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Abstract: Calculation of actual evapotranspiration (AET) is of vital importance for the study of
climate change, ecosystem carbon cycling, flooding, drought, and agricultural water demand. It is
one of the more important components in the hydrological cycle and surface energy balance (SEB).
How to accurately estimate AET especially for the Tibetan Plateau (TP) with complex terrain remains
a challenge for the scientific community. Using multi-sensor remote sensing data, meteorological
forcing data, and field observations, AET was derived for the Nagqu river basin of the Northern
Tibetan Plateau from a surface energy balance system (SEBS) model. As inputs for SEBS, improved
algorithms and datasets for land surface albedo and a cloud-free normalized difference vegetation
index (NDVI) were also constructed. The model-estimated AET were compared with results by using
the combinatory method (CM). The validation indicated that the model estimates of AET agreed well
with the correlation coefficient, the root mean square error, and the mean percentage error of 0.972,
0.052 mm/h, and −10.4%, respectively. The comparison between SEBS estimation and CM results also
proved the feasibility of parameterization schemes for land surface parameters and AET.
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1. Introduction

Actual Evapotranspiration (AET), which is the water lost to the atmosphere from the
land surface [1], is a crucial component of the terrestrial water cycle and energy balance [2,3].
In addition, accurate AET information at a regional scale is critical for quantitative understanding of
land-atmosphere interactions and providing valuable means to efficiently use water resources [4,5].
However, it is difficult to measure AET through point observation in remote mountain regions, such as
the Tibetan Plateau (TP), which also has harsh climate conditions. The TP, with an average elevation of
more than 4000 m above sea level, is often called the ‘Third Pole’ because of excessive amounts of snow
and ice existing, especially for mountainous regions. The large heat sink created during the spring and
summer has a profound impact on the mid-troposphere [6,7]. The thermal forcing effectively enhances
the Asian monsoon and modulates its variability [8]. In addition, for the water cycle, the TP contains
the headwaters of major rivers in Asia and is often referred to as the ‘Asian Water Tower’ [9].
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Several eddy-flux towers have been set up in the TP [10], but they cannot provide sufficient
or accurate estimations of regional AET over a heterogeneous area. With rapid development of
remote sensing technology, regional and meso-scale patterns of the characteristics of land surface
parameters used for AET estimation can be mapped efficiently with satellite data [11]. Therefore, several
satellite-based AET approaches are applicable for determining AET at different scales, which include
simplified empirical regressions and physically based surface energy balance (SEB) models [12–16].
The empirical methods can be established based on in situ measurements of AET and related
hydrometeorological parameters for different homogeneous regions. This kind of method has some
advantages due to its simplicity. The empirical models are more accurate under the in-situ conditions it
is based on. If these conditions are fairly homogenous over large scales, empirical models can be accurate
enough. For heterogeneous regions, empirical models have their limitations. The physically-based
models use meteorological parameters and land surface parameters retrieved from satellite images as
model inputs. The calculation for these models include complex solution of the turbulent heat fluxes.
However, these models have the ability to estimate meso-scale, regional scale, and even global scale
AET with reasonable accuracy. They have other advantages, such as low cost, continuous monitoring,
and clear physical mechanisms involved. The physically-based surface energy balance models have
been widely used to estimate AET with the aid of remote sensing techniques [14,15,17,18].

Although researches on the estimation of AET have become available for various applications [11,19],
most of them only focus on the regional scale or the global scale. AET is still difficult to calculate
accurately because of the heterogeneous landscape and the large number of controlling factors involved.
Studies on the estimation of AET at a basin scale over the TP are rather scarce. Furthermore, in recent
inter-comparisons of global AET estimation results, large model uncertainties were observed [20].
First, these uncertainties come from different models and approaches for calculating AET. Second, for
a heterogeneous land surface like the TP, the roughness length for heat transfer in a model can vary
with geometric and environmental variables by several orders of magnitude. Large uncertainties are
caused by estimating evaporation for different land surface types [20]. Third, some of the model input
forcing parameters need improvement. For example, most of the previous models used vegetation
indices processed by the maximum value compositing (MVC) method while the effects of cloud cover
were not removed completely [21].

