ‘profile’ Y(i) of the deseasonalized time series xk of length N is found:

Y(i) ≡
∑i

k=1
[xk − 〈x〉] (1)

where < x > is the mean of the time series and i = 1, . . . , N.
• Y(i) is then divided into Ns = int(N/s) boxes of equal length s (s being the time scale).
• In each box of length s, a least squares line is fitted to the data, which represents the trend in that

box; i.e., the local trend. By subtracting the local trends, Y(i) is detrended and thus the variance
F2 (v, s) of each segment (box) (v = 1, . . . , 2Ns) is calculated. In this study, second-order trends
were eliminated from the profile Y(i) using quadratic polynomials and, according to [34], linear
trends were removed from the original time series.

• In order to find the qth order fluctuation function, the average overall segments are calculated:

Fq(s) =
{ 1

2Ns

∑2Ns

v=1
[F2(v, s)]

q
2
} 1

q
∼ sh(q). (2)

Equation (2) is valid when q , 0. If q = 0, the value of F0(s) is found using Equation (3):

F0(s) = exp
{ 1

4Ns

∑2Ns

v=1
ln

[
F2(v, s)

]}
∼ sh(0). (3)
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• This quantity is calculated repeatedly for all time scales to determine the relationship between
Fq(s) and s. Typically, Fq(s) is an increasing function of s.

The exponent h(q) usually depends on q. If q = 2, then, for stationary time series, h(2) is the Hurst
exponent H. If the time series is monofractal, then h is independent of q. In the case of a different
scaling between small and large fluctuations, significant dependencies are observed.

Disregarding for a moment the dependency of the Hurst exponent on q and assuming that h(q) = H,
it is important to note that the time series is long-range anticorrelated for 0 < H < 0.5; uncorrelated for
H = 0.5; and long-range positively correlated for H > 0.5. Furthermore, if:

τ(q) = qh(q) − 1,
then τ′(q) = α

and f (α) = qα − τ(q) = q[α − h(q)] + 1.
(4)

The quantity α is called singularity strength (or the Hölder exponent) and f (α) expresses the
dimension of the subset of the time series that is characterized by α. The plot of α versus f (α) is
called a singularity spectrum (or multifractal spectrum). The value of α where f (α) takes its maximum
value is when df (α)/dα = 0, satisfied when q = 0. From (4), it is found that f (α)max = 1. This value
of α corresponds to the most dominant scaling behavior [55] and it is the dominant Hurst exponent.
Hereafter, this quantity will be denoted by αo. Another important feature of the spectrum is its width
(αmax–αmin), where αmax and αmin are the maximum and the minimum values of α for which f (α) = 0,
which is a multifractality measure. A spectrum with a broad width has a strong multifractality (i.e., it
has a ‘fine’ structure). If the width decreases, then the multifractality becomes weaker and the time
series tends to be a monofractal one. The spectrum width of a pure monofractal time series is equal to
zero. More details about the multifractal spectrum can be found in [56]. As recommended by Shimizu
el al. [57], a measure of the width of the multifractal spectrum can be obtained by fitting a second-order
equation to the curve of the spectrum around αo, according to:

G(a) = A(a− a0)
2 + B(a− a0) + C (5)

where B is an asymmetry parameter. For B = 0, the spectrum is symmetrical; for B > 0, the spectrum is
right-skewed; and, for negative B values, the spectrum is left-skewed [58]. A right-skewed spectrum
is related to relatively strongly weighted high fractal exponents, whereas a left-skewed spectrum is
indicative of low fractal exponents (a more ‘regular’ time series). According to [57], a time series with
a high value of αo, a broad width, and a right-skewed spectrum is considered to be more ‘complex’
than a time series with the opposite characteristics.

Since the range of q values for which the spectrum is plotted is finite, it is very often observed
that the spectrum is not symmetrical, and one of its legs is truncated. Therefore, the shape of the
multifractal spectrum can be also characterized by its truncation type. The shape of the spectrum can
be symmetrical, left truncated, or right truncated. According to [49], the truncation type is grouped
into four categories: LL (a high degree of truncation on the left side, i.e., when the left side of the
spectrum is shorter than the half of the length of the right side); L (left-truncated, when the left side of
the spectrum is shorter (but not less than half) than the right side); S (symmetrical, when left side has
almost equal length to the right side); and R (right-truncated, when the right side is shorter than the
left side). The distinction between L and LL was made because it was found that most of the spectra
are left-truncated, and this can be a convenient way to better study their asymmetry.

