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Abstract: Extreme precipitation has often occurred in Southeastern China, while the possible
mechanism is not clear. In order to bridge the scale gap between large-scale circulation and extreme
precipitation, in this paper, the k-means clustering technique—a common method of weather-type
(WT) analysis—was applied to regional 850-hPa wind fields. The reasonable determination of k
values can make the later WT analyses more reliable. Thus, the Davies-Bouldin (BD) criterion index
is used in the clustering process, and the optimal value of the k was determined. Then, we obtain and
analyze the frequency, persistence, and progression of WTs. The rule of transitions from one WT to
another may help explain some of the physical processes in winter. We found a special evolutionary
chain (WT3—-WT1-WT2—-WT5—WT3) that can be used to explain the cold wave weather process
in winter. Different WTs in the evolutionary chain correspond well to different stages of the cold
wave weather process (gestation (WT3), outbreak (WT1), eastward withdrawal (WT2), and extinction
(WT5)). In addition, we found that there are obvious differences in precipitation between December
and February. After reassembling five kinds of WTs, two modes are formed: dry WTs and wet WTs.
Our research shows that the intraseasonal variation of precipitation can be attributed to the fluctuation
between the wet and dry WTs, and the different phases of teleconnection can correspond well with it.
For example, the relative frequencies of wet WTs are higher in February. These WTs correspond to
the positive phase of the WP and ENSQO, the negative phase of the EA and EU, and the strong MJO
state of the second, third, and eighth phase. Our work has well established the relationship between
synoptic scale and large-scale circulation, which provides a reference for climate model simulation
and future climate prediction.

Keywords: weather type; k-means cluster analysis; southeastern China; climate teleconnection

1. Introduction

Southeastern China is the main precipitation area in winter in China. Excessive precipitation
occurs in the form of snow or freezing rain, which causes inconvenience to people’s transportation
and may even threaten people’s lives and property. For example, unprecedented freezing and snow
disasters occurred in the winter of 2007/2008 in China [1,2]. Therefore, it is very important to determine

Atmosphere 2019, 10, 271; d0i:10.3390/atmos10050271 www.mdpi.com/journal/atmosphere


http://www.mdpi.com/journal/atmosphere
http://www.mdpi.com
https://orcid.org/0000-0002-6716-2309
https://orcid.org/0000-0002-5108-4828
http://www.mdpi.com/2073-4433/10/5/271?type=check_update&version=1
http://dx.doi.org/10.3390/atmos10050271
http://www.mdpi.com/journal/atmosphere

Atmosphere 2019, 10, 271 20f17

the possible mechanism of extreme precipitation occurrence for the extended period prediction of
extreme events.

Weather-type (WT) analysis can be regarded as basic work to study the mechanism of precipitation
formation. By using WT analysis, the climatology of main weather patterns in an area can be described
objectively and compactly [3]. On the basis of weather typing, a broad scale of relationships can be
better understood, such as the effect of large-scale circulation on WTs and the evolution rule from one
WT to another [3].

Relatively little work has been carried out to investigate the role of large-scale circulation patterns
in the variation of precipitation in southeastern China. While the previous studies are more interested
in the analysis of the overall characteristics of precipitation in a season, little effort has yet been
made to investigate the intraseasonal variation of precipitation, especially regarding its causes [3,4].
So, it is important to analyze whether the intraseasonal variation of precipitation is attributable to the
intraseasonal frequency variations of WTs or due to the within-types variations of WTs themselves.
Moreover, whether the transitions from one WT to another may be associated with a shift from one
phase to another of teleconnection has not been studied in depth.

In this paper, to bridge the scale gap between large-scale circulation and extreme precipitation
in southeastern China, we employ the k-means clustering technique to regional 850-hPa wind fields.
In other words, the large-scale atmospheric circulation features that co-occur during rainfall extremes
can be obtained by this means. First of all, we objectively determined the primary daily WTs over
southeastern China during wintertime. In the clustering process, the Davies-Bouldin Criterion (BD) [5]
index is used to determine the optimal value of the k. After obtaining these WTs, we analyzed
their frequencies, persistence, and progression. Based on these characteristics of WTs, we can better
understand the mutual transformation rule between different WTs. These transformation rules can
also be used to explain some physical processes (e.g., cold wave) in winter. In order to explore the link
between WTs and the large-scale atmospheric circulation, the relationships of WTs to several important
climate teleconnections were investigated. These teleconnections mainly include five teleconnection
patterns over the winter northern hemisphere [6] (eastern Atlantic pattern (EA), Pacific/North American
pattern (PNA), western Atlantic pattern (WA), western Pacific pattern (WP), and Eurasian pattern
(EU)), as well as El Nifio-Southern Oscillation (ENSO) [7] and Madden-Julian Oscillation (MJO) [8].
In addition, we found a significant difference in precipitation between December and February. In order
to explore the intraseasonal variation of precipitation, the analysis was carried based on the conceptual
framework proposed by Schuenemann and Cassano [9]. On this basis, we can understand the physical
mechanism behind the intraseasonal differences of precipitation.

