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Abstract: Linearizations of the spherical harmonic discrete ordinate method (SHDOM) by means
of a forward and a forward-adjoint approach are presented. Essentially, SHDOM is specialized for
derivative calculations and radiative transfer problems involving the delta-M approximation, the TMS
correction, and the adaptive grid splitting, while practical formulas for computing the derivatives in
the spherical harmonics space are derived. The accuracies and efficiencies of the proposed methods
are analyzed for several test problems.
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1. Introduction

Accurate and efficient modeling of radiative transfer is important for the retrieval of earth
atmospheric constituent information by means of remote sensing. Real clouds are an inhomogeneous
three-dimensional scattering medium. For the new generation of satellite spectrometers with a relative
high spatial resolution (such as Sentinel 5 Precursor, Sentinel 4 and Sentinel 5 [1]), it is important to
account for the sub-pixel cloud inhomogeneities, or at least, to assess their effect on the radiances at the
top of the atmosphere, and in particular, on the trace gas and cloud retrieval results. So far, the majority
of operational retrieval algorithms are based on the one-dimensional (1D) radiative transfer model,
which neglects all horizontal variability of the atmosphere. However, 1D approximation can lead
to the significant errors in the calculated radiances and retrieved parameters [2–6]. In this regard,
three-dimensional (3D) radiative trasnfer models are required.

The SHDOM method developed by Evans is a widely used deterministic method to solve the
3D radiative transfer equation [7]. The radiative transfer equation is solved iteratively by using the
spherical harmonic and the discrete ordinate representations of the radiance field. Each iteration
consists of four steps: (1) the transformation of the source function from spherical harmonics to
discrete ordinates; (2) the integration of the source function along discrete ordinate directions to
compute the radiance field; (3) the transformation of the discrete ordinate radiances to spherical
harmonics; and (4) the calculation of the source function from the radiance in spherical harmonics
space. An important feature of SHDOM is the adaptive grid technique. This technique improves
the solution accuracy by increasing the spatial resolution in regions where the source function is
changing more rapidly. The difference scheme employed in SHDOM is a characteristic scheme. In the
so-called long characteristic method, the integration is performed along the whole characteristic of
the differential operator, while in the short characteristic method, the integration is performed along
a segment of the characteristic located inside a cell. SHDOM has been modfied for use on multiple
processors [8], and to include polarization [9–11].

In atmospheric remote sensing and data assimilation, it is necessary to compute the partial
derivatives of the outgoing radiances with respect to some atmospheric parameters of interest. For this
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purpose, a linearized forward approach, relying on an analytical computation of the derivatives, or a
linearized forward-adjoint approach, relying on the application of the adjoint radiative transfer theory,
can be used. For a plane-parallel geometry, scalar and vector linearized forward approaches were
described in Refs. [12,13], while linearized forward-adjoint approaches were proposed in [14–21].
The forward-adjoint method is extremely efficient because only two radiative transfer calculations are
required for derivatives calculations.

A theoretical framework for three-dimensional remote sensing of the atmosphere with adjoint
methods was described by Martin et al. [22]. In a subsequent paper, Martin and Hasekamp [23] used
the linearized-forward approach to retrieve cloud extinction fields from multi-angle measurements.
Although, the analysis was restricted to two-dimensional problems (a two-dimensional domain
and a set of directions confined to the unit circle and characterized by one angular variable),
the efficiency of adjoint methods for multi-dimensional remote sensing of the atmosphere and surface
was demonstrated.

In this paper, linearizations of SHDOM by using a forward and a forward-adjoint approach are
presented. After formulating the problem in Section 2, we discuss in Section 3 the fundamentals of the
linearized SHDOM with a forward-adjoint approach. The accuracy and efficiency of the linearized
models is analyzed in Section 4, while the final section of our paper contains a few concluding remarks.

2. Problem Formulation

We consider the solar radiative transfer in a rectangular cuboid of lengths Lx, Ly and Lz as shown
in Figure 1. The top and the bottom faces of the prism are denoted by St and Sb, respectively, while the
lateral faces are denoted by S1x (x = 0), S2x (x = Lx), S1y (y = 0), and S2y (y = Ly). The boundary-value
problem for the total radiance at point r in direction Ω consists of the inhomogeneous differential
equation (with the thermal emission term neglected)

dI
ds

(r, Ω) = −σext(r)I(r, Ω) +
σsct(r)

4π

∫
Ω

P(r, Ω, Ω′)I(r, Ω′)dΩ′, (1)

the top-of-atmosphere boundary condition

I(rt, Ω−) =
F0

|µ0|
δ(Ω− −Ω0), rt ∈ St, (2)

and the surface boundary condition

I(rb, Ω+) =
1
π

∫
Ω−

ρ(rb, Ω+, Ω−)
∣∣µ−∣∣ I(rb, Ω−)dΩ−, rb ∈ Sb. (3)

At the horizontal boundaries we assume periodic boundary conditions, i.e.,

I(x = 0, y, z, Ω) = I(x = Lx, y, z, Ω),

I(x, y = 0, z, Ω) = I(x, y = Ly, z, Ω). (4)

Here, σext and σsct = ωσext are the extinction and scattering coefficients, respectively, ω is the
single-scattering albedo, P is the phase function, ρ is the bidirectional surface reflection function,
Ω0 = (µ0, ϕ0) with µ0 < 0, is the solar direction, F0 is the solar flux, Ω+ and Ω− denote an upward
and a downward direction, respectively, Ω is the unit sphere, and Ω+ and Ω− stand for the upper and
lower unit hemispheres, respectively.
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Let us define the forward transport operator L by

(LI) (r, Ω) =
dI
ds

(r, Ω) + σext(r)I(r, Ω)

− σsct(r)
4π

∫
Ω

P(r, Ω, Ω′)I(r, Ω′)dΩ′

− 1
π

δ(z)H(µ)µ
∫

Ω
ρ(r, Ω, Ω′)H(−µ′)|µ′|I(r, Ω′)dΩ′, (5)

and the forward source function Q(r, Ω) by

Q(r, Ω) = F0δ(z− Lz)δ(Ω−Ω0), (6)

where δ is the Dirac delta function and H is the Heaviside step function. It can be shown that if the
radiation field I(r, Ω) solves the inhomogeneous operator equation

(LI) (r, Ω) = Q(r, Ω), (7)

with the boundary conditions (4),

I(rt, Ω−) = 0, rt ∈ St, and I(rb, Ω+) = 0, rb ∈ Sb, (8)

then I(r, Ω) solves the radiative transfer Equation (1) with the boundary conditions (2), (3), and (4).
The converse result is also true.
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Figure 1. Illustration of the radiative transfer problem.

The adjoint transport operator L† is defined through the relation〈
LI, I†〉 = 〈I,L† I†〉, (9)

where the scalar product of the fields I1 and I2 is given by

〈
I1, I2

〉
=
∫

D

∫
Ω

I1(r, Ω)I2(r, Ω)dΩdV (10)
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and D is the domain of the rectangular cuboid. The expression of the adjoint operator, under the
assumptions that (i) I satisfies the boundary conditions (4) and (8), and (ii) I† satisfies the boundary
conditions (4),

I†(rt, Ω+) = 0, rt ∈ St, and I†(rb, Ω−) = 0, rb ∈ Sb, (11)

is given by

(L† I†)(r, Ω) = −dI†

ds
(r, Ω) + σext(r)I†(r, Ω)

− σsct(r)
4π

∫
Ω

P(r, Ω′, Ω)I†(r, Ω′)dΩ′

− 1
π

δ(z)H(−µ)|µ|
∫

Ω
ρ(r, Ω′, Ω)H(µ′)µ′ I†(r, Ω′)dΩ′. (12)

Note that the requirement of homogeneous and periodic boundary conditions for both I and I† is
essential when computing the adjoint of the differential operator d/ds by using the Gauss theorem
over the domain D.

In our analysis we consider a situation which is typical for atmospheric remote sensing.
Atmospheric radiation can be measured e.g., by a spectrometer, which in the following is called
detector. The detector, which measures the radiance at the top of the atmosphere in the direction
Ω0

m = (µ0
m, ϕ0

m), µ0
m > 0, is represented by a point with position vector rD = (xD, yD, zD) and is

characterized by a characteristic function of its field of view χFOV = χFOV(Ωm ·Ω0
m). The signal

measured by the detector, can be written as

I =
∫

Ω
χFOV(Ωm ·Ω0

m)I(rt(Ωm), Ωm)dΩm, (13)

where I(rt(Ωm), Ωm) is the radiance at the top of the atmosphere in direction Ωm. For the characteristic
function χFOV, we consider the representation

χFOV(Θ) =


1

ΩFOV
, 0 ≤ Θ ≤ ΘFOV

0, otherwise

, (14)

where ΘFOV and ΩFOV ≈ πΘ2
FOV are the collecting polar and solid angles of the detector, respectively,

and cos Θ = Ωm ·Ω0
m. Let Stm = Stm(rD, Ω0

m) be the footprint of the detector on the top face St, i.e.,
an ellipse centered at r0

t = (x0
t , y0

t , Lz) with the semi-major and semi-minor axes b = RDΘFOV/µ0
m and

a = RDΘFOV, respectively, where RD = |rD − r0
t |. Using the relation dΩm = (µ0

m/R2
D)dS, where dS is

the surface element on the top face St, we express the measured signal as

I =
∫

St
h(rt)I(rt, Ωm(rt))dSt, (15)

where
Ωm(rt) =

rD − rt

|rD − rt|
= (µm(rt), ϕm(rt)), (16)

is the unit vector along the line connecting the points rt ∈ Stm and rD,

h(rt) =


1

Atm
, rt ∈ Stm

0, otherwise

(17)
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is the characteristic function associated to the detector footprint, and Atm = πab = R2
DΩFOV/µ0

m is
the area of the ellipse.