According to [34], multifractality is due to either a broad probability density function of the time
series values, or to different long-range correlations for fluctuations of large and small magnitude.
In order to examine this, the time series values were ordered randomly (shuffling) and MF-DFA was
applied to the shuffled time series. If multifractal characteristics are preserved, then multifractality is
caused by a broad probability density function. If not, the multifractality is due to different long-range
correlations for different magnitudes of the time series fluctuations.
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4. Results

4.1. Multifractal Charactesistics

The application of the MF-DFA to the daily temperature for each grid point (154 time series),
yields to the plots of the fluctuation factor Fq(s) versus times scale s, the generalized Hurst exponent
h(q) versus q, and the multifractal spectrum f (α) versus α. In Figures 2 and 3, these plots are presented
along with the original and deseasonalized time series for the closest grid point to Athens (38.25◦ N,
24.00◦ E) and Kastoria (40.50◦ N, 21.00◦ E), respectively.Atmosphere 2019, 10, x FOR PEER REVIEW 5 of 15 
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These grid points represent geographic areas with different climatic conditions. The grid point
that is close to Athens is a coastal point, located in southeastern central Greece, and therefore it is
influenced by the sea. On the other hand, the second grid point, which is located in mountainous
northwestern Greece, is not influenced by the sea characterized by a colder climate. This is clearly
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reflected in Figures 2a and 3a, where below-zero temperatures are often observed, especially during
winter in northwestern Greece. The scaling behavior is determined by the fluctuation functions Fq(s)
(Figures 2c and 3c), which is similar in both grid points. The generalized Hurst exponent is greater
than 0.5 in the two cases, revealing the fact that the temperature time series are long-range positively
correlated. The most striking differences can be seen in the values of h(q), which are greater for the
point located near to Athens (Figures 2e and 3e). In addition to this, from Figures 2d and 3d, it is
observed that the value of α for which f (α) is maximum is greater for the point located near to Athens.
This fact can be attributed to the influence of the sea, which leads to a more persistent behavior (that
is, greater scaling exponents) as will be stated in the next paragraph. Moreover, the spectrum of the
mountainous area (Figure 3d) is narrower than the spectrum of Figure 2d. This can be attributed to the
complex topography of the mountainous areas, which is the cause of local weather conditions that, in
turn, make temperature fluctuations to be noisier; a time series that has a structure similar to white
noise has a narrow spectrum [56,57].

It should be noted that Fq(s) is plotted for s ranging from 101.5 to 103.5 in days. In all cases,
the form of Fq(s) plots is almost linear, and, for different q values, their distance is decreased when s
increases. This is attributed to the fact that, for small segments (small s values), local periods with
small fluctuations (negative q) are easier to distinguish from periods with large fluctuations (positive q).
On the contrary, large segments include periods of both small and large fluctuations and therefore the
differences in magnitude are cancelled [56]. This results in the behavior of Fq(s) for large segments being
similar to monofractal time series (i.e., the Fq(s) for monofractal time series is independent of q and in
that case the Fq(s) lines coincide). The multifractal character of the temperature time series is exhibited
from the fact that the Hurst exponent is dependent on q (Figure 2d) and from the upside-down parabola
form of the multifractal spectrum (Figure 2e). In more detail, in all cases h(q) > 0.5, and consequently
the temperature time series are long-range positively correlated and therefore it is highly likely that an
increase/decrease in temperature values will be followed by another increase/decrease.

In Figure 4, the log-log plots of F2(s) versus s are illustrated for two representative grid points
located over land (Land1: 29.75◦ N, 21.75◦ E, Land2: 37.50◦ N, 22.50◦ E) and for two points over sea
(Sea1: 35.25◦ N, 27.75◦ E, Sea2: 36.75◦ N, 21.00◦ E). For each plot, a linear equation of the form y = ax + b
is fitted, where a is the scaling exponent. It should be noted that, in all cases, high goodness-of-fit is
achieved with coefficient of determination values greater than 99%. The estimated scaling exponents
over sea are higher due to the influence of the higher seawater heat capacity, which leads to temperature
time series with a higher degree of persistence. Furthermore, the lower F2(s) values over sea can be
attributed to the smaller temperature fluctuations.