2. Data and Methods

2.1. Data

National Center for Environmental Prediction (NCEP)-U.S. Department of Energy (DOE) AMIP-II
reanalysis (NCEP-2) [10] provided by the National Center for Environmental Prediction/National
Center for Atmospheric Research (NCEP/NCAR) is the reanalysis data used in this study. We can
get NCEP-2 reanalysis data since 1979. This period of time covers the “20-year” satellite period.
NCEP-2 reanalysis (2.5° X 2.5°) can be assumed as a reasonable representation of the observed record
for our study. The main reason is that the NCEP/NCAR reanalysis uses an updated forecast model,
updated data assimilation system, improved diagnostic outputs, and fixes for known processing
problems [10]. We treat “u and v at 850 hPa” (anomaly field) as a combined field when conducting the
clustering. The reason for choosing 850 hPa is that it is close enough to the ground to be able to resolve
low-pressure systems.

In addition to reanalysis data, gridded precipitation data provided by Chen et al. [11] is used
(referred to as CHENO5). Its resolution is 0.5° by 0.5°. This dataset is also deduced from 753 operational
surface stations of the China Meteorological Administration by an ordinary kriging interpolation,
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with small interpolation errors in the eastern part of China due to the high station density. In the
teleconnection analysis, the NCEP-2 reanalysis daily 500-hPa geopotential height dataset was selected
in order to calculate the teleconnection indices. The seasonal Nino-3.4 index [12] can be downloaded
from the Climate Prediction Center (CPC; ftp://ftp.cpc.ncep.noaa.gov/data/indices). The MJO index
developed by Wheeler and Hendon [13] can be downloaded from the Australia Meteorological Bureau
(http://www.bom.gov.au/climate/mjo/).

In addition to the dataset above, the gridded daily mean surface air temperature (SAT) was
obtained from a set of observed data, which is referred to as CNO5 [14], is available at 0.5° x 0.5° daily
resolution over China from 1961 to 2005, and provides a long-term consistent dataset.

2.2. Methods

The first step is identifying and extracting the WTs for southeastern China; thus, the domain
that is bounded by 20°—40° N latitude and 100°-130° E longitude (Figure 1) is selected in this study.
This domain contains areas that we are concerned about, and it is large enough to extract reasonable
circulation information, so we performed this analysis on this domain.
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Figure 1. Analysis domain: the boundaries (small rectangle) of the southeast region (covering
southeastern China) used to subset NCEP2 850-hPa winds for input to the k-means clustering algorithm.

2.2.1. Clustering Method

The k-means Clustering Technique

There has been an increasing interest in WT analysis. The k-means clustering is a commonly
used method for separating WTs [15,16]. This method has been used for a wide range of applications:
dynamical analysis [17-19], downscaling [20-22], the examination of weather-relevant trends [23],
and model evaluation [24]. To identify the WTs in southeastern China, we follow the k-means clustering
methodology of Diday and Simon [15]. In this method, every observation is regarded as an object
with a spatial location. The goal of this method is to get a reasonable partition. In partitioning results,
the objects in each cluster are as close to each other as possible, and as far away as possible from objects
in other clusters. An iterative algorithm is used for the purpose of minimizing the sum of distances
from each object to its cluster centroid, over all the clusters. During this iteration, the object will be
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moved between clusters until the sum is no longer reduced. Finally, we will get a set of results that are
as compact and well-separated as possible.
The global minimum of the function W(P) can be expressed as follows [3]:

N

WPy =YY (X)), )

j:1 xeCj

where P represents a particular partitioning of the data into a set of k clusters Cy, Cp, -+, Cy; Y] is the
centroid of cluster C is dZ(X, Y]-) is the Euclidean distance between points X in C i and the centroid Y i
and W(P) signifies the intra-cluster sum of variance for a particular partitioning. Data points can be
divided into k clusters, and the process of iteration is the process of finding the best partition results.
The best result can be expressed by the global minimum of the function W(P). Finding the minimum
value of W(P) can be achieved by iteration. The initial centroid can be selected from the subset of data,
and then the iteration can be accelerated.

Data can be divided into k clusters when the number of clusters k is given. The clustering results
should satisfy the following conditions: the similarity of the object is higher in the same class and
lower in different classes.