Since basin-scale AET data are crucial to close the water cycle, more attention should be paid to
local basin scale studies such as the Nagqu river basin over the TP. The motivation for the current
study is that regional AET data over the TP with reasonable accuracy are still needed. This study aims
to test the feasibility of the surface energy balance system (SEBS) model to derive the AET at a local
basin scale. As input parameters for AET calculations, broadband albedo was parameterized with a
new formula. Normalized difference vegetation index (NDVI) was reconstructed by cloud removal
before being added to the model.

2. Materials

Taking the quality and continuity of in-situ measurements into account, this study mainly focuses
on the year 2003. Daily meteorological data, surface meteorological forcing data, 10-day composite
SPOT Vegetation (VGT) data, and daily Moderate Resolution Imaging Spectroradiometer (MODIS)
data were used as an input for 10-day mean AET calculations.

2.1. Study Area

The Nagqu river basin, which is located in the southern part of the TP, China, has a size of about
8749 km2 and a mean elevation of more than 4808 m above sea level (Figure 1). It is located between
the Tanggula Mountains and the Nyainqentanglha Mountains [22]. The Nagqu river basin is part of
the Nu River system. Gentle hills and mountains are scattered throughout the entire basin terrain.
The dominant vegetation type is meadow. Strong solar radiation and low air temperature are two
characteristic climate conditions for the study area. The annual precipitation is about 430.2 mm with
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monthly sums ranging from 3.2 mm (January) to 103.1 mm (July). A clear demarcation between the
dry and wet season is identified due to the influence of the Asian monsoon. Approximately 80% of the
total precipitation falls during the wet season (from June to August).

Figure 1. Location and topography of the study area. (a) Location of the TP and Coordinated
Enhanced Observing Period Asia–Australia Monsoon Project on the TP (CAMP/Tibet) experiment area.
(b) Location of the meteorological stations (red points) and the Nagqu river basin (curved boundary) in
the CAMP/Tibet experiment area.

2.2. Satellite Data

The input satellite data are shown in Table 1. The datasets include: (1) 1-km MODIS land surface
temperature (LST) data (MOD11A1), (2) 1-km VGT NDVI, (3) 1-km VGT narrowband albedo, (4) 30-m
ASTER digital elevation model (DEM), (5) 1◦ × 1◦ MODIS aerosol optical depth (AOD) (MOD08D3),
and (6) 1-km MODIS land cover type (LCT) data (MOD12Q1). Since clouds are always occurring in the
satellite images, we only choose images taken with total cloud cover of less than 40% in this study.
With ancillary information from MOD06_L2, images with cloud cover of more than 40% were excluded.
To maintain consistency in spatial and temporal resolution, all satellite data were preprocessed by
temporal-spatial matching. The spatial resolution was aggregated into 1 km cells using a nearest
neighbor interpolation method and the daily temporal resolution was averaged into 10-day intervals.

2.3. In Situ Data and Surface Forcing Data

Taking data continuity and quality into account, the Northern Portable Automated Meso-net
(NPAM) and Bu Jiao (BJ) stations in the Nagqu river basin, together with the D105 and ANNI stations
around the study area were used. The observational data for 2003 from the Coordinated Enhanced
Observing Period Asia–Australia Monsoon Project on the Tibetan Plateau (CAMP/Tibet) were used as
inputs for the combinatory method (CM). The in situ meteorological data included hourly multiple-layer
air temperature, relative humidity, wind speed, soil heat flux, air pressure, and soil moisture. Near
surface air temperature, specific humidity, and wind speed of the ITPCAS forcing dataset were selected
as inputs for the SEBS model. The forcing dataset has merged the observations from 740 operational
stations (among which one station was located in the study watershed) of the China Meteorological
Administration (CMA) with the corresponding Princeton global meteorological forcing dataset [23].
All data were preprocessed to keep the same resolution by temporal-spatial matching (1). The forcing
data were spatially interpolated to a 1-km resolution using a nearest neighbor interpolation method (2).
The daily LST data of the Terra/MODIS were averaged into 10-day intervals.
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Table 1. Input datasets for calculation of actual evapotranspiration by the surface energy balance
system model.