Atmosphere 2019, 10, x FOR PEER REVIEW 7 of 15 

 

(Figures 2c and 3c), which is similar in both grid points. The generalized Hurst exponent is greater 
than 0.5 in the two cases, revealing the fact that the temperature time series are long-range positively 
correlated. The most striking differences can be seen in the values of h(q), which are greater for the 
point located near to Athens (Figures 2e and 3e). In addition to this, from Figures 2d and 3d, it is 
observed that the value of α for which f(α) is maximum is greater for the point located near to Athens. 
This fact can be attributed to the influence of the sea, which leads to a more persistent behavior (that 
is, greater scaling exponents) as will be stated in the next paragraph. Moreover, the spectrum of the 
mountainous area (Figure 3d) is narrower than the spectrum of Figure 2d. This can be attributed to 
the complex topography of the mountainous areas, which is the cause of local weather conditions 
that, in turn, make temperature fluctuations to be noisier; a time series that has a structure similar to 
white noise has a narrow spectrum [56,57]. 

It should be noted that Fq(s) is plotted for s ranging from 101.5 to 103.5 in days. In all cases, the 
form of Fq(s) plots is almost linear, and, for different q values, their distance is decreased when s 
increases. This is attributed to the fact that, for small segments (small s values), local periods with 
small fluctuations (negative q) are easier to distinguish from periods with large fluctuations (positive 
q). On the contrary, large segments include periods of both small and large fluctuations and therefore 
the differences in magnitude are cancelled [56]. This results in the behavior of Fq(s) for large segments 
being similar to monofractal time series (i.e., the Fq(s) for monofractal time series is independent of q 
and in that case the Fq(s) lines coincide). The multifractal character of the temperature time series is 
exhibited from the fact that the Hurst exponent is dependent on q (Figure 2d) and from the upside-
down parabola form of the multifractal spectrum (Figure 2e). In more detail, in all cases h(q) > 0.5, 
and consequently the temperature time series are long-range positively correlated and therefore it is 
highly likely that an increase/decrease in temperature values will be followed by another 
increase/decrease. 

In Figure 4, the log-log plots of F2(s) versus s are illustrated for two representative grid points 
located over land (Land1: 29.75° N, 21.75° E, Land2: 37.50° N, 22.50° E) and for two points over sea 
(Sea1: 35.25° N, 27.75° E, Sea2: 36.75° N, 21.00° E). For each plot, a linear equation of the form y = ax+b 
is fitted, where a is the scaling exponent. It should be noted that, in all cases, high goodness-of-fit is 
achieved with coefficient of determination values greater than 99%. The estimated scaling exponents 
over sea are higher due to the influence of the higher seawater heat capacity, which leads to 
temperature time series with a higher degree of persistence. Furthermore, the lower F2(s) values over 
sea can be attributed to the smaller temperature fluctuations. 

 

Figure 4. Log-log plots of F2(s) for two grid points located over land (Land1: 29.75° N, 21.75° E, Land2: 
37.50° N, 22.50°E) and for two points located over sea (Sea1: 35.25° N, 27.75° E, Sea2: 36.75° N, 21.00° 
E) along with the linear fit equations and the corresponding coefficient of determination R2 values. 

The multifractal characteristics, deducted from the multifractal spectrum (i.e., αmax – αmin width, 
α0, asymmetry parameter B, and truncation type), reveal important properties of the time series 
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to 0.819 and, therefore, the dominant scaling exponent is greater than 0.5. In agreement with the h(q) 
findings, the dominant scaling behavior is persistent and positively correlated. The spectrum width 

Figure 4. Log-log plots of F2(s) for two grid points located over land (Land1: 29.75◦ N, 21.75◦ E, Land2:
37.50◦ N, 22.50◦E) and for two points located over sea (Sea1: 35.25◦ N, 27.75◦ E, Sea2: 36.75◦ N, 21.00◦ E)
along with the linear fit equations and the corresponding coefficient of determination R2 values.

The multifractal characteristics, deducted from the multifractal spectrum (i.e., αmax – αmin width,
α0, asymmetry parameter B, and truncation type), reveal important properties of the time series
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multifractality and their value distributions are illustrated in Figure 5. The α0 values range from 0.675
to 0.819 and, therefore, the dominant scaling exponent is greater than 0.5. In agreement with the h(q)
findings, the dominant scaling behavior is persistent and positively correlated. The spectrum width
values lie within the range of 0.380–0.650 and the asymmetry parameter values are in the range of
−0.087–0.698. The B distribution demonstrates that the majority of the asymmetry values are positive
and, therefore, in general, the spectra are right-skewed. As suggested by [57], a right-skewed spectrum
shows relatively strongly weighted high fractal exponents (with a ‘fine structure’). Additionally,
the examination of the truncation type of the spectra shows that the majority of the spectra are
left-truncated, which is also indicative that, in general, there is a dominance of high fractal exponents.
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The type of multifractality of the temperature time series is examined by shuffling the time series
and applying the MF-DFA to the shuffled time series. The results revealed that the shuffled time series
exhibit a very weak multifractality and, therefore, the multifractality is caused mainly by different
long-range correlations for small and large fluctuations. A representative case is depicted in Figure 6.
In the multifractal spectrum of the shuffled time series, the value of α0 is very close to 0.5 and the
spectrum width is clearly smaller than the corresponding width of the original time series.
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4.2. Multifractal Characteristics Spatial Distribution