The radiative transfer in an inhomogeneous three-dimensional medium is usually solved by
a numerical method. Considering a spatial discretization of the domain of analysis, the extinction
coefficient σext(r), the single-scattering albedo ω(r), the Legendre expansion coefficients of the phase
function χn(r) (Appendix A), are specified at every grid point of the so-called base grid and trilinearly
interpolated within each cell. Furthermore, the bidirectional surface reflection function ρ(rb, Ω+, Ω−)

is specified at every grid point on the bottom surface and in all upward and downward discrete
ordinate directions.

3. Linearized SHDOM

In atmospheric remote sensing we are interested in the retrieval of say, Np atmospheric parameters
ξp, p = 1, . . . , Np, which determine the fields σext(r), ω(r), χn(r), and ρ(rb, Ω+, Ω−). The retrieval
requires the knowledge of the weighting functions, i.e., the partial derivatives of the measured radiance
with respect to the atmospheric parameters being retrieved, i.e., ∂I/∂ξp.

3.1. Linearized Forward Approach

The linearized forward approach relies on the analytical differentiation technique and is based on
the fact that the radiance can be regarded as the composition of differentiable functions. By applying
the chain rule repeatedly to these functions, derivatives of arbitrary order can be computed analytically.
After choosing the independent variables with respect to which the derivatives of the radiance are
required, the derivatives of each function are computed recursively, i.e., by repeatedly substituting the
derivatives of the inner function in the chain rule.

The pertinent equations which are differentiated are given in Appendix A. Essentially,
the analytical differentiation technique is applied to all steps of the algorithm including the
transformation of the source function from spherical harmonics to discrete ordinates, the integration
of the source function along discrete ordinate directions, the transformation of the discrete ordinate
radiances to spherical harmonics, the calculation of the source function from the radiance in spherical
harmonics space, the adaptive grid procedure, and the acceleration step. The benefit of this method is
that no assumptions rather than those of the forward model have to be made. The disadvantage is
that not only the radiance and the source function have to be stored at all grid points, but also their
derivatives with respect to the atmospheric parameters of interest. As a result, the amount of required
memory may exceed the size of RAM (several Gbytes).

3.2. Linearized Forward-Adjoint Approach

In view of Equation (15), the measured signal can be written as

I =
〈

Q†, I
〉
, (18)

where

Q†(r, Ω) = F†
0 (rt)δ(z− Lz)δ(Ω−Ωm(r)), (19)

with
F†

0 (rt) = h(rt), (20)

is the adjoint source function. Here,

Ωm(r) =
rD − r
|rD − r| = (µm(r), ϕm(r)) (21)
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is the unit vector along the line joining the points r and rD, and rt = r + sΩm(r) ∈ Stm with s =

(Lz − z)/µm(r) and r = (x, y, z), is the intersection point of this line with the top face St (Figure 1).
Obviously, because the points r, rt, and rD are on the same line, we have Ωm(rt) = Ωm(r), and so,
µm(rt) = µm(r).

The main result of the adjoint radiative transfer theory states that if (i) I solves the forward
problem consisting in the operator equation LI = Q and the boundary conditions (4) and (8), and (ii)
I† solves the adjoint problem consisting in the operator equation L† I† = Q† and the boundary
conditions (4) and (11), then the measured signal I can be estimated either by the scalar product of the
radiance field I (as determined by Q) and the adjoint source function Q†, or by the scalar product of
the adjoint radiance field I† (as determined by Q†) and the forward source function Q, i.e.,

I =
〈

Q†, I
〉
=
〈
L† I†, I

〉
=
〈

I†,LI
〉
=
〈

I†, Q
〉
. (22)

The partial derivative of the measured signal with respect to some atmospheric parameter ξp, can
be computed as

∂I
∂ξp

=
〈

Q†,
∂I

∂ξp

〉
=
〈
L† I†,

∂I
∂ξp

〉
=
〈

I†,L ∂I
∂ξp

〉
, (23)

where in the first step we assumed that ∂Q†/∂ξp = 0, while in the last step we used the fact that
∂I/∂ξp satisfies the boundary conditions (4) and (8). Taking the partial derivative of the operator
equation LI = Q with respect to ξp and assuming ∂Q/∂ξp = 0 gives

∂I
∂ξp

= −
〈

I†,
∂L
∂ξp

I
〉

. (24)

It should be pointed out that in general, the linearized forward-adjoint approach can be used to
compute the weighted integral of the partial derivative of the radiance field ∂I/∂ξp defined by

Dp =
〈

Q†,
∂I

∂ξp

〉
. (25)

In this case, employing the same arguments as in the derivation of Equations (23) and (24), but without
assuming that ∂Q†/∂ξp = 0, we get

Dp = −
〈

I†,
∂L
∂ξp

I
〉

. (26)

Thus, identifying the adjoint source function from Equation (25) and solving the corresponding
adjoint radiative transfer equation L† I† = Q†, we can compute the weighted integral Dp by means of
Equation (26).

The forward and adjoint radiative transfer equations LI = Q and L† I† = Q†, respectively,
are related to each other. Replacing Ω by −Ω in the expression of the adjoint operator L†, gives
L†(−Ω)I†(r,−Ω) = Q†(r,−Ω). Defining the pseudo-forward field Î † by the relation Î †(r, Ω) =

I†(r,−Ω) and using the symmetry properties of the phase function P(r,−Ω,−Ω′) = P(r, Ω′, Ω)

and of the normalized reflection function ρ(rb,−Ω,−Ω′) = ρ(rb, Ω′, Ω), we find the identity
L†(−Ω)I†(r,−Ω) = L(Ω) Î †(r, Ω). Thus, the pseudo-forward field Î † solves the same type of
radiative transfer equation as the radiance field I, i.e., L Î † = Q̂ †, where the pseudo-forward source
function, defined by Q̂ †(r, Ω) = Q†(r,−Ω), is

Q̂ †(r, Ω) = F̂ †
0 (rt)δ(z− Lz)δ(Ω− Ω̂m(r)), (27)

with Ω̂m(r) = −Ωm(r), µ̂m(r) = −µm(r), and

F̂ †
0 (rt) = F†

0 (rt) = h(rt). (28)
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In other words, Î †(r, Ω) solves the inhomogeneous differential equation

d Î †

ds
(r, Ω) = −σext(r) Î †(r, Ω) +

σsct(r)
4π

∫
Ω

P(r, Ω, Ω′) Î †(r, Ω′)dΩ′ (29)

with the top-of-atmosphere boundary condition

Î †(rt, Ω−) =
F̂ †

0 (rt)

|µ̂m(rt)|
δ(Ω− − Ω̂m(rt)), rt ∈ St, (30)

and the surface boundary condition

Î †(rb, Ω+) =
1
π

∫
Ω−

ρ(rb, Ω+, Ω−)
∣∣µ−∣∣ Î †(rb, Ω−)dΩ−, rb ∈ Sb. (31)

We are now concern with the computation of the partial derivative ∂I/∂ξp by means of
Equation (24). Taking the variation of the forward transport operator L under the assumption that the
phase function does not depend on the atmospheric parameter ξp, yields (cf. Equation (5))

(δLI)(r, Ω) = δσext(r)I(r, Ω)

− δσext(r)
ω(r)
4π

∫
Ω

P(r, Ω, Ω′)I(r, Ω′)dΩ′

− σext(r)
δω(r)

4π

∫
Ω

P(r, Ω, Ω′)I(r, Ω′)dΩ′

− 1
π

δ(z)H(µ)µ
∫

Ω
δρ(r, Ω, Ω′)H(−µ′)|µ′|I(r, Ω′)dΩ′. (32)

In this section we describe the computation of the partial derivative of the measured signal with respect
to a parameter that determine the extinction field; the partial derivatives with respect to parameters that
specify the single-scattering albedo and the bidirectional reflection function are given in Appendix B.