Classifiability Index

As a classifiability index, Davies—Bouldin (BD) criterion [5] is used to determine the minimum
number of cluster k. The BD criterion is based on a ratio of within-cluster and between-cluster distances.
The advantage of the DB index is that it neither depends on the number of clusters analyzed, nor does
it depend on the data-partitioning method [5]. A MATLAB implementation is also available via the
MATLAB Statistics and Machine Learning Toolbox, using the “evalclusters” command. The DB index
can be defined as: )
1
DB = I;; I?EX{D,-,]-}, @)
where D;; is the within-to-between cluster distance ratio for the ith and jth clusters. In
mathematical terms: L
b (dl‘ +d ]')

L] dl,]
Here, Ei is the average distance between each point in the ith cluster and the centroid of the ith cluster;
E]- is the average distance between each point in the jth cluster and the centroid of the jth cluster;
and d; ; is the Euclidean distance between the centroids of the ith and jth clusters.

The maximum value of D; ; represents the worst-case within-to-between cluster ratio for cluster i.
The optimal clustering solution has the smallest DB index value.

Unlike Michelangeli et al. [25], Roller et al. [3], and Gerlitz et al. [4], we used the Davies-Bouldin
(BD) criterion index to determine the number of clusters. The advantage of this index is that it does not
depend on the number of clusters analyzed. Nor does it depend on the clustering method of data [5].
Due to the use of Euclidean distance, the evaluation of ring distribution clustering by using the DB
index is poor.

2.2.2. Attribution of Intraseasonal Precipitation Differences

Here, we follow the methodology from Schuenemann and Cassano [9], which was used to analyze
the difference between each of the Intergovernmental Panel on Climate Change Fourth Assessment
Report (IPCC AR4) models and ERA-40 reanalysis for the North Atlantic region. We present a new
implementation of the method to define the relationship between precipitation days, precipitation
intensity, and precipitation total for every grid point over southeastern China. For every grid point,



Atmosphere 2019, 10, 271 50f17

the precipitation total (P) (mm) was calculated by multiplying the precipitation days (f,) (day) by

precipitation intensity (p,) (mm/day).
n_WT

pP= };1 fupn 3)

In order to investigate intraseasonal variation, the source of differences between different months
in wintertime can be determined by rewriting Equation (3) as:

n_WT

P=Y" (fu+Afa)(pu+Opa) )

n=1
Expanding the expression in Equation (4) gives:

n_WT
P= Z (fabn + fuBpn + Dfapn + A fulpn) ®)

n=1

which indicates that the total month precipitation of the latter can be represented as the former
(first term), plus three terms that represent the net difference in month precipitation between the former
and the latter.

The first difference term (f,Apy) is referred to as the intra-pattern variability component. The
different month may have different amounts of precipitation in the atmosphere or different precipitation
physics, leading to the precipitation differences indicated by this term. The second difference term
(A fupn) is the pattern frequency component. Therefore, this term represents the precipitation differences
resulting from differences in the frequency of occurrence of synoptic patterns. The third difference
term (A f,Apy) is referred to as the combined term. This part is often very small, so usually, only the
first two items are discussed.

In this study, we found that precipitation was less in December and more in February. The
attribution of intraseasonal variation of precipitation was made by following Schuenemann and
Cassano [9]. This method allows a detailed look at what drives the differences between the two months
on the synoptic scale. The advantages of this method are clear meaning and simple computation.
In general, the change of WT itself will not be very obvious in the same season. However, this does not
mean that the precipitation corresponding to each WT has not changed much. Since clustering is not
based on precipitation data, we can only have a clear understanding of this by attribution analysis.

2.2.3. Calculation of the Teleconnection Patterns

Wallace and Gutzler [6] found that there are five teleconnection patterns at 500-hPa geopotential
height anomalies over the winter northern hemisphere. These teleconnections include the eastern
Atlantic pattern (EA), Pacific/North American pattern (PNA), western Atlantic pattern (WA), western
Pacific pattern (WP), and Eurasian pattern (EU).

The teleconnection pattern indices of the front were defined as follows:

EA = %z* (55° N, 20° W) — }IZ*(ZS" N,25° W) — jzz* (50° N, 40° E) (6)

PNA = }l[z* (20° N, 160° W) — Z*(45° N, 165° W) + Z*(55° N, 115° W) — Z*(30° N, 85° W)]  (7)
WA = %[Z*(SS" N, 55° W) — Z*(30° N, 55° W)] @)

WP = %[Z*(60° N, 155° E) — Z*(30° N, 155° E)] ©9)
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1 1 1
EU = —ZZ*(SSO N,20°E) + EZ*(SSO N,75°E) — ZZ*(4O° N, 145° E) (10)
where Z* is the normalized 500-hPa height anomalies at specified grid points corresponding to “centers

of action” or antinodes of the pattern. Further details about the procedure for the calculation of the
teleconnection indices can be found in Wallace and Gutzler [6].