Data Type Variable
Unit Sensors Platform

Resolution

Names Spatial Temporal

Remote
sensing data

LCT - MODIS Terra 1km -
DEM m ASTER Terra 30 m -
LST K MODIS Terra 1 km daily

AOD - MODIS Terra 1◦ × 1◦ daily
NDVI - VGT SPOT-5 1 km 10-day
albedo - VGT SPOT-5 1 km 10-day

ITPCAS
forcing data

Air temperature K - - 0.1◦ × 0.1◦ 3-h
Specific humidity kg/kg - - 0.1◦ × 0.1◦ 3-h

Wind speed m/s - - 0.1◦ × 0.1◦ 3-h
Air pressure Pa - - 0.1◦ × 0.1◦ 3-h

LCT: Land Cover Type; DEM: Digital Elevation Model; LST: Land Surface Temperature; AOD: Aerosol Optical
Depth; NDVI: Normalized Difference Vegetation Index; ITPCAS: Institute of Tibetan Plateau Research, Chinese
Academy of Sciences; MODIS: Moderate Resolution Imaging Spectroradiometer; ASTER: Advanced Spaceborne
Thermal Emission and Reflection Radiometer; VGT: Vegetation; SPOT: Satellite Pour I’Observation de la Terre.

3. Methods

Land surface physical parameters, such as NDVI, albedo, land surface emissivity, and downward
shortwave radiation play an important role in land-atmosphere interactions. In this study, land surface
characteristics were derived from satellite images and meteorological forcing data. They were used as
inputs for the SEBS model.

3.1. Reconstruction of Normalized Difference Vegetation Index

The MVC method has been widely used to derive vegetation products. However, some cloud
and haze effects remain in NDVI data after using the MVC method. Therefore, the NDVI time series
were reconstructed by the harmonic analysis time series (HANTS) algorithm, which combines cloud
removal and data smoothing in a single operation [24]. The principle of the algorithm is that vegetation
growth (NDVI) has a strong seasonal effect. It can be simulated by a series of low frequency sinusoidal
functions. However, cloud cover can cause negative NDVI values and was previously considered to be
high frequency ‘noise’ [24]. HANTS is based on a Fourier analysis and any pixels considered ‘cloudy’
were replaced with filtered NDVI time-series values. The HANTS algorithm can be written in the
following form.

y(t) = a0 +
n∑

j=1

a j cos
(
ω jt +∅ j

)
(1)

where y(t) is the fitted curve value at time t. a0 is the average value of the time series. n is the number
of harmonics. a j is the Fourier amplitude component. ω j is the Fourier frequency. ∅ j is the Fourier
phase component. In HANTS, curve fitting is applied iteratively. Based on all data points for a pixel, a
least squares curve is calculated. All data points are then compared to the least squares curve. Because
of cloud cover, data points that are clearly below the curve are candidates for rejection. Data points
that have the greatest negative deviation are removed. The absolute error in the negative direction
of the remaining observations should be smaller than 0.05 with respect to a currently fitted curve.
Based on the remaining data points, a new curve is computed and the process is repeated using the
remaining points until no points exceed the pre-defined error threshold [25]. There is no specific rule
for determining threshold or parameters in HANTS, but some experience is usually needed before
getting optimal values.
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3.2. Determination of Albedo and Emissivity

In this study, we present an improvement of the model that converts the narrowband to broadband
albedo for the land surface based on Liang [26]. The equation (Equation (2)) was built to calculate land
surface broadband albedo by using the fitting method. Since broadband albedo is a function of the
narrowband albedo, the in situ broadband albedo from BJ, D105, NPAM, and narrowband albedo (α1,
α2, α3, and α4) from SPOT/VGT were used in the fitting procedure. Then the narrowband albedo was
converted to broadband albedo for all land cover types except water. Since we do not have in situ
albedo measurements in the study area for water, the broadband albedo of water was determined by
the method (Equation (3)) proposed by Liang [26].