The spatial distributions of the multifractal characteristics are illustrated in Figure 7. Regarding the
α0 spatial distribution (Figure 7a), the greater values are observed over marine areas, while lower
values (darker color) dominate over land and, therefore, the time series exhibit a less persistent behavior
over the continental areas of the domain. This finding could be attributed to the day-to-day variability
of temperature, which is smaller over marine areas [59,60]. Over land, local weather conditions,
such as katabatic winds, diabatic cooling or heating over ground, and the effect of elevation, lead
to increased temperature variability. On the contrary, the greater heat capacity of seawater and the
atmosphere–ocean interaction result in smaller changes in daily temperature. The same findings
are also recognized in the spatial distribution of the Hurst exponent h(2) (Figure 7e). The spatial
distribution of spectral width (Figure 7b) is very similar to that of α0. This can be attributed to the
effect of complex terrain on local weather conditions, where temperature changes act as ‘noise’ to the
smoother temperature changes caused by synoptic weather systems over land and to the effect of the
sea over marine areas, where temperature changes exhibit a more persistent behavior.

The spatial distribution of the asymmetry parameter (Figure 7c) exhibits lower values over a part
of continental Greece. This could be attributed to the fact that local weather parameters have a ‘noisy’
contribution to the multifractal spectrum, where the existence of low fractal exponents cancels out
the right skewness caused by high fractal exponents. Additionally, the asymmetry parameter has, in
general, higher values over the Aegean Sea than over other marine areas. This could be explained
partially by the persistence of the Etesian winds [61] during summer, which affects accordingly the
temperature field over the Aegean Sea. A similar situation is observed at the spatial distribution of
truncation type (Figure 7d), where areas with lower values of asymmetry parameters appear to have a
symmetrical or right-truncated spectrum.
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5. Discussion

An additional scope of this study is to compare the scaling behavior of the reanalysis
temperature time series with the corresponding findings from observational records from 22 land-based
meteorological stations presented in [49]. The multifractal spectral parameters from the observational
records and those from their nearest reanalysis data grid points are illustrated in Table 1. For the
reader’s convenience, the station names and the corresponding nearest grid points are also given in
Table 1. In all cases, the α0 differences are small (below 10%) and, therefore, the scaling behavior is
virtually the same in both cases. Regarding the spectral width and the asymmetry parameters, greater
differences between the two datasets are observed, which could be attributed mainly to the method
used in deriving the temperature time series.
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Table 1. Spectral parameters’ values of observational (Obs) and ERA-Interim (ERA) time series for the
closest to the station grid points.

Station Nearest Point α0 Spectral Width Asymmetry Parameter

Obs ERA Obs ERA Obs ERA

Alexandroupoli 40.50◦ N, 26.25◦ E 0.685 0.714 0.545 0.600 0.180 0.177
Andravida 38.25◦ N, 21.00◦ E 0.720 0.719 0.664 0.502 0.496 0.291

Elefsina 38.25◦ N, 23.25◦ E 0.708 0.705 0.629 0.441 0.416 0.086
Hellinikon 38.25◦ N, 24.00◦ E 0.719 0.725 0.659 0.532 0.399 0.344
Herakleio 35.25◦ N, 25.50◦ E 0.712 0.744 0.458 0.484 0.375 0.362
Kastoria 40.50◦ N, 21.00◦ E 0.713 0.675 0.479 0.421 0.038 0.252
Kerkira 39.75◦ N, 20.25◦ E 0.712 0.690 0.447 0.442 0.224 0.272
Kithira 36.00◦ N, 23.25◦ E 0.688 0.741 0.388 0.498 0.497 0.384

Kos 36.75◦ N, 27.00◦ E 0.747 0.737 0.511 0.549 0.037 0.270
Lamia 39.00◦ N, 22.50◦ E 0.718 0.689 0.500 0.446 0.478 0.066
Larisa 39.75◦ N, 22.50◦ E 0.684 0.693 0.659 0.466 0.685 0.105