To compute the partial derivatives of the forward operator we need to find appropriate
interpolation schemes for the extinction coefficient, source function, and radiance field within a grid
cell. A major problem arises from the fact that SHDOM uses the integral form of the radiative transfer
equation for radiance calculation, and in particular, the assumption that the extinction/source function
product varies linearly along the characteristic. Unfortunately, when dealing with the differential form
of the radiative transfer equation, this assumption can not be met; instead, we may assume that the
extinction/source function product varies linearly within a cell. Thus, different interpolation schemes
are used for radiance and derivative calculations.
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Figure 2. Rectangular cuboid element with lengths 2lx, 2ly, and 2lz. C is the center point of the cell,
and j = 1, . . . , 8 is the local index of a grid point.
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In the following, we assume that the partial derivatives ∂σext(ri)/∂ξp at all grid points ri are
known. Let c be the global index of a cell containing a grid point with global index j, and let j be the local

index of this point within cell c (Figure 2); we define the map g as (j, c)
g−→ j, or equivalently, j = g(j, c).

For r ∈ Dc, where Dc is the domain of cell c, we assume that the extinction and extinction/source
function product vary linearly within the cell, i.e.,

σext(r) = ∑
i

Li(R)σext(rg(i,c)) (33)

and
σext(r)J(r, Ω) = ∑

i

Li(R)σext(rg(i,c))J(rg(i,c), Ω), (34)

respectively. Here,

J(r, Ω) =
ω(r)
4π

∫
Ω

P(r, Ω, Ω′)I(r, Ω′)dΩ′ (35)

is the source function, Li are the first-order interpolation basis functions for a rectangular cuboid
element (Appendix C), R = r− ρc is the position vector of a point in a local coordinate system attached
to cell c, ρc = (1/8)∑i rg(i,c) is the position vector of the center point of cell c, rg(i,c) = ri is the position

vector of the grid point with global index i = g(i, c), and the sum ∑i is taken over all grid points of a
cell. Setting σextg(i,c) = σext(rg(i,c)), we obtain

( ∂L
∂ξp

I
)
(r, Ω) = ∑

i

Li(R)[I(r, Ω)− J(rg(i,c), Ω)]
∂σextg(i,c)

∂ξp
, (36)

implying

∂I
∂ξp

= −∑
c

∑
i

∫
Ω

∫
Dc

Li(R) Î †(r,−Ω)[I(r, Ω)− J(rg(i,c), Ω)]
∂σextg(i,c)

∂ξp
dVdΩ. (37)

In the next step, we split the total radiance I(r, Ω) into the diffuse and direct radiances, i.e.,

I(r, Ω) = Id(r, Ω) + δ(Ω−Ω0)T0(r), (38)

where
T0(r) =

F0

|µ0|
e−τext(r,r0|Ω0) (39)

is the transmission along the solar direction Ω0 from the starting point r0 = r− sΩ0 ∈ St to the end
point r (the forward direct beam), and

τext(r, r0|Ω0) =
∫ s

0
σext(r0 + s′Ω0)ds′ (40)

is the optical depth. Similarly, we split the pseudo-forward radiance Î †(r, Ω) into its diffuse and direct
components, i.e.,

Î †(r, Ω) = Î †
d (r, Ω) + δ(Ω− Ω̂m(r))T̂ †

m(r), (41)

where

T̂ †
m(r) =

F̂ †
0 (rt)

|µ̂m(rt)|
e−τext(r,rt|Ω̂m(r)), (42)
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is the transmission along the detector direction Ω̂m(r) from the starting point rt = r− sΩ̂m(r) ∈ Stm

to the end point r (the pseudo-forward direct beam). Approximating

Ωm(r) = −Ω̂m(r) ≈ Ωm(ρc) := Ωmc, r ∈ Dc, (43)

we are led to the following representation for ∂I/∂ξp in terms of diffuse radiances:

∂I
∂ξp

= TA + TB + TC + TD + TE, (44)

where

TA = −∑
c

∑
i

∫
Ω

∫
Dc

Li(R) Î †
d (r,−Ω)Id(r, Ω)

∂σextg(i,c)

∂ξp
dVdΩ, (45)

TB = ∑
c

∑
i

∫
Ω

∫
Dc

Li(R) Î †
d (r,−Ω)J(rg(i,c), Ω)

∂σextg(i,c)

∂ξp
dVdΩ, (46)

and

TC = −∑
c

∑
i

∫
Dc

Li(R) Î †
d (r,−Ω0)T0(r)

∂σextg(i,c)

∂ξp
dV, (47)

TD = −∑
c

∑
i

∫
Dc

Li(R)T̂ †
m(r)Id(r, Ωmc)

∂σextg(i,c)

∂ξp
dV, (48)

TE = ∑
c

∑
i

∫
Dc

Li(R)T̂ †
m(r)J(rg(i,c), Ωmc)

∂σextg(i,c)

∂ξp
dV. (49)

The above integrals are computed in the spherical harmonics space by assuming the expansions

Id(r, Ω) = ∑
mn

Imn(r)Ymn(Ω), (50)

Î †
d (r, Ω) = ∑

mn
Î †
mn(r)Ymn(Ω), (51)

J(r, Ω) = ∑
mn

Jmn(r)Ymn(Ω), (52)

where Ymn(Ω) are the orthonormal real-valued spherical harmonic functions (Appendix A), and the
sum ∑mn should be understood as

∑
mn

=
M

∑
m=−M

N

∑
n=|m|

,

with N and M being the maximum expansion order and number of azimuthal modes, respectively.
The linear approximation

f (r) = ∑
j

Lj(R) f (rg(j,c)) = ∑
j

Lj(R) fg(j,c), (53)
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where f (r) stands for Imn(r), Î †
mn(r), T0(r), and T̂ †

m(r), together with the identity Ymn(−Ω) =

(−1)nYmn(Ω), then yield

TA = −∑
c

∑
mn

(−1)n ∑
i,j,k

Î †
mn,g(j,c) Imn,g(k,c)

∂σextg(i,c)

∂ξp
Li,j,k, (54)

TB = ∑
c

∑
mn

(−1)n ∑
i,j

Î †
mn,g(j,c) Jmn,g(i,c)

∂σextg(i,c)

∂ξp
Li,j, (55)

and

TC = −∑
c

∑
i,j,k

Î †
d (rg(j,c),−Ω0)T0g(k,c)

∂σextg(i,c)

∂ξp
Li,j,k, (56)

TD = −∑
c

∑
i,j,k

Id(rg(j,c), Ωmc)T̂ †
mg(k,c)

∂σextg(i,c)

∂ξp
Li,j,k, (57)

TE = ∑
c

∑
mn

Ymn(Ωmc)∑
i,j

T̂ †
mg(j,c) Jmn,g(i,c)

∂σextg(i,c)

∂ξp
Li,j. (58)

Here, the interpolations coefficients Li,j,k and Li,j are given, respectively, by

Li,j,k =
∫

Dc
Li(R)Lj(R)Lk(R)dV, (59)

Li,j =
∫

Dc
Li(R)Lj(R)dV, (60)

while for i = g(i, c) and ωi = ω(ri), the expansion coefficients of the source function in Equations (55)
and (58) are computed as

Jmn,i = ωi
χn,i

2n + 1
Imn,i + ωi

χn,i

2n + 1
Ymn(Ω0)T0i, (61)

where χn,i = χn(ri) are the Legendre expansion coefficients of the phase function (Appendix A), i.e.,

P(r, Ω, Ω′) = 4π ∑
mn

χn(r)
2n + 1

Ymn(Ω)Ymn(Ω
′). (62)

Further comments and algorithm details are given below:

1. The input parameters of the numerical algorithm are the partial derivatives ∂σext(ri)/∂ξp and
∂ω(ri)/∂ξp at all grid points ri, and eventually, the partial derivatives ∂ρ(rbi, Ω+

ij , Ω−pq)/∂ξp at
all grid points on the bottom surface rbi and in all upward and downward discrete ordinate
directions Ω+

ij and Ω−pq, respectively.
2. The interpolation coefficients Li,j,k and Li,j are computed analytically in a local coordinate system

attached to the grid cell.
3. The radiances Î†

d(rg(j,c),−Ω0) and Id(rg(j,c), Ωmc) in the expressions of TC and TD, respectively,
are computed by the source integration method.

4. For solar problems with the delta-M method [24], the radiative transfer equation is expressed in
terms of the scaled quantities

σext = (1− f ω)σext, ω =
1− f

1− f ω
ω, (63)
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where f is the truncation fraction. At each grid point, we switch from the partial derivatives
∂σext/∂ξp and ∂ω/∂ξp to ∂σext/∂ξp and ∂ω/∂ξp, respectively, whereby the latter two are
computed from Equation (63) by using the chain rule.

5. The partial derivatives of the signal correction in the TMS method of Nakajima and Tanaka [25]
are computed analytically (Appendix A).