αshort_land = 0.1670 + 2.2305α2 − 0.7477α3 − 4.5082α1α4 (2)

αshort_water = −0.0022 + 0.3512α1 + 0.1629α2 + 0.3415α3 + 0.1651α4 (3)

where αshort_land and αshort_water are the broadband albedo for land surface and water body, and α1, α2,
α3, and α4 are the narrowband albedos of four spectral bands, which are 0.43–0.47, 0.61–0.68, 0.78–0.89,
and 1.58–1.75 µm, respectively. The observational albedo at stations D105, NPAM, BJ, and ANNI was
used to evaluate the conversion formula before and after the improvement. The root mean square error
(RMSE) and mean percentage error (MPE) were used to quantitatively evaluate the model accuracy.

RMSE =

√∑N
i=1

(
Xobs,i −Xmodel,i

)2

N
(4)

MPE =
100%

N

N∑
i=1

Xobs,i −Xmodel,i

Xobs,i
(5)

where Xobs,i stands for in-situ measurements. Xmodel,i stands for model derived values and N is the
sample number.

Based on derived NDVI and αshort, emissivity was derived from the following equation.

ε = PV·εv + (PC − PV)·εwater + (1− PC)·εs (6)

where ε is the emissivity of mixed pixels, which is considered as a mixture of vegetation, water, and
bare soil. εv, εwater, and εs are the emissivity values for vegetation, water, and bare soil, respectively.
The εv, εwater, and εs are 0.98831, 0.994685, and 0.972785 [27,28]. PC is the ratio of mixed-pixel albedo to
bare soil albedo. PV is the fractional vegetation cover. It can be calculated using the equation below.

PV =

[
NDVI −NDVImin

NDVImax −NDVImin

]2

(7)

where NDVImax and NDVImin are the NDVI values for full vegetation cover and bare soil,
respectively [29].

3.3. Parameterization of Land Surface Heat Fluxes

The surface energy balance system (SEBS) is a single source model used to calculate the land
surface heat fluxes. The detailed framework of SEBS can be found in Su [30]. A dynamic model for
thermal roughness [31], the Monin-Obukhov similarity theory (MOST) and the bulk atmospheric
similarity (BAS) theory [32] were integrated in the SEBS model. SEBS can be used at local and regional
scales for all atmospheric stability conditions. AET is estimated as the residual of the SEB equation
(Equation (8)).

Rn = H + λE + G (8)
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where Rn (W/m2)is the net radiation flux, H (W/m2) and G (W/m2) are the turbulent sensible heat
flux and soil heat flux, respectively, λE (W/m2) is the turbulent latent heat flux, and λ (J/kg) is the
latent heat of vaporization.

The net radiation can be calculated using the equation below.

Rn = (1− α)·Rswd + ε·Rlwd − σ·ε·T4
S (9)

where α is the albedo, TS is the land surface temperature, ε is the surface emissivity, σ is the
Stefan-Bolzmann constant, Rswd is the downward shortwave radiation, and Rlwd is the downward
longwave radiation.

The soil heat flux is calculated by the formula below.

G = Rn·[0.05 + 0.265·[1− PV ]] (10)

The SEBS model constrains the surface heat flux estimation by introducing wet limit cases and dry
limit cases. In wet limit cases, the evapotranspiration is only limited by the available energy. The SEB
equation can be written by using the equation below.

λEwet = Rn −G−Hwet (11)

In dry limit cases, the latent heat flux becomes zero because of soil water shortage. The SEB
equation can be given by the equation below.

Hdry = Rn −G (12)

The relative evaporation is shown below.

Λr = 1−
λEwet − λE
λEwet

(13)

By the use of the above limit conditions, SEBS avoids the tedious process of selecting hot and
cold pixels, which is different from other SEB models. The evaporative fraction is given by the
formula below.