Limnos 39.75◦ N, 25.50◦ E 0.725 0.724 0.566 0.620 0.255 0.218
Methoni 36.75◦ N, 21.75◦ E 0.734 0.737 0.548 0.497 0.396 0.283

Milos 36.75◦ N, 24.75◦ E 0.696 0.744 0.470 0.536 0.214 0.340
Mitilini 39.00◦ N, 26.25◦ E 0.715 0.717 0.532 0.580 0.269 0.259
Naxos 36.75◦ N, 25.50◦ E 0.775 0.744 0.677 0.553 0.305 0.297

Preveza 39.00◦ N, 21.00◦ E 0.720 0.695 0.727 0.426 0.577 0.087
Rodos 36.00◦ N, 27.75◦ E 0.730 0.756 0.437 0.523 0.097 0.161
Skiros 39.00◦ N, 24.75◦ E 0.703 0.731 0.544 0.615 0.409 0.271
Souda 35.25◦ N, 24.00◦ E 0.691 0.745 0.688 0.490 0.287 0.399

Thessaloniki 40.50◦ N, 23.25◦ E 0.717 0.702 0.463 0.521 0.299 0.377
Tripoli 37.50◦ N, 22.50◦ E 0.734 0.701 0.380 0.380 0.317 −0.029

More specifically, α0 values for the observational data are of the order of 0.7, which verifies the
long-range positively correlated behavior of the temperature time series. However, the dependence
of α0 on land–sea distribution, which is evident in the reanalysis data results, is not clearly observed
in the results from observational records. The most persistent behavior for the observational records
is observed at southeastern Greece and parts of coastal western Greece; these two areas have more
stable climatic conditions in Greece [50]. The range of spectrum width values is almost the same
for the observational and reanalysis data, but likewise to α0, the role of land–sea distribution is not
clearly detected. In addition, the behavior of the shuffled observational and reanalysis data is the same,
which means that the multifractality is mainly due to different long-range correlations for different
magnitudes of fluctuations.

Regarding the asymmetry parameter and truncation type spatial distributions, the reanalysis data
findings are in accordance with the observational records results (positive values dominate in the
experimental domain). The close relationship between the asymmetry parameter and truncation type,
though it is not straightforward, is verified by Table 2. In general, left-truncated spectra are related to
higher asymmetry parameter values than right-truncated spectra. In the latter case, the values of the
asymmetry parameter are negative.

Table 2. Range of asymmetry parameter values for each truncation type.

Truncation Type Asymmetry Parameter

LL 0.288–0.450
L 0.033–0.698
S 0.029–0.341
R −0.087–0.016

Another reason for the differences in multifractal spectrum characteristics between the
observational and reanalysis time series is that the area of the study is evenly covered in the case of
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ERA-Interim reanalysis by a grid of 154 points, whereas only 22 weather stations have been used for
the observational data analysis, which are more sparsely and unevenly distributed.

6. Conclusions

The MF-DFA analysis of the ERA-Interim reanalysis temperature data revealed that the time series
are long-range positively correlated. In particular, the spatial distribution of the α0 parameter reveals a
clear influence from the land/sea distribution. Lower α0 values are observed over land, whereas higher
values prevail over marine areas, where temperature exhibits a more persistent behavior. This could be
attributed to the higher seawater heat capacity. Regarding the spectral width, it is observed that higher
values are found over marine areas, whereas lower values dominate over land and, thus, temperature
time series at marine areas exhibit a higher degree of multifractality compared to continental areas.
This finding could be attributed to the greater temperature variations over land. Such behavior is
closer to that of white noise, which has a narrow spectrum [56]. On the other hand, the behavior is
more persistent over sea and, therefore, temperature time series over marine areas appear to have
a greater number of spectral components with higher Hölder exponent values. Moreover, it was
deduced from the shuffled data spectra that the multifractal spectrum width is significantly smaller (of
the order of 0.2) compared to that of the original data. This means that the multifractality is mainly
due to different long-range correlations for different magnitudes of fluctuations. The values of the
asymmetry parameter are positive in almost all areas (right-skewed spectra), which is indicative of the
presence of strongly weighted high fractal exponents [57]. This is also confirmed from the dominance
of left-truncated spectra. Future work will be focused on examining the multifractal characteristics
of additional climatic parameters from experimental and reanalysis datasets for using the results in
applied climatology.
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