6. During the adaptive grid procedure, a base grid cell, also called a “parent cell”, is split into “child
cells” to achieve higher spatial resolution. In this regard, the sums in Equations (54)–(58) are
taken over all child cells.

7. According to the main result of the adjoint radiative transfer theory, the measured signal can be
computed by using Equation (15) or (22); in the latter case, the computational formula is

I = F0

∫
St

Î †
d (xt, yt, Lz,−Ω0)dSt. (64)

8. The code uses two alternative interpolation schemes for the source function: a linear variation of
the extinction/source function product within a cell, i.e., Equation (34), and a linear variation of
the source function within a cell, i.e.,

J(r, Ω) = ∑
i

Li(R)J(rg(i,c), Ω), (65)

for r ∈ Dc. In the second case, the terms TB and TE are computed, respectively, as

TB = ∑
c

∑
mn

(−1)n ∑
i,j,k

Î †
mn,g(j,c) Jmn,g(k,c)

∂σextg(i,c)

∂ξp
Li,j,k, (66)

TE = ∑
c

∑
mn

Ymn(Ωmc) ∑
i,j,k

T̂ †
mg(j,c) Jmn,g(k,c)

∂σextg(i,c)

∂ξp
Li,j,k. (67)

9. In the case of satellite remote sensing we may assume that (i) the distance from the top of the
atmosphere to the detector RD is sufficiently large, so that we can approximate I(r, Ωm(r)) ≈
I(r, Ω0

m), and (ii) the footprint of the detector is a rectangle of lengths 2a and 2b centered at r0
t .

The second assumption is made because the domain is discretized in rectangular cuboid elements.
In this context, the measured signal is computed as

I =
1

4ab

∫
St

h(xt, yt)I(xt, yt, Lz, Ω0
m)dSt, (68)

where the normalized characteristic function h(xt, yt) takes the value 1 inside the footprint of the
detector and 0 otherwise.

10. The solution of the adjoint problem is a challenging task due to the spatial discontinuity of the
pseudo-forward direct beam. In SHDOM, this type of problem is handled by the adaptive grid
procedure. Essentially, the adaptive grid supplies extra spatial resolution along the boundaries of
the pseudo-forward direct beam, so that there are not large discontinuities in the grid. In order
to reduce the number of adaptive grid cells, the step characteristic function of the detector can
be replaced by a smooth function, e.g., trapezoidal, Gaussian, cosine [23]. In the first case,
the normalized characteristic function reads as

h(xt, yt) =


h0(xt, ∆hx)h0(yt, ∆hy), (xt, yt) ∈ Stm

0, otherwise
, (69)
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where, for example, h0(xt, ∆hx) is given by

h0(xt, ∆hx) = cx ×



xt − x0
t min

∆hx
, x0

t min ≤ xt < x0
t min + ∆hx

1, x0
t min + ∆hx ≤ xt ≤ x0

t max − ∆hx

x0
t max − xt

∆hx
, x0

t max − ∆hx < xt ≤ x0
t max

(70)

with cx = 2a/(2a− ∆hx), x0
t min = x0

t − a, and x0
t max = x0

t + a.
11. In the linearized forward-adjoint approach, the forward and adjoint problems are solved

successively on the same grid; in this way, the interpolation between different grids is avoided.
Actually, in the first step, the adjoint problem is solved by using the adaptive grid procedure with
a prescribed splitting accuracy εsplit (Appendix A), and in the second step, the forward problem
is solved on the resulting grid without splitting. In the linearized forward approach, the forward
problem is solved first by using the adaptive grid procedure, and then, the partial derivatives are
computed on the same grid; in this way, a less amount of memory for storing the derivatives of
the radiance and the source function with respect to the atmospheric parameters of interest is
required.

4. Numerical Simulations

In this section we analyze the accuracy and efficiency of the linearized versions of SHDOM.

4.1. Example 1

We consider a base grid with Nx = Ny = 20 and Nz = 11 points, and the discretization steps
∆x = ∆y = ∆z = 0.1 km. For periodic boundary conditions, when the vertical boundaries in x
and y have additional planes of grid points that duplicate the grid points in the planes x = 0 and
y = 0, respectively, the domain of analysis has the sizes Lx = Nx∆x = 2 km, Ly = Ny∆y = 2 km,
and Lz = (Nz − 1)∆z = 1 km. The extinction field is Gaussian, i.e.,

σext(x, y, z) = σmax
ext f (x, y, z), (71)

f (x, y, z) = fG(x, x0, sx) fG(y, y0, sy) fG(z, z0, sz), (72)

fG(u, u0, su) = exp
[
− (u− u0)

2

2s2
u

]
, u = x, y, z, (73)

with x0 = Lx/2, y0 = Ly/2, z0 = Lz/2, sx = Lx/4, sy = Ly/4, and sz = Lz/4. The parameters σmax
ext

is 6 km−1, in which case, the peak optical depth is 3.6. The extinction field in the plane y = Ly/2
is illustrated in Figure 3. The number of discrete zenith and azimuthal angles are Nµ = 16 and
Nϕ = 2Nµ, respectively, the single-scattering albedo is ω = 0.9, and a Henyey–Greenstein phase
function [26] with the asymmetry parameter g = 0.8 is considered. In all our simulations, the solar
zenith angle is θ0 = 120◦, and a Lambertian reflecting surface with the surface albedo A = 0.2 is
chosen. The coordinates of the center of the detector footprint are x0

t = Lx/2, y0
t = Ly/2, and z0

t = Lz,
the detector azimuthal angle is ϕ0

m = 0◦, the lengths of the rectangular footprint are a = 5∆x,
and b = [a/(∆yµ0

m)]∆y, where [x] is the integer part of x, and the lengths specifying the slope of the
characteristic function in Equation (70) are ∆hx = 0.5∆x and ∆hy = 0.5∆y.
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Figure 3. Extinction field in the plane y = Ly/2.

In the following, we compute the partial derivatives of the measured signal with respect to the
extinction coefficients σextp at Np = 11 base grid points (x = x0

t , y = y0
t , z = p∆z), p = 1, ..., Np.

Obviously, if p is the global index of the grid point with the local index p in the derivative list, we have

∂σexti
∂σextp

= δip,
∂ωi

∂σextp
= 0. (74)

First, we compare the accuracies of the measured signal and of its derivatives. The accuracy of SHDOM
radiances is determined by the angular and spatial resolution, i.e., the number of discrete ordinates
in zenith angle Nµ and, for a specified base grid, the splitting accuracy εsplit. In Figure 4, we plot
the partial derivatives computed with the linearized forward-adjoint approach and the linearized
approach for different values of the splitting accuracy εsplit. Note that the influence of Nµ on the results
accuracy is rather low. Taking the values corresponding to ε0

split = 5× 10−4 as a reference, we illustrate
in Table 1, the relative error in the partial derivatives, expressed as an rms difference normalized by
the mean of the quantity over the Np comparison points, i.e.,

ε∂I =

√
∑p

[( ∂I
∂σextp

)
εsplit
−
( ∂I

∂σextp

)
ε0

split

]2

√
∑p

( ∂I
∂σextp

)2

ε0
split

, (75)

and the relative error in the measured signal, i.e.,

εI = |Iεsplit − Iε0
split
|/Iε0

split
. (76)

The results show that for the same εsplit,

1. the accuracy of the measured signal is higher than that of its derivatives, and
2. the accuracy of the linearized forward-adjoint approach is higher than that of the linearized

forward approach.

However, in the next calculations, to avoid a large CPU time and computer memory, we take
εsplit = 10−3. For this splitting accuracy, we show in Figure 5, the adaptive grids in the plane y = Ly/2.
From these plots we infer that
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1. for the linearized forward-adjoint approach, the number of adaptive grid cells is higher in the
domain “seen” by the detector along the direction θ0

m and in particular, along the boundaries of
the pseudo-forward direct beam,

2. for the linearized forward approach, the number of adaptive grid cells is higher in the entire
domain along the solar direction θ0 = 120◦ and when large discontinuities in the source function
are present, and

3. in general, the number of adaptive grid cells for the linearized forward approach is grater than
that for the linearized forward-adjoint approach.
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Figure 4. Partial derivatives ∂I/∂σextp at the base grid points (x = x0
t , y = y0

t , z = p∆z), p = 1, ..., 11,
computed with the linearized forward-adjoint approach (upper panel) and the linearized forward
approach (lower panel) for different values of the splitting accuracy εsplit. The detector zenith angle is
θ0

m = 0◦, and the solar azimuthal angle is ϕ0 = 0◦.
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Table 1. Relative errors ε∂I and εI for different values of the splitting accuracy εsplit. The results
correspond to the linearized forward-adjoint approach (FAA) and the linearized forward approach (FA).