3. Results
3.1. W1Ts

The k-means clustering algorithm is applied to NCEP-2 daily 850-hPa u and v component winds

for the winter months of December—January—February (hereafter as DJF) 1979-2016 (standardized)
within the region specified in Figure 1.

3.1.1. Determine the Optimal Number of Clusters

In order to ensure whether the clustering results have good reasonability to achieve adequate
separation of the data, the optimal number of clusters k was determined by using the DB index
in Figure 2a. The Monte Carlo simulation shows that the optimal number of clusters was five.

In the following analysis, the 850-hPa winds will be separated into five distinct clusters using
k-means clustering.

(a) Classifiability Index (DaviesBouldin; DB)
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Figure 2. The classifiability index (BDs) results from the k-means clustering of two to 50 clusters
(black line) and the 100 repeated calculation results (gray range). The figure shows the (a) optimal
number of clusters (BD for various numbers of clusters) and percent of days assigned to each clustered

weather type (WT) for (b) the entire winter season (December—February) and for (c) December,
(d) January, and (e) February. BD: Davies-Bouldin.

3.1.2. Occurrence Frequency and Spatial Distribution Characteristics of WTs

The next step is to analyze DJF WTs for southeastern China based on the five-cluster solution.
Each WT is represented by a cluster. Each WT comprises ~17% to ~22% of the DJF days, with outbreak
(WT1) having the greatest number of days (21.9%), and extinction (WT5) having the least number of
days (17.3%) (Figure 2b). For the WTs of January (Figure 2d), the series of WT frequencies is similar
to the series of WT frequencies in the entire DJF period (Figure 2b). While WT1, WT2, and WT4
are typically observed during December (Figure 2c), WT3 and WT5 mainly occur during February
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(Figure 2e). This suggests that there exist some strong intraseasonal frequency variations at the monthly
scale for some WTs.

In order to have a clear understanding of the spatial distribution of each WT, we provide the five
WTs over southeastern China in Figure 3. Compositions of 850-hPa wind anomalies and precipitation
anomalies are shown in Figure 3a—e; wind anomalies and surface air temperature anomalies are shown
in Figure 3fj, and wind anomalies and sea level pressure anomalies are shown in Figure 3k-o.

() WT1

'\ ldr . :f\v

(k) WT1

»\LA\\\\\
\\//\,(/.lé‘. VN

Ce & s ¢ o
2 0 2 -63036

Figure 3. (Left column) NCEP-DOE reanalysis II (NCEP-2) 850-hPa wind anomalies for
December-January-February (DJF) 1979-2016 (vectors) and the CHENO5 precipitation anomalies
for DJF 1979-2005 (shaded; mm/day) for (a) WT1, (b) WT2, (c) WT3, (d) WT4, and (e) WT5. (middle
column) NCEP2 850-hPa winds anomalies for DJF 1979-2016 (vectors) and the CNO5 surface air
temperature anomalies for DJF 1979-2005 (shaded; °C) for (f) WT1, (g) WT2, (h) WT3, (i) WT4,
and (j) WT5. (right column) NCEP2 850-hPa winds anomalies for DJF 1979-2016 (vectors) and the
sea-level pressure anomalies for DJF 1979-2016 (shaded; hPa) for (k) WT1, (1) WT2, (m) WT3, (n) WT4,
and (o) WT5.

In southeastern China, the precipitation anomalies are negative in WT1, WT2, and WT4 and
positive in WT3 and WT5. WT1, with negative precipitation (Figure 3a) and negative temperature
(Figure 3f), is characterized by a dry and cold climate. The East Asian winter monsoon is highly
strong, and the continent is controlled by the high-pressure system (anticyclone) (Figure 3k). Due to
the influence of northerly winds, it is difficult to form precipitation in southeastern China. A similar
analysis shows that WT2 (Figure 3b,g,1) and WT4 (Figure 3d,i,n) are basically the same as WT1, but the
formation mechanism behind them is different. WT2 is mainly caused by high pressure, while WT4 is
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mainly caused by prevailing northwest wind. In WT3 (Figure 3c,h,m), precipitation is also prone to
occur in southeastern China. The northern part of the continent is controlled by cold high pressure,
and the southern part of the continent is controlled by warm low pressure (Figure 3m). The dry and
cold air flow meets the warm and wet airflow in the southeastern region, which is favorable for the
formation of precipitation. WT5 (Figure 3e,j,0) is characterized by a warm humid climate. Not only
are the anomalies of precipitation positive, but the anomalies of temperature are positive, too. The
East Asian winter monsoon is obviously weaker, and the continent is controlled by the low-pressure
system (cyclone). Strong low-level southerly flow brings warm moisture to southeastern China, and is
conducive to the formation of heavy rainfall in southeastern China.