Λ =
λE

H + λE
=

λE
Rn −G

=
Λr·λEwet

Rn −G
(14)

where Λr is relative evaporation and λEwet is the latent heat flux at the wet limit. The detailed
computational schemes for λEwet can be found in Reference [30].

The surface solar radiation is an important input in SEBS. For a mountainous region like the TP,
Rswd varies with different geometric relationships between the solar position and the tilt of land surface,
which includes factors of altitude, surface slope, and aspect. Rswd is divided into direct (Ib), diffuse (Id),
and reflected (Ir) radiation, which can be computed by Equations (15)–(17).

Ib = I0·τc· cosθ (15)

Id = I0·τd·(cos s)2/(2 sin a) (16)

Ir = r·I0·τr·(sin s)2/(2 sin a) (17)

where I0 is the solar irradiance at the top of the atmosphere, a is the solar altitude angle, θ is solar
incidence angle, s is the slope of the ground surface, and r is the ground albedo. τc, τd, and τr are
the transmittance for solar beam radiation, the solar diffuse radiation, and the reflected radiation,
respectively. The detailed solutions for the parameters in Equations (15)–(17) were presented in
Reference [33].
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3.4. The Combinatory Method

In the absence of measured latent and sensible heat flux data by eddy-covariance instruments,
AET, which is determined by the combinatory method, were used for validation with estimation results
obtained by SEBS. Since CM needs gradient observation of wind speed, air temperature, and humidity
as inputs, only in situ measurements from four stations (NAPM, BJ, D105, and ANNI) were used to
calculate AET at point scale. The combinatory method combines the aerodynamic method with the
energy balance method and determines the turbulent fluxes in the surface layer based on MOST [5,34].
λE can be derived by using Equations (18)–(22).

H0 = ρCpk2Z2
A
∂U
∂Z

∂θ
∂Z

(18)

λE0 = ρλk2Z2
A
∂U
∂Z

∂q
∂Z

(19)

G = GZ +

∫ Z

0
CS
∂T
∂t

dz (20)

F =
Rn −G

H0 + λE0
(21)

λE = λE0 · F (22)

In this case, H0 and λE0 G
(
W/m2

)
are the turbulent sensible heat flux and turbulent latent heat flux

before correcting. GZ
(
W/m2

)
is the soil heat flux measured at a specific soil depth, F is the stratification

influence function, λE (W/m2) is the latent heat flux after correction, and E (mm) is evapotranspiration.
Cp (J/kg/K) is the specific heat capacity of air, ρ (kg/m3) is air density, and k = 0.4 (Von Karman’s
constant). ZA =

√
Zi ·Zi+1, Zi(m) and Zi+1(m) are the observation heights of two levels. CS is specific

heat capacity of soil. T (K) and U(m/s) are the measured air temperatures and wind speed while q and
θ are specific humidity and potential temperature, respectively [5].

4. Results

4.1. Reconstructed Normalized Difference Vegetation Index

Two different pixels (located at 31.79◦ N, 91.94◦ E and 31.09◦ N, 91.71◦ E) were chosen randomly
for comparison between the original NDVI processed by MVC and reconstructed NDVI by HANTS
(Figure 2). The MVC process was used to recalibrate for the removal of cloud, but some abnormal
values caused by residual cloud cover still remain visible in Figure 2a,d. As can be seen on DOY 233
(Figure 2a), the NDVI value of the pixel marked by a red point suddenly decreased from 0.45 to 0.1.
This signal was recorded as a low NDVI value in blue in Figure 2b,e. The change took place in a very
short time period of 10 days, which was not caused by a vegetation growth process but by clouds. After
reconstruction (Figure 2c,f), some dark green areas diminished and were replaced by normal NDVI
values. As shown by Figure 2a,d, an improved smoothing of time series can be achieved. Negative
outliers of NDVI observations that are clearly below the curve due to cloud cover or atmospheric haze,
were removed while the characteristics of the original trend was maintained.
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Figure 2. Comparison between NDVI before and after harmonic analysis with HANTS for pixels with
cloud cover. Red points show the exact locations of the two cases. (a,d) are seasonal variations of
original and reconstructed NDVI for the two pixels. (b,c) show the spatial distribution of original and
reconstructed NDVI on DOY 233. (e,f) show spatial distribution of original and reconstructed NDVI on
DOY 244.

