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Abstract: Even with advances in climate modeling, meteorological impact assessment remains
elusive, and decision-makers are forced to operate with potentially malinformed predictions. In this
article, we investigate the dependence of the Weather Research and Forecasting (WRF) model
simulated precipitation and temperature at 12- and 4-km horizontal resolutions and compare it with
32-km NARR data and 1/16th-degree gridded observations for the Midwest U.S. and Great Lakes
region from 1991 to 2000. We used daily climatology, inter-annual variability, percentile, and dry
days as metrics for inter-comparison for precipitation. We also calculated the summer and winter
daily seasonal minimum, maximum, and average temperature to delineate the temperature trends.
Results showed that NARR data is a useful precipitation product for mean warm season and summer
climatological studies, but performs extremely poorly for winter and cold seasons for this region.
WRF model simulations at 12- and 4-km horizontal resolutions were able to capture the lake-effect
precipitation successfully when driven by observed lake surface temperatures. Simulations at 4-km
showed negative bias in capturing precipitation without convective parameterization but captured
the number of dry days and 99th percentile precipitation extremes well. Overall, our study cautions
against hastily pushing for increasingly higher resolution in climate studies, and highlights the need
for the careful selection of large-scale boundary forcing data.

Keywords: regional climate modeling; climatology; climate extremes; WRF model;
temperature; precipitation

1. Introduction

The Midwest United States (U.S.) and the Great Lakes region are one of the world’s most
productive agricultural landscapes with the world’s largest freshwater ecosystems and several
large urban centers. The regional climate of the region is influenced by large-scale atmospheric
circulations (e.g., moisture from the Gulf of Mexico in the south and arctic air outbreaks from the
north), convective activity, and ice cover/water temperature in the Great Lakes (e.g., [1]). This region
is usually fertile and has been extensively drained for agriculture. These factors contribute to large
seasonal and daily variations in air temperature, including hot summers, cold winters, and occasional
periods of drought and deluge. In recent decades, a statistically significant warming trend has been
observed over the region [2–5]. The region exhibits warming with increasing latitudes.
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The Midwest U.S. also has experienced two record-breaking floods in the last 20 years [6],
strong heat waves have been more frequent [7], and extreme precipitation frequency has doubled
relative to the last century [8]. Based on a special report for the Environmental Law and Policy Center
and the Chicago Council on Global Affairs, there is a generally positive trend in annual precipitation
for U.S. states bordering the Great Lakes for present-day (1986–2016) relative to 1901–1960, but with
strong local variations in the trend across the states (http://elpc.org/glclimatechange/). There is an
approximate 10% increase in annual precipitation averaged over the Great Lakes states [9]. The region
has also recently witnessed unprecedented extreme changes in the timing of precipitation and runoff,
with important implications for flooding, soil erosion, nutrient export, and agricultural practices [10,11].
Warm, wet winters are producing extensive early-season flooding, which threatens people and
infrastructure [12]. In addition, an increase in population and associated infrastructure have made
the region more vulnerable to flooding, irrespective of how humans are altering the climate itself.
For example, the extreme storms experienced by the Great Lakes cities in the last 30 years or so
have far exceeded the current design standards for infrastructure and have caused extensive damage.
Damages in and around Calgary, Alberta exceeded $1.7B (CA $), and Toronto sustained more than
$900M (CA $). In February 2018, the St. Joseph River near South Bend experienced a 2500-year flood,
due to an intense atmospheric river and rain-on-snow event.

Future climate change projections for the Midwest region suggest increasing temperature and
weather extremes, with regional warming up to 10 ◦C by 2100 [13]. Thus, the changes in temperature
and precipitation, as well as future changes in the extremes of the distribution of temperature
and precipitation, pose challenges for energy production, ecological conservation, human health,
water resource management, and agricultural productivity of this region (IPCC [14,15]).

These adverse changes create challenges for water resource management [16,17], sustainable and
resilient design of infrastructure [18], design of urban systems [19–26], ecosystem management [27–30],
and regional impacts on agricultural land management and production [31]. These diverse climate
change impact pathways highlight the need to evaluate the most commonly available observational
and simulated datasets to determine the effectiveness of climate models in realistically capturing
observed climate trends, variability, and extremes that contribute to impacts.

Generally, observational meteorological datasets are sparse and consist of near-surface observations
of precipitation and temperature. The measurement of other variables, such as humidity and
solar radiation, is relatively rare, and direct observations are, in isolation, often insufficient
to characterize conditions with useful spatial coverage. Likewise, experimental field data
(e.g., from radiosondes) are available in a few locations, but these kinds of observations are very limited.
Therefore, climate models have proven to be a complementary tool to fill in the data gaps in space and
time. Nonetheless, the realistic simulation of rainfall and temperature variation, especially at local
scales, in climate models remains a significant challenge. For example, the current global climate models
(GCMs) lack the capability of representing the multiscale cloud and precipitation [32]. RCMs