These results imply that the formation mechanisms of WT1, WT2, and WT4 are different, although
they are all characterized by negative anomalies of precipitation. WT1 and WT?2 are all controlled
by high pressure. Although there is moisture, it is difficult to form precipitation due to subsidence.
Unlike WT1 and WT2, the reason why WT4 is difficult to form precipitation is the prevailing northwest
wind, which does not bring moisture. Similarly, although WT3 and WT5 exhibit positive anomalies
in precipitation, their formation mechanisms are different. Precipitation in WT3 is caused by the
confluence of dry cold air flow and warm humid air flow. Unlike WT3, precipitation in WT5 is caused
by sufficient moisture and updraft.

3.2. Progression and Persistence of WTs

While identifying WTs of daily 850-hPa winds provides the characteristic weather patterns over
southeastern China, more information on WTs is given in the rule of remaining in the original WT
(persistence) or switching to a new WT (progression) on the following day [3]. The statistical results
should help us to understand more about how often a particular WT transitions to each of the other
WTs [26].

3.2.1. WT Persistence

In Figure 4, we plot the duration in the DJF season for each WT. About 27.5-41.2% of DJF days
persist in the same WT for one day. The mean duration for each WT ranges from 1.60 days for WT2
to 1.86 days for WT1, and there are somewhat intraseasonal duration variations at the monthly scale.
While longer duration for WT3 or WT5 is typically observed during December, the longer duration
for WT1 or WT4 is typically observed during February. On the contrary, WT2 shows almost constant
duration, and its duration is the shortest of all the WTs.

An analysis of spell lengths (not shown in Figure 4) shows that larger duration differences exist
between different WTs. For spells lasting longer than five days, WT1 rose from 17.8% for December to
20.1% for February, and WT4 rose from 20.3% for December to 22.2% for February. On the contrary,
WT3 fell from 35.9% for December to 24.7% for February, and WTS5 fell from 23.3% for December to
12.9% for February. For spells lasting longer than seven days, this duration difference is more obvious.
WTT1 rose from 8.6% for December to 17.2% for February, and WT4 rose from 4.5% for December to
18.3% for February. On the contrary, WT3 fell from 31.7% for December to 6.0% for February, and WT5
fell from 12.5% for December to 2.9% for February. The change in WT2 is not obvious.
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Figure 4. WT persistence, expressed as a percentage of total WT days, for duration of one to nine days.
3.2.2. WT Progression

Besides self-transitions, the persistence mentioned above, which has a progression that is helpful
for us to make clear how often a particular WT progresses to each of the other WTs [26], needs to be
counted. Next, we illustrate the progression of each WT in Figure 5a—g. Following the approach in
Roller et al. [3], the 95% confidence interval of the WT distribution on the following days is determined
by randomly sampling a number of days in the 38-year record equal to each WT count, calculating
the distribution of the following day WTs for each sample, and repeating the process 1000 times. The
percentages that are higher (lower) than the top 97.5% (bottom 2.5%) indicate a transition to a WT that
is more (less) likely than that due to chance, and is shown as black (white) bars. The following day is
shown in Figure 5a—e respectively.

Significant probability transitions from one WT to another one are illustrated in Figure 5f. The
horizontal axis represents the type that the WT will convert to the next day. The vertical axis represents
the type converted from the previous day. The size of the circle on the diagonal represents the
percentage of persistence in themselves. As shown in the figure, we find that each WT has great inertia
of self-preservation. Their conversion to other types is not high (some are even close to zero).

Figure 5g shows the likelihood (expressed as a percentage of times) that a WT persists or transitions.
All the WTs are most likely to persist as themselves. The respective percentage of persistence is 46%,
38%, 44%, 45%, and 44%. WT1 and WT4 are most likely to progress to each other. At the same time,
WT1 also forms a chain with other WTs in progress. The sequence of the chain is WT1, WT2, WT5, WT3,
and WT1. In particular, the chain of WTs that we have found (i.e., WT1->WT2—->WT5-WT3—-WT1)
should be focused on a bit more, referring to the spatial patterns of WTs. Based on the statistic analysis,
we found that the chain has appeared 21 times in 1979-2016 (38 years). It can be understood as a
dynamical process of a large-scale strong cold air invasion into China southward, which drives the
chains. This process can be understood as several stages, such as gestation (WT3), outbreak (WT1),
eastward withdrawal (WT2), and extinction (WT5).
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Figure 5. Progression of each WT, shown as frequency of WTs both on days following (a) WT1, (b)
WT2, (c) WT3, (d) WT4, and (e) WT5 days. The distribution on the next day and the previous day
is shown in the first and second rows, respectively. Significant and not significant conversions are
shown with black bars and white bars, respectively. (f) Significant probability transitions from one WT
to another one. (g) Graphical representation of WT progression and persistence. Significant and not
significant conversions are represented by solid arrows and dotted arrows, respectively.