εsplit
FAA FA

ε∂I εI ε∂I εI

8× 10−4 1.06× 10−2 1.16× 10−4 3.00× 10−2 8.70× 10−5

1× 10−3 1.42× 10−2 1.49× 10−4 3.83× 10−2 2.07× 10−4

3× 10−3 4.22× 10−2 8.36× 10−4 6.62× 10−2 7.05× 10−4

5× 10−3 5.58× 10−2 1.04× 10−3 7.75× 10−2 1.42× 10−3

Figure 5. Adaptive grids in the plane y = Ly/2 corresponding to the linearized forward-adjoint
approach with θ0

m = 0◦ (upper panel) and θ0
m = 45◦ (middle panel), and the linearized forward

approach (lower panel). The solar azimuthal angle is ϕ0 = 0◦. The horizontal axis is the x-axis, while
the vertical axis is the z-axis.

In Figure 6 we plot the partial derivatives ∂I/∂σextp for different values of the detector zenith
angle θ0

m. The results are computed with the linearized forward-adjoint approach (FAA), the linearized
forward approach (FA), and the finite-difference approach (FDA). In the latter case, a centered finite
difference scheme is used for derivative calculations. The partial derivatives ∂I/∂σextp at Np = 19
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base grid points (x = p∆x, y = y0
t , z = Lz/2), p = 1, ..., Np, for different values of the solar azimuthal

angle ϕ0 are plotted in Figure 7. Taking the values computed by the finite-difference approach as a
reference, we illustrate in Table 2 the corresponding relative errors in the partial derivatives, defined,
for example, in the case of the linearized forward-adjoint approach as

εFAA
∂I =

√
∑p

[( ∂I
∂σextp

)
FAA
−
( ∂I

∂σextp

)
FDA

]2

√
∑p

( ∂I
∂σextp

)2

FDA

. (77)

The relative errors corresponding to the linearized forward-adjoint approach are smaller than
2.5× 10−2, while the relative errors corresponding to the linearized forward approach are smaller
than 4.3× 10−3. The relative large errors of the linearized forward-adjoint approach can be explained
as follows.

1. As it can be inferred from Figure 5, the linearized forward-adjoint approach uses a rougher
discretization grid (depending on the detector zenith angle θ0

m) as compared to the forward and
finite-difference approaches (which use the same grid).

2. In the linearized forward-adjoint approach, the extinction/source function product is assumed
to vary linearly within the cell, while in the forward and finite-difference approaches,
the extinction/source function product is assumed to vary linearly along the characteristic.
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Figure 6. Partial derivatives ∂I/∂σextp at the base grid points (x = x0
t , y = y0

t , z = p∆z), p = 1, ..., 11,
for different values of the detector zenith angle θ0

m. The results correspond to the solar azimuthal angle
ϕ0 = 0◦ and are computed with the linearized forward-adjoint approach (FAA), the linearized forward
approach (FA), and the finite-difference approach (FDA).
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Figure 7. Partial derivatives ∂I/∂σextp at the base grid points (x = p∆x, y = y0
t , z = Lz/2), p = 1, ..., 19,

for different values of the solar azimuthal angle ϕ0. The results correspond to the detector zenith
angle θ0

m = 45◦ and are computed with the linearized forward-adjoint approach (FAA), the linearized
forward approach (FA), and the finite-difference approach (FDA).

Table 2. The first part of the table shows the relative errors ε∂I in the partial derivatives ∂I/∂σextp

at the base grid points (x = x0
t , y = y0

t , z = p∆z), p = 1, ..., 11, for different values of the detector
zenith angle θ0

m, while the second part shows the relative errors ε∂I in the partial derivatives ∂I/∂σextp

at the base grid points (x = p∆x, y = y0
t , z = Lz/2), p = 1, ..., 19, for different values of the solar

azimuthal angle ϕ0. The results are computed with the linearized forward-adjoint approach (FAA) and
the linearized forward approach (FA).

θ0
m ϕ0

ε∂I

FAA FA

0◦ 0◦ 2.50× 10−2 4.02× 10−3

15◦ 0◦ 2.23× 10−2 4.28× 10−3

30◦ 0◦ 2.42× 10−2 3.22× 10−3

45◦ 0◦ 2.05× 10−2 1.29× 10−3

45◦ 0◦ 7.35× 10−3 9.74× 10−4

45◦ 30◦ 1.64× 10−2 6.52× 10−4

45◦ 60◦ 1.56× 10−2 3.97× 10−4

45◦ 90◦ 1.21× 10−2 3.10× 10−3

4.2. Example 2

In the second example we consider in addition to the scattering and absorption by a cloud,
molecular Rayleigh scattering, and the absorption by NO2 at the wavelength λ = 443 nm.
The difference to the previous geometry is that now we consider a base grid with Nz = 16 points along
the z axis, implying that the height of the domain of analysis is Lz = (Nz − 1)∆z = 1.5 km. The cloud
extinction field is given by Equations (71)–(73), while the cloud single-scattering albedo and the phase
function are computed by Mie theory [27] for a water-cloud model with a Gamma size distribution

P (a) ∝ aα exp
[
−α

(
a

amod

)]
(78)
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of parameters aeff = 10 µm, amod = 2aeff/3, and α = 6. Here, a is the particle radius, and the droplet
size ranges between 0.02 and 50.0 µm. The computed value for the cloud single-scattering albedo is
ωcld = 0.865, the Rayleigh cross-section and depolarization ratios are calculated as in [28], while the
pressure and temperature profiles correspond to the US standard model atmosphere [29]. The number
density and absorption cross section profiles for NO2, n(z) and Cabs(z), respectively, are shown in
Figure 8, and the absorption coefficient is calculated as σabs(z) = n(z)Cabs(z). The peak optical depth
is 5.4.

In the following, we compute the partial derivative of the measured signal with respect to
maximum value of the extinction field σmax

ext in Equation (71); in this case, we approximate P ≈ Pcld
and use

∂σexti
∂σmax

ext
= f (xi, yi, zi) and

∂ωi
∂σmax

ext
=

ωcld −ωi
σexti

∂σexti
∂σmax

ext
. (79)

We also compute the partial derivative of the measured signal with respect to the total column of
NO2, X = (kBT0/p0)

∫ Lz
0 n(z)dz, where kB is the Boltzmann constant, and p0 and T0 are the standard

pressure and temperature. Assuming that the number density profile for NO2 is the a priori profile
na(z) scaled by a constant, i.e., n(z) = αna(z), where α is the scaling factor, we get

∂σexti
∂X

=
1

Xa
σabs(zi) and

∂ωi
∂X

= − ωi
σexti

∂σexti
∂X

, (80)

implying ∂σscti/∂X = 0.
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Figure 8. Number density (left) and absorption cross section (right) profiles for NO2.

In Tables 3 and 4, we illustrate the partial derivatives ∂I/∂σmax
ext and ∂I/∂X, and the

corresponding relative errors using the values computed by the finite-difference approach as a
reference. Also shown are the relative errors of the measured signal computed by Equation (22)
(or, equivalently, by Equation (64)) with respect to the measured signal computed by Equation (15).
In these simulations, the number of discrete zenith angles is Nµ = 20, and the splitting accuracy is
εsplit = 3× 10−3. The relative errors corresponding to the linearized forward-adjoint approach are now
smaller than 2.3× 10−2, while the relative errors corresponding to the linearized forward approach are
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smaller than 3.8× 10−3. It should be pointed out that the small errors in the measured signal certify
that the adjoint problem is correctly solved.

Table 3. Partial derivative ∂I/∂σmax
ext , and the relative errors εI and ε∂I for different values of the

detector zenith angle θ0
m. The results correspond to the solar azimuthal angle ϕ0 = 0◦ and are computed

with the linearized forward-adjoint approach (FAA) and the linearized forward approach (FA).

θ0
m ∂I /∂σmax

ext εI
ε∂I

FAA FA

0◦ 5.776× 10−4 4.20× 10−4 3.46× 10−3 2.03× 10−3

15◦ 1.439× 10−3 5.53× 10−4 4.86× 10−3 2.76× 10−4

30◦ 2.930× 10−3 2.30× 10−5 3.40× 10−3 2.53× 10−4

45◦ 5.499× 10−3 8.19× 10−5 1.81× 10−3 1.52× 10−4

Table 4. Partial derivative ∂I/∂X, and the relative errors εI and ε∂I for different values of the detector
zenith angle θ0

m. The results correspond to the solar azimuthal angle ϕ0 = 0◦ and are computed with
the linearized forward-adjoint approach (FAA) and the linearized forward approach (FA).

θ0
m ∂I /∂X εI

ε∂I

FAA FA

0◦ −1.184× 10−3 4.20× 10−4 1.65× 10−2 3.42× 10−3

15◦ −1.284× 10−3 5.53× 10−4 2.27× 10−2 3.70× 10−3

30◦ −1.428× 10−3 2.30× 10−5 2.26× 10−2 2.82× 10−3

45◦ −2.529× 10−3 8.19× 10−5 2.20× 10−2 3.06× 10−3

In Table 5 we compare the computational efficiency of all linearization methods. Note that the
code is parallelized with the OpenMP interface. The simulations are performed on a server Intel(R)
Xeon(R) CPU E5-2695 v3 @ 2.30 GHz with 56 cores, while the CPU times are given for the parallelized
implementation. Clearly, the most efficient method is the linearized forward-adjoint approach, while
the most time-consuming method is the finite-difference approach.