4.2. Improvement of Broadband Albedo

As shown in Figure 3a,b, the improved method (Equation (2)) has higher R (0.655), lower RMSE
(0.078), and MPE (−7.21%) than the original method (Equation (3)) (with R, RMSE, and MPE values of
0.485%, 0.1%, and 10.629%, respectively), which means the new conversion model could provide a
better estimation of broadband albedo than the original one. Since snow-covered situations have not
been taken into account, some errors might occur when albedo is relatively high. According to global
land cover 2000 (GLC2000), the dominant land cover in the study area is alpine and subalpine plain
grass. The error of estimated albedo could be large only when snowfall happens, which only takes up
a small proportion. This can also be identified from Figure 3.

Figure 3. Comparisons of the original model (a) and improved model (b) results with in situ
measurements at four stations of NPAM, BJ, D105, and ANNI.
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To further validate the improved model, independent observational data from the ANNI station
were selected for cross validation (Figure 4). As shown by Figure 4a,b, R, MPE, and RMSE of the
original method are 0.511, 27.5%, and 0.108 while the statistical indexes from the improved method are
0.606, 9.8%, and 0.076, respectively. Therefore, the improved model could provide a more accurate
estimation of broadband albedo in the Nagqu river basin.

Figure 4. Comparison of statistical indexes between the original (a) and improved (b) albedo model at
the ANNI station.

4.3. Estimation of Actual Evapotranspiration

Land surface 10-day AET derived from SEBS were validated with the 10-day AET determined
using in situ observations taken in the Nagqu river basin (Figure 5). Since the validation sites are built
on relatively flat and homogenous underlying surfaces, the observations are representative of a 1-km
pixel. For the time being, how to remove cloud effects on LST and downward radiation flux remains a
challenging issue. As shown in Figure 5, the model-estimated AET values are very close to CM results
with R, RMSE, and MPE of 0.972, 0.052 mm/h, and −10.4%, respectively.

Figure 5. Comparison between derived AET from SEBS and CM at four stations of NPAM, BJ, D105,
and ANNI.

Maps of hourly AET in the Nagqu river basin in January, April, May, and December are shown in
Figure 6. AET in January (0 to 0.29 mm/h, Figure 6a) and December (0 to 0.43 mm/h, Figure 6d) were
significantly lower than those in May (varies from 0 to 0.77 mm/h, Figure 6c). Because of the increasing
soil moisture during the period of frozen soil melt, AET increases suddenly from April to May, with
average AET increasing from 0.184 mm/h to 0.479 mm/h. In the SEBS model, the uncertainty in AET
is greatly reduced by taking the energy balance at the limiting cases into account. In comparison
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with previous studies [12,35], which derived the latent heat flux only through LST and surface layer
meteorological conditions and are not constrained by limiting cases, the associated uncertainty in the
derived ET is small. Moreover, instead of using fixed values as before, the dynamic roughness height
for heat transfer was incorporated in SEBS.

Figure 6. Spatial distribution of mean hourly ET values for January (a), April (b), May (c), and December
(d) in the Nagqu river basin.

5. Discussion

Because of complicated weather conditions over the TP, only several satellite images with total
cloud cover less than 40% were used in this study. Although the derived results were generally in
agreement with field measurements, some discrepancies still exist. Several reasons may account
for this. First, there are errors in the satellite-derived parameters, such as LST, albedo, emissivity,
and NDVI. The surface meteorological forcing data of air temperature, humidity, and wind speed
also have errors, which has been proved by several studies [31,36]. Second, scale issues always exist
between satellite-derived results and in-situ measurements [37]. Since there is no absolute homogenous
underlying surface, the error becomes much larger with surface heterogeneity. Third, the SEBS model
itself has assumptions and limitations. For example, the model is based on the Monin-Obukhov
similarity theory, which produces larger error under stable atmospheric stratification [17,18,30].