3.3. Relationships between W5 and Precipitation

3.3.1. Characteristics of Precipitation and Extreme Precipitation

Are the WTs related to near-surface climate variability such as precipitation? In the following
section, we address this question by examining whether the daily precipitation (precipitation over
0.254 mm, or 0.01 inch) and extreme precipitation (defined as the top 1% of daily intensity on days
with precipitation) associated with the WTs. The results of DJF mean are presented in Figure 6.

Based on the CHENOS5 daily precipitation data, it is clear that the number of precipitation days
and precipitation intensity differs between WTs. Most precipitation days occur in WT3 and WT5. The
intensity of precipitation is the highest in WT5, followed by WT3. The most extreme precipitation
occurs in WT3 and WT5. The extreme precipitation intensity is the highest in WT5. For WT3 and WTS5,
their total precipitation and total extreme precipitation are the highest of all the WTs.

Although precipitation and extreme precipitation can occur in every WT (Figure 6), they are more
likely to occur in WT3 and WT5, and are less likely to occur in WT1, WT2, and WT4. The reason is that
WT3 and WTS5 are conducive to the formation of all conditions for the formation of winter precipitation.
Conditions are as follows: unusual southerly winds, sufficient vapor, the confluence of cold and warm
air masses, and large-scale airflow uplift [27].
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Figure 6. Mean precipitation characteristics of CHENO5 for December—January-February (DJF)
1979-2005. (a) The number of precipitation days (expressed as a percentage of all precipitation days)
for each WT. (b) The mean daily precipitation intensity (mm/day) for each WT. (c) The mean total
precipitation (%) for each WT. (d—f) Precipitation days, intensity, and totals for extreme precipitation,
defined as the top 1% of precipitation daily intensity.

3.3.2. Attribution of Intraseasonal Precipitation Differences

In order to have a detailed look at what drives the intraseasonal precipitation differences in the
wintertime season (DJF), the partitioning (Equation (5)) of the intraseasonal precipitation differences
between each pair of the three months making up the wintertime season (DJF) were performed. Figure 7
illustrates the calculation results.
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Figure 7. (top row) Differences between December and January. (middle row) Differences between

January and February. (bottom row) Differences between December and February. The three columns on

the left side of each row are the three difference terms: the intra-pattern variability component, the pattern
frequency component, and the combined term. The right side of each row is the total difference.
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The pattern frequency component is predominantly responsible for the intraseasonal precipitation
differences (Figure 7b,fj). In other words, the main reason is that the frequencies of WTs vary in
different months. In different months of the same season, precipitable water in the atmosphere or
precipitation physics is similar. The intra-pattern variability component and the combined term in the
intraseasonal precipitation differences only play a small role (Figure 7a,e,i).

3.4. Relationships between WTs and Teleconnections

Following Roller et al. [3], the relative frequency of WT for each teleconnection phase was
determined in our analysis. We are more concerned about the precipitation related WTs and their
intraseasonal variations. Thus, we present a new implementation according to the relationship between
each WT and precipitation. WTs were regrouped into two broad categories, which are called dry
WTs (WT1 + WT2 + WT4) and wet WTs (WT3 + WT5). The frequencies of dry WTs and wet WTs in
December and February were counted respectively (Figure 8).

(a) December Dry Pattern (WT1+WT2+WT4) (b) February Dry Pattern WT1+WT2+WT4)
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Figure 8. Intraseasonal variation of frequencies of different WTs (Dry and Wet). Frequencies for (a)
December Dry Pattern (WT1 + WT2 + WT4), (b) February Dry Pattern (WT1 + WT2 + WT4), (c)
December Wet Pattern (WT3 + WT5), and (d) February Wet Pattern (WT3 + WT5) during various
phases of the teleconnection patterns. For each teleconnection pattern, the three bars represent the
positive (+), neutral (~), and negative (—) phases.