Finally, in Table 6, we show the numbers of adaptive cells and grid points for the test problems
considered in this study. Because in the linearized forward-adjoint approach, the numbers of cells and
points are smaller than in the linearized forward approach, we infer that the first method is not only
faster but also less memory demanding than the second one.

Table 5. CPU time in min:sec for the test problems considered in this study and corresponding
to the linearized forward-adjoint approach (FAA), the linearized forward approach (FA), and the
finite-difference approach (FDA). The detector zenith angle is θ0

m = 45◦ and the solar azimuthal angle
is ϕ0 = 0◦.

Partial Derivatives FAA FA FDA

∂I/∂σextp (Figure 6) 1:16 27:12 138:19
∂I/∂σextp (Figure 7) 1:47 32:34 153:26

∂I/∂σmax
ext 0:32 2:21 2:24

∂I/∂X 0:31 2:20 2:20
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Table 6. The first part of the table shows the number of adaptive cells Ncells and the final number of
grid points Npoints for computing the derivatives ∂I/∂σextp with the splitting accuracy εsplit = 10−3,
while the second part of the table shows Ncells and Npoints for computing the derivatives ∂I/∂σmax

ext
and ∂I/∂X with the splitting accuracy εsplit = 3× 10−3. The results correspond to the linearized
forward-adjoint approach (FAA) and the linearized forward approach (FA).

εsplit θ0
m

FAA FA

Ncells Npoints Ncells Npoints

10−3 0◦ 66, 652 40, 727 293, 492 162, 279
10−3 15◦ 81, 174 50, 381 293, 492 162, 279
10−3 30◦ 95, 152 59, 595 293, 492 162, 279
10−3 45◦ 115, 186 73, 332 293, 492 162, 279

3× 10−3 0◦ 17, 804 13, 196 54, 164 33, 576
3× 10−3 15◦ 20, 094 14, 942 54, 164 33, 576
3× 10−3 30◦ 22, 674 16, 989 54, 164 33, 576
3× 10−3 45◦ 25, 806 19, 607 54, 164 33, 576

5. Conclusions

Two linearization methods for SHDOM have been discussed. The first method is an analytical
linearization approach, while the second method is based on the adjoint radiative transfer theory.
In the latter case, practical formulas for computing the derivatives of the measured signal in the
spherical harmonics space have been derived. Essentially, SHDOM has been specialized for derivative
calculations and radiative transfer problems involving the delta-M approximation, the TMS correction,
and the adaptive grid splitting.

Our numerical analysis leads to the following conclusions.

1. The linearized SHDOM with analytical derivatives is an accurate approach. However, the method
is time-consuming and demands a large computer memory. The reason is that not only the source
function has to be stored as a spherical harmonic series at each grid point, but also its derivatives
with respect to the atmospheric parameters of interest.

2. The linearized SHDOM with a forward-adjoint approach requires less storage for derivatives
calculation, are much faster, but relatively less accurate. The main reason for this lower accuracy
is that different interpolation schemes are used for radiance and derivative calculations.

According to our numerical analysis, the relative errors of the linearized forward-adjoint approach
are smaller than 2.5%. In this regard, it should be pointed out that in the framework of the
Gauss-Newton method, errors of about 2–3% in the Jacobian do not play a significant role. The effect is
somehow similar to the computation of the root of an equation by the secant method instead of the
Newton method. However, if the errors in the Jacobian are important for the retrieval, the regularized
total least squares, which accounts on the errors in both the Jacobian and the data, can be used.

In our analysis, we considered the case of a fixed detector position rD and a single-angle
measurement Ω0

m. For multi-angle measurements and eventually, several detector positions, the
solution of several adjoint problems (corresponding to each pair (rD, Ω0

m)) can be avoided by
employing the approach proposed in Ref. [23]. The main ideas of this approach, which can be
applied for multi-dimensional remote sensing of cloud extinction fields from airborne radiometer
measurements, are discussed in Appendix D. However, it should be pointed out that the computational
cost for the retrieval of 3D extinction fields is extremely high. A reduction of the computation time
can be achieved if a two-dimensional geometry (a constant extinction field along the y-axis, and a
set of directions on the unit sphere) is considered. In this case, the application of the forward-adjoint
approach requires that both the solar and detector azimuthal angles are zero (the solar and detector
directions are in the xz-plane).

Potential application of the linearized SHDOM include the following.
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1. Retrieval of cloud model parameters. For broken clouds [30], the indicator function f (x, y, z) in
Equation (71) takes the values 1 inside the cloud and 0 inside the clear sky region. As in [31],
the extinction field can be parametrized in terms of σmax

ext (cf. Equation (71)), the cloud top height
ht, and the cloud bottom height hb. The cloud optical thickness and the cloud geometrical
parameters can be retrieved in the oxygen A-band by using the correlated k-distribution method
for the broadband integration of the gaseous line absorption. Note that SHDOM is able to
compute monochromatic and broadband radiative transfer (with a k distribution).

2. Trace gas retrievals under cloudy conditions. The retrieval of total column of trace gases, e.g., O3,
NO2, etc., can be performed by means of the differential optical absorption spectroscopy (DOAS)
technique [32]. This approach requires the knowledge of the air mass factor (AMF), i.e., the partial
derivative of the measured signal with respect to the total column of the trace gas at a specific
wavelength. The main goal of the analysis is the computation of the air mass factor when clouds
are outside the footprint of the instrument (effect of horizontal cloud edges on AMF calculation).
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Appendix A

In this appendix we summarize the SHDOM algorithm in order to emphasize the main equations
which are differentiated in the framework of the linearized forward approach.

SHDOM uses both spherical harmonics and discrete ordinates to represent the radiance field
during different parts of the solution algorithm. The spherical harmonics are employed for computing
the source function including the scattering integral, while the discrete ordinates are used to integrate
the radiative transfer equation spatially.

The set of discrete ordinates are a reduced Gaussian grid. There are Nµ Gaussian quadrature
cosine zenith angles, µj, and Nϕ evenly spaced azimuth angles, ϕk. The discrete ordinate set is
reduced by having fewer azimuth angles at larger |µ|j; thus, Nϕ depends on j. The corresponding
Gauss-Legendre quadrature weights and azimuthal integration weights (normalized appropriately)
are wµj and wϕjk, respectively.

The orthonormal real-value spherical harmonics are defined by

Ymn(µ, ϕ) = P|m|n (µ)um(ϕ), (A1)

where P|m|n (µ) are the normalized associated Legendre functions, and

um(ϕ) =



(1/
√

π) cos(|m|ϕ)

(1/
√

2π)

(1/
√

π) sin(|m|ϕ)

m > 0

m = 0

m < 0

(A2)

are the Fourier harmonics. The source function

J(r, Ω) =
ω(r)
4π

∫
Ω

P(r, Ω, Ω′)[Id(r, Ω′) + δ(Ω′ −Ω0)T0(r)]dΩ′, (A3)

T0(r) =
F0

|µ0|
e−τext(r,r0|Ω0), (A4)
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where
τext(r, r0|Ω0) =

∫ s

0
σext(r0 + s′Ω0)ds′ (A5)

with s = |r− r0|, is the optical depth from the point r to the upper domain boundary point r0 along
the solar direction Ω0, is expressed in the spherical harmonic space as

J(r, Ω) =
M

∑
m=−M

N

∑
n=|m|

Jmn(r)Ymn(Ω), (A6)

where N = Nµ − 1 is the maximum expansion order and M = Nϕ/2− 1 is the maximum number of
azimuthal modes.

By means of the addition theorem for the Legendre functions, the phase function, expanded in
terms of unnormalized Legendre polynomials

P̃n(cos Θ) =

√
2

2n + 1
Pn(cos Θ), (A7)

as

P(r, cos Θ) =
Nrank

∑
n=1

χn(r)P̃n(cos Θ), (A8)

where χn(r) are the Legendre phase function coefficients and Nrank is the maximum expansion order
of the phase function, is truncated in the spherical harmonic space as

P(r, cos Θ) = 4π
M

∑
m=−M

N

∑
n=|m|

χn(r)
2n + 1

Ymn(Ω)Ymn(Ω
′), (A9)

where cos Θ = Ω ·Ω′.
The solution method is based on Picard iterations. At the beginning of each iteration step,

the expansion coefficients Jmn(ri), m = −M, . . . , M, n = |m|, . . . , N, are assumed to be known at all
grid points ri. They are updated according to the following four computational steps.