The MVC method is widely used to remove cloud cover on satellite images [38–40]. It can be used
to produce time series of land surface characteristic parameters, such as NDVI, LST, and the leaf area
index (LAI) [21,25,41]. However, evidence has shown that artefacts caused by residual cloud cover
and atmospheric haze remain visible in MVC-processed time series, which has also been proved in our
study. The HANTS algorithm was used to reconstruct one-year cloud-free time series based on the
original MVC time series data. The robustness of the HANTS algorithm was confirmed by validating
at two different vegetation sites. The HANTS algorithm is superior to other time series processing
methods but improvements related to its numerical stability in case of long gaps with no data are still
desirable. Taking superiority of the HANTS algorithm into account, we would like to suggest using
the above method to further process MVC time series to avoid some uncertainties especially for the
estimation of AET and vegetation trend analyses.

The improved land surface characteristic parameter retrieval algorithms, which were incorporated
in SEBS in this study, have the potential to be used to derive time series of AET and other land surface
heat fluxes (such as sensible heat flux, radiation flux, and soil heat flux) as well. It can also be applied
to regions at a larger spatial scale, such as the Tibetan Plateau, China, and even the globe. Additionally,
the SEBS model itself can be applied to geostationary satellites to estimate AET with a fine temporal
resolution [18]. The derived AET, together with other components of the water cycle, will help close
the water cycle at a basin scale and promote the understanding of energy and the water cycle over the
TP. Another good example is that the derived AET and in situ hydrometeorological parameters were
used to investigate the inner relationship among AET and energy parameters, hydrological parameters,
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and dynamical parameters [5]. The results show that the energy-related factors are most important for
the AET in areas with high elevation like the Nagqu river basin. Both the precipitation and wind speed
have positive and negative feedback on the AET.

On the application side, SEBS has great potential. It can be suitable for an operational monitoring
system if the input forcing data can be provided in a timely manner. SEBS results may be used for
initialization or validation of hydrological, meteorological, and ecological models that usually require
SEB components at different spatial and temporal scales. The second valuable application is soil
water deficit monitoring [42,43]. The model can provide actual sensible heat flux as well as sensible
heat flux under limiting cases. Although cloud contaminations have been removed successfully in
NDVI, albedo, and emissivity data, the application of optical remote sensing data is still limited by
cloud contamination because the cloud-contaminated LST and the cloud effects on radiation have
not been taken into account yet. In the future, broadband albedo estimation would be improved by
taking snow-covered situations into account. Moreover, the estimation of the cloud effects on LST and
radiation should be focused on as well. Lastly, more extensive observation networks equipped with
eddy covariance instruments need to be constructed over the TP, especially for the vast western region,
to provide essential validation information for different satellite estimations and land surface models.

6. Conclusions

In this study, the land surface parameters in the Nagqu river basin, such as NDVI and surface
albedo, were retrieved from satellite images. Based on meteorological forcing data and derived land
surface parameters, the SEBS model were used to estimate AET with a fine spatial resolution of 1 km.
The following conclusions were drawn.

(1) A cloud-free time series of NDVI was successfully reconstructed using the HANTS algorithm.
(2) A land surface broadband albedo parameterization scheme was improved. The albedos

derived from the improved method were in good agreement with in situ measurements with a
correlation coefficient, a root mean square error, and a mean percentage error of 0.606%, 0.076%, and
−9.8%, respectively.

(3) AET with a fine spatial resolution of 1 km was derived in the Nagqu river basin based on the
SEBS model with TERRA/MODIS, SPOT/VGT, ASTER/DEM data, and meteorological forcing data as
model inputs.

(4) The feasibility and potentiality of using SEBS model to derive mesoscale AET has been
tested by comparing it with results from CM in this paper. The validation results indicated that the
model-estimated AET agreed well with CM AET with a correlation coefficient, a root mean square
error, and a mean percentage error of 0.972, 0.052 mm/h, and −10.4%, respectively.
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