There is a large intraseasonal variation of frequencies for all teleconnection patterns. The
frequencies of dry patterns were higher in December (Figure 8a) and lower in February (Figure 8b).
On the contrary, the frequencies of wet patterns were low in December (Figure 8c) and increased in
February (Figure 8d). During the positive phase (>1) of the EA, PNA, WA, and EU, the neutral phase
(>-1 and <£1) of the ENSO, and the negative phase (<—1) of the WP, the likelihood of dry patterns
increased in December (Figure 8a). During the positive phase (>1) of the EA and EU, the neutral phase
(>-1 and <1) of the WA, and the negative phase (<—1) of the PNA, WP, and ENSO, the likelihood
of dry patterns increased in February (Figure 8b). During the positive phase (>1) of the ENSO, the
neutral phase (>—1 and <1) of the EA and WP, and the negative phase (<—1) of the PNA, WA, and EU,
the likelihood of wet patterns increased in December (Figure 8c). During the positive phase (>1) of the
PNA, WA, WP, and ENSQO, the neutral phase (>-1 and <1) of the EU, and the negative phase (<—1) of
the EA, the likelihood of wet patterns increased in February (Figure 8d).
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Table 1 summarized the results. Dry patterns (WT1 + WT2 + WT4) and wet patterns (WT3 + WT5)
play leading roles in December and February, respectively. In December, less precipitation was due to
the higher frequencies of dry patterns and lower frequencies of wet patterns. Ignoring the middle phase,
the positive and negative phases are contrasted here. It is often accompanied by the positive phase
of EA, PNA, WA, and EU, and the negative phase of WP and ENSO. In February, less precipitation
was due to the higher frequencies of wet patterns and lower frequencies of dry patterns. It is often
accompanied by the positive phase of PNA, WA, WP, and ENSO, and the negative phase of EA and EU.

Table 1. The links to the various teleconnection phases (positive or negative), the variation of frequencies
of different WTs (Dry and Wet), and the correlation to higher or lower amounts of precipitation. The bold
font marks types that play leading roles. EA: eastern Atlantic pattern, PNA: Pacific/North American
pattern, WA: western Atlantic pattern, WP: western Pacific pattern, and EU: Eurasian pattern, ENSO:
El Nifio-Southern Oscillation.

Category EA PNA WA WP EU ENSO Frequency Precipitation
Dec_Dry (WT1 + WT2 + WT4) + + + - + - 1 1
Feb_ Dry (WT1 + WT2 + WT4) + - - - + - ! 1
Dec_ Wet (WT3 + WT5) - - - + - + 1 1
Feb_ Wet (WT3 + WT5) - + + + - + 0 1

Therefore, it suggested that except for PNA and WA, the other four teleconnection patterns
(EA, WP, EU, and ENSQ) are closely related to the WTs that are closely related to precipitation. During
the positive phase of the WP and ENSO and the negative phase of the EA and EU, the likelihood of wet
patterns will increase. On the contrary, during the positive phase of the EA and EU and the negative
phase of the WP and ENSO, the likelihood of dry patterns will increase. Given that PNA and WA
occur far away from southeastern China, it is easily expected that they are not related to the WTs. The
main mechanism of EA affecting winter climate in China is similar to the EU. They are mainly due
to the interaction of the anticyclonic circulation anomalies in Siberia and the two cyclonic circulation
anomalies near the Bay of Bengal and northeast China. In a positive anomaly, the circulation structure
promotes the southward movement of cold air, while in a negative anomaly, the opposite is true.

In addition to the above teleconnection, MJO also plays an important role in the evolution of
weather and climate, and the intensity of MJO in winter is stronger than that in summer [8]. In order to
understand the influence of MJO on winter precipitation in southeastern China, the relative frequencies
of WTs corresponding to eight different MJO phases were calculated separately (Figure 9).

In December (Figure 9a), during the strong state of MJO (denoted by H) for dry patterns,
the likehood of the sixth, seventh, and eighth phase increases, while the likehood of the first, second,
and third phase decreases. During the weak state of MJO (expressed as L), the opposite is true. For wet
patterns (Figure 9c), the situation is opposite to the corresponding dry patterns (Figure 9a). This
result implies that the first, second, and third phases of MJO are beneficial to the occurrence of winter
precipitation in southeastern China in December, while the sixth, seventh, and eighth phases of MJO
have inhibitory effects on precipitation. In February (Figure 9b), during the strong state of MJO for dry
patterns, the likehood of the fifth, sixth, and seventh phase increases, while the likehood of the second,
third, and eighth phase decreases. During the weak state of MJO (expressed as L), the opposite is true.
For wet patterns (Figure 9d), the situation is opposite to the corresponding dry patterns (Figure 9b).
This result implies that the second, third, and eighth phases of MJO are beneficial to precipitation,
while the fifth, sixth, and seventh phases of MJO have inhibitory effects on precipitation.

Our findings are in agreement with Jia et al. [28] that the phase change of MJO has considerable
influence on winter rainfall in China [28]. Influenced by the phase change of MJO, changes have taken
place in the southern trough of the Bay of Bengal and the western Pacific subtropical high, which
ultimately led to changes of northward moisture transport coming from the Bay of Bengal and the
South China Sea.
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Figure 9. Intraseasonal variation of frequencies of different WTs (Dry and Wet). Frequencies for (a)
December Dry Pattern (WT1 + WT2 + WT4), (b) February Dry Pattern (WT1 + WT2 + WT4), (c)
December Wet Pattern (WT3 + WT5), and (d) February Wet Pattern (WT3 + WT5) during eight different
phases of Madden—Julian Oscillation (MJO). For each MJO phase, the two bars represent the strong
(denoted by H) MJO and weak (expressed as L) MJO, respectively.

4. Discussion

Getting more acquainted with the precipitation associated with the WTs, WTs were reassembled
and named as two different types: dry pattern and wet pattern. To understand the roles that
teleconnections play in wintertime weather over southeastern China, the dry pattern and wet pattern
frequencies during various phases of the teleconnections were counted. Moreover, statistics and
comparisons of the difference of relationship between the teleconnection phases and dry pattern and
wet pattern during December and February were also carried out. However, our analytical methods
and computational results differ from previous studies [3,4]. The characteristic of our analysis is to
recombine the categories that are prone and not prone to precipitation. As mentioned in Roller et al. [3],
it is possible that switching from one WT to another is associated with some kind of teleconnection
phase switching from positive/negative to negative/positive.

In particular, we find a distinct evolutionary chain in the analysis of the rule of pattern evolution
(WTI3->WT1->WT2—-WT5—WT3). The chain corresponds to some specific stages of cold air activity
(gestation (WT3), outbreak (WT1), eastward withdrawal (WT2), and extinction (WT5)). Over the past
38 years (1979-2016), the chain has appeared frequently (21 times). This result fully illustrates that the
physical process of cold air activity in winter can be captured by the progression rule of wet and dry
patterns. In addition, WT1 indicates that the whole area is controlled by an anticyclone, resulting in a
dry and cold climate throughout the whole area. Unlike WT1, WT4 is explained by the prevailing
northwest wind caused by a trough, which leads to dry and cold weather. WT1 and WT4 weather
patterns are similar, but the physical processes behind them are quite different. The transition between
them is just the transition between these two physical states.
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5. Conclusions

In this paper, the frequency, persistence, and progression of different WTs in southeastern China
and their relationship with precipitation and teleconnection were analyzed. The causes of intraseasonal
differences in precipitation were analyzed. These analyses lay a foundation for our understanding of
the relationship between large-scale circulation and local weather patterns. Based on this, the physical
mechanism of winter precipitation and its intraseasonal variation in southeastern China under the
influence of large-scale circulation are revealed. The main conclusions are as follows:

(1) The DB index can be used to determine the best optimal WTs (the optimal number of WTs is
five). Whether the number of WTs can be reasonably chosen determines whether the analysis of the
evolution of WT is correct or not. WTs obtained by the k-means clustering analysis can provide an
objective categorization and consider all days. With these WTs, we can identify which ones are most
likely to generate precipitation.

(2) Different WTs may have similar precipitation patterns, which can be classified as dry and wet
on the whole. The precipitation anomalies of WT1, WT2, and WT4 are negative, while those of WT3 and
WT5 are positive. However, the precipitation caused by different WTs has totally different formation
mechanisms. These differences can be effectively identified by the k-means clustering analysis method.

(3) In the analysis of the evolution of WT, we find a special evolutionary chain that can
be used to explain the cold wave weather process in winter. The sequence of the chain is
WT3-WT1-WT2—-WT5—WT3. The different stages of the cold wave weather process correspond
to the different WTs in the evolutionary chain, and can well correspond to the teleconnection phase
changes. The special phases of EA, WP, EU, ENSO, and MJO also correspond to them.

(4) Precipitation in December and February is quite different. Then, the intraseasonal differences
of precipitation were decomposed into three different parts: the intra-pattern variability component,
the pattern frequency component, and the combined term. The intraseasonal variation of precipitation
can be attributed to the intraseasonal variation of the frequency of WT occurrence. In December, dry
modes such as WT1, WT2, and WT4 appeared more frequently, while wet modes such as WT3 and
WT5 appeared more frequently in February.

Our work establishes a link between synoptic-scale and large-scale circulation, thus providing a
reference for climate model simulation and future climate prediction.
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