Step 1. The source function is transformed to discrete ordinates by means of the relation

J(ri, µj, ϕk) =
M

∑
m=−M

um(ϕk)
N

∑
n=|m|

Jmn(ri)P|m|n (µj). (A10)

Step 2. The discrete ordinate radiance Id(ri, µj, ϕk) is computed from the source function J(ri, µj, ϕk)

by integrating the radiative transfer equation. Essentially, (i) the radiances are computed at all
grid points in all downward discrete ordinate directions by integrating the radiative transfer
equation with the top boundary condition Id(rti, µ−j , ϕ−k ) = 0, where (µ−j , ϕ−µj) and (w−µj, w−ϕjk)

are the quadrature nodes and weights in the lower hemisphere, (ii) the radiances at the bottom
boundary grid points in all upward discrete ordinate directions (µ+

j , ϕ+
k ) are computed from the

boundary condition

Id(rbi, µ+
j , ϕ+

k ) =
1
π

ρ(rbi, µ+
j , ϕ+

k , µ0, ϕ0) |µ0| T0(rbi)

+
1
π

Nµ/2

∑
p=1

Nϕp

∑
q=1

w−µpw−ϕpqρ(rbi, µ+
j , ϕ+

k , µ−p , ϕ−q )

× |µ−p |Id(rbi, µ−p , ϕ−q ), (A11)

and (iii) the radiances are computed at all grid points in all upward discrete ordinate directions
by integrating the radiative transfer equation with the boundary condition (A11).
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Step 3. The discrete ordinate radiance at each grid point is transformed to the spherical harmonic
space according to

Imn(ri) =
Nµ

∑
j=1

wµjP
|m|
n (µj)

Nϕj

∑
k=1

wϕjk Id(ri, µj, ϕk)um(ϕk). (A12)

Step 4. At each grid point, the source function is computed from the radiance in the spherical harmonic
space as

Jmn(ri) = ω(ri)
χn(ri)

2n + 1
Imn(ri) + ω(ri)

χn(ri)

2n + 1
Ymn(Ω0)T0(ri). (A13)

Some comments are in order.

1. The radiance and source function are initialized before the solution iterations with an Eddington
radiative transfer solution on independent columns of the base grid.

2. The explicit form of the transforms in Equations (A10) and (A12) illustrates how the azimuthal
and zenith angle parts partially separate. For more than about 12 azimuthal angles, an FFT is
used for the azimuthal Fourier transform.

3. In Step 2, the radiative transfer equation is integrated backward from each grid point to a grid
cell face that has known radiances at its bounding grid points. In the short-characteristic method,
the integration is across just one cell, while in the long characteristic method, the characteristic
Ωjk = (µj, ϕk) is traced backward until the transmission falls below some minimum specified
value. In the latter case, the error from interpolating the radiance at the grid cell face is
reduced. According to the SHDOM difference scheme, the radiance at the exiting point A
along a characteristic Ωjk, Id(rA, Ωjk), is computed from the integral form of the radiative
transfer equation

Id(rA, Ωjk) = Id(rB, Ωjk)e
−
∫ s0

0 σext(rB+sΩjk)ds + S(s0, J), (A14)

where Id(rB, Ωjk) is the radiance at the entering point B, s0 = |rA − rB| is the distance between
the points A and B, and

S(s0, J) =
∫ s0

0
σext(rB + sΩjk)J(rB + sΩjk, Ωjk)

×
[
e−
∫ s0

s σext(rB+s′Ωjk)ds′
]

ds (A15)

is the integral of the source function along the characteristic. Setting σextA,B = σext(rA,B) and
JA,B = J(rA,B, Ωjk), and assuming that the extinction σext and the extinction/source function
product σext J vary linearly along the characteristic, yields

S(s0, J) =
(
1− e−τext

) 1
σextA + σextB

[
σextA JA + σextB JB

+
σextAσextB

6
(JA − JB)s0

]
, (A16)

for τext ≤ 2, and

S(s0, J) =
(
1− e−τext

) 1
σextA + σextB

[
σextA JA + σextB JB

+
2σextAσextB

σextA + σextB
(JA − JB)

(
1− 2

τext
+

2e−τext

1− e−τext

)]
, (A17)
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for τext > 2, where

τext = τext(rA, rB|Ωjk) =
∫ s0

0
σext(rB + sΩjk)ds (A18)

is the optical depth along the characteristic. Note that under the above assumptions,
the representation (A16) follows from an expansion of the solution to the first order in the
path distance s0, while the representation (A17) is a particular case of the general solution
derived in [33]. The exiting and the entering values of the extinction and extinction/source
function product σextA, σextB, σextA JA, and σextB JB are computed by bilinear interpolation from
the grid point values of the faces pierced by the characteristic, while the radiance is also
bilinearly interpolated between the surrounding grid points to give the initial radiance Id(rB, Ωjk)

for integration.
4. To increase the convergence rate, an acceleration method based on geometrical convergence is

applied. At the iteration step K, the “accelerated” source column vector is computed as

J
(K)
acc = J(K) + a∆J(K) (A19)

where J(K) is the column vector encapsulating the expansion coefficients J(K)mn (ri), m = −M, . . . , M,
n = |m|, . . . , N, at all grid points ri, i.e., J(K) = [J(K)mn (ri)],

∆J(K) = J(K) − J(K−1), (A20)

is the residual source vector at the iteration step K, and

a =
1− r cos ψ + r1+π/(2ψ)

1 + r2 − 2r cos ψ
− 1 (A21)

with

r =
||∆J(N)||
||∆J(N−1)||

, (A22)

cos ψ =
(∆J(N−1))T(∆J(N))

||∆J(N−1)|| ||∆J(N)||
, (A23)

is the acceleration parameter. The iterations are stopped when the solution criterion

||∆J(N)||
||J(N−1)||

≤ εsol (A24)

is satisfied, where εsol is the solution tolerance.
5. If the delta-M scaling method is applied, then the optical parameters σext, ω, and χn are scaled

before their use. The scaled quantities σext, ω, and χn are given, respectively, by (the dependency
on r is omitted)

σext = (1− f ω)σext, (A25)

ω =
1− f

1− f ω
ω, (A26)

χn
2n + 1

=
1

1− f

( χn

2n + 1
− f

)
, n = 0, . . . , N, (A27)

where
f =

1
2N + 3

χN+1 (A28)

is the truncation fraction.
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6. The radiance at a specified direction Ωm and location r is computed by integrating the source
function through the medium, while the spherical harmonic representation of the source function
is transformed to the desired viewing direction Ωm.

7. For solar problems with the delta-M method, the TMS method is used to compute the source
function. This method replaces the scaled, truncated Legendre phase function expansion for the
singly scattered solar radiation by the full, unscaled phase function expansion, while the multiply
scattered contribution still comes from the truncated phase function. The source function at grid
point ri in direction Ωm is then computed as

J(ri, Ωm) =
M

∑
m=−M

N

∑
n=|m|

Jmn(ri)Ymn(Ωm) + ∆J(ri, Ωm), (A29)

∆J(ri, Ωm) =
F0

|µ0|
e−τext(ri ,ri0|Ω0)

[ω(ri)

1− f
1

4π

Nrank

∑
n=1

χn(ri)P̃n(cos Θ)

−ω(ri)
M

∑
m=−M

N

∑
n=|m|

χn(ri)

2n + 1
Ymn(Ω0)Ymn(Ωm)

]
, (A30)

where cos Θ = Ω0 ·Ωm.
8. The adaptive grid evolves from the base grid by splitting cells where more resolution is judged

to be needed. The criterion for splitting cells is based on how much the source function times
extinction changes across a cell. A cell may be split in half in either of the three Cartesian directions,
depending on whether any of them exceed the splitting criterion. For cell c, the cell-splitting
criterion is

Ccuj = |∆Juj|(1− e−τuj), (A31)

where u is one of the three Cartesian directions x, y, and z,

|∆Juj| =
1

σextuj

√
1

4π

∫
Ω
[σ+

extuj J(r
+
uj, Ω)− σ−extuj J(r

−.
uj , Ω)]2 dΩ

=
1

σextuj

√√√√ 1
4π

M

∑
m=−M

N

∑
n=|m|

[σ+
extuj Jmn(r+uj)− σ−extuj Jmn(r−uj)]

2, (A32)

r+uj ∈ F+
u and r−uj ∈ F−u , j = 1, ..., 4, are two cell corners along direction u, F+

u and F−u are the

two cell faces crossed by direction u, τuj = σextujsuj, σextuj = (σ+
extuj + σ−extuj)/2, σ+

extuj = σext(r+uj),

σ−extuj = σext(r−uj), and suj = |r+uj − r−uj|. The criterion is averaged over the four corners, i.e., Ccu =

(1/4)∑4
j=1 Ccuj, and the cells are sorted by the maximum over the splitting directions u = x, y, z

of the averaged splitting criterion Ccu. At the iteration step K, those cells c with the highest
criterion Ccu above a certain value ε

(K)
split are split first. The new cells may themselves be divided

during one solution iteration. As the solution iterations proceed, the cell splitting accuracy ε
(K)
split

is gradually lowered to the desired final cell-spliting accuracy εsplit, and so more grid points are
added at each iteration during this process.

Appendix B

The partial derivative of the measured signal with respect to a parameter ξp that determine the
single-scattering albedo at every grid point ωi = ω(ri) is computed in the spherical harmonic space as
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follows. For r ∈ Dc, we assume that the extinction/source function product varies linearly within cell
c, i.e.,

σext(r)J(r, Ω) = ∑
i=1

Li(R)σextg(i,c) J(rg(i,c), Ω)

= ∑
i=1

Li(R)σextg(i,c)

[ωg(i,c)

4π

∫
Ω

P(rg(i,c), Ω, Ω′)I(rg(i,c), Ω′)dΩ′
]
. (A33)

We obtain ( ∂L
∂ξp

I
)
(r, Ω) = −∑

i

Li(R)
[σextg(i,c)

4π

×
∫

Ω
P(rg(i,c), Ω, Ω′)I(rg(i,c), Ω′)dΩ′

]∂ωg(i,c)

∂ξp
, (A34)

yielding

∂E
∂ξp

= ∑
c

∑
i

∫
Ω

∫
Dc

Li(R) Î †(r,−Ω)
[σextg(i,c)

4π

×
∫

Ω
P(rg(i,c), Ω, Ω′)I(rg(i,c), Ω′)dΩ′

]∂ωg(i,c)

∂ξp
dVdΩ. (A35)

Using ∫
Ω

P(r, Ω, Ω′)Id(r, Ω′)dΩ′ = 4π ∑
mn

χn (r)
2n + 1

Imn(r)Ymn(Ω) (A36)

and

P(r, Ω, Ω′) = 4π ∑
mn

χn(r)
2n + 1

Ymn(Ω)Ymn(Ω
′), (A37)

we end up with
∂I
∂ξp

= TA + TB + TC + TD, (A38)

where

TA = ∑
c

∑
mn

(−1)n ∑
i,j

χn,g(i,c)

2n + 1
σextg(i,c) Imn,g(i,c) Î†

mn,g(j,c)

∂ωg(i,c)

∂ξp
Li,j, (A39)

TB = ∑
c

∑
mn

(−1)nYmn(Ω0)∑
i,j

χn,g(i,c)

2n + 1
σextg(i,c)T0g(i,c) Î†

mn,g(j,c)

∂ωg(i,c)

∂ξp
Li,j, (A40)

and

TC = ∑
c

∑
mn

Ymn(Ωmc)∑
i,j

χn,g(i,c)

2n + 1
σextg(i,c) Imn,g(i,c)T̂

†
mg(j,c)

∂ωg(i,c)

∂ξp
Li,j, (A41)

TD = ∑
c

∑
mn

Ymn(Ωmc)Ymn(Ω0)∑
i,j

χn,g(i,c)

2n + 1
σextg(i,c)T0g(i,c)T̂

†
mg(j,c)

∂ωg(i,c)

∂ξp
Li,j. (A42)
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Considering the partial derivative of the measured signal with respect to a parameter ξp that
determine the bidirectional surface reflection function ρ(rb, Ω+, Ω−), we use Equation (32), to obtain

∂I
∂ξp

=
1
π
|µ0|µm(rb)T0(rb)T̂ †

m(rb)
∂ρ

∂ξp
(rb, Ωm(rb), Ω0)

+
1
π
|µ0|T0(rb)

∫
Ω

H(µ)µ Î †
d (rb,−Ω)

∂ρ

∂ξp
(rb, Ω, Ω0)dΩ

+
1
π

µm(rb)T̂ †
m(rb)

∫
Ω

∂ρ

∂ξp
(rb, Ωm(rb), Ω)

× H(−µ′)|µ′|Id(rb, Ω)dΩ

+
1
π

∫
Ω

H(µ)µ Î †
d (rb,−Ω)

×
[∫

Ω

∂ρ

∂ξp
(rb, Ω, Ω′)H(−µ′)|µ′|Id(rb, Ω′)dΩ′

]
dΩ. (A43)

The integrals over the unit sphere are computed in the discrete ordinate space under the assumption
that the partial derivatives ∂ρ/∂ξp are known at all grid points on the bottom surface, and in all
downward and upward discrete ordinate directions. For a Lambertian surface, ρ(rb, Ω+, Ω−) is
simply the albedo A, and for ξp = A, the computational formula is

∂I
∂A

=
1
π
|µ0|µm(rbi)T0(rbi)T̂ †

m(rbi)

+
1
π
|µ0|T0(rbi)

Nµ/2

∑
j=1

Nϕj

∑
k=1

w−µjw
−
ϕjk|µ

−
j | Î

†
d (rbi, µ−j , ϕ−k )

+
1
π

µm(rbi)T̂ †
m(rbi)

Nµ/2

∑
j=1

Nϕj

∑
k=1

w−µjw
−
ϕjk|µ

−
j |Id(rbi, µ−j , ϕ−k )

+
1
π

Nµ/2

∑
j=1

Nϕj

∑
k=1

Nµ/2

∑
p=1

Nϕp

∑
q=1

w−µjw
−
µpw−ϕjkw−ϕpq|µ−j ||µ

−
p |

× Î †
d (rbi, µ−j , ϕ−k )Id(rbi, µ−p , ϕ−q ). (A44)

Appendix C

Referring to Figure 2, the first-order interpolation basis functions for a rectangular cuboid element
Li, i = 1, . . . , 8 at a point r = (x, y, z) are given by

L1(ξ, η, ς) = n−(ξ)n−(η)n−(ς), (A45)

L2(ξ, η, ς) = n+(ξ)n−(η)n−(ς), (A46)

L3(ξ, η, ς) = n−(ξ)n+(η)n−(ς), (A47)

L4(ξ, η, ς) = n+(ξ)n+(η)n−(ς), (A48)

L5(ξ, η, ς) = n−(ξ)n−(η)n+(ς), (A49)

L6(ξ, η, ς) = n+(ξ)n−(η)n+(ς), (A50)

L7(ξ, η, ς) = n−(ξ)n+(η)n+(ς), (A51)

L8(ξ, η, ς) = n−(ξ)n+(η)n+(ς), (A52)

where
n±(ξ) =

1
2
(1± ξ) (A53)
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are the one-dimensional linear interpolation functions, and (ξ, η, ς) are the normalized coordinates of
the point in a local coordinate system attached to the center of the cell ρc = (xc, yc, zc), i.e.,

ξ =
x− xc

lx
, η =

y− yc

ly
, ς =

z− zc

lz
. (A54)

Appendix D

We consider the case of a detector with a fixed position rD, that measures the radiance
in K directions Ω0

mk, k = 1, . . . .K. For the measurement direction Ω0
mk, let Stm(Ω0

mk) be the
detector footprint centered at r0

tk. We aim to compute the state vector ξ by minimizing the sum
of squared residuals

R(ξ) = 1
2 ∑

k
[I(ξ, Ω0

mk)− Imes(Ω
0
mk)]

2, (A55)

where I(ξ, Ω0
mk) and Imes(Ω

0
mk) are the simulated and measured signals of the detector, respectively.

In the steepest-descent method characterized by a linear convergence rate, the objective function is
approximated by a linear model and the search direction is taken as the negative of the gradient
g = ∇R. By taking account of Equation (15), we deduce that the pth component of the gradient vector
is given by

gp =
∂R
∂ξp

= ∑
k
[I(ξ, Ω0

mk)− Imes(Ω
0
mk)]

∂I
∂ξp

(ξ, Ω0
mk)

=
∫

St
∑
k
[I(ξ, Ω0

mk)− Imes(Ω
0
mk)]

× hk(rt)
∂I

∂ξp
(rt, Ω0

mk)dSt, (A56)

where

hk(rt) =


1

Atmk
, rt ∈ Stm(Ω0

mk)

0, otherwise

, (A57)

Atmk = R2
DkΩFOV/µ0

mk and RDk = |rD − r0
tk|. Further on, from Equation (25), we find that the adjoint

source function reads as

Q†(r, Ω) = ∑
k

F†
0k(rt)δ(z− Lz)δ(Ω−Ω0

mk), (A58)

where
F†

0k(rt) = [I(ξ, Ω0
mk)− Imes(Ω

0
mk)]hk(rt). (A59)

Thus, in each inversion step, we first solve the forward problem and compute the residual
I(ξ, Ω0

mk)− Imes(Ω
0
mk), and then solve the adjoint problem with the adjoint source function (A58)

and compute each component of the gradient of the residual function gp by means of Equation (26).
In this approach, the pseudo-forward direct beam is a superposition of direct beams corresponding to
each Ω0

mk. Consequently, if the angular domain covered by the measurements is large, it may happens
that the spatial discontinuity of the pseudo-forward direct beam is not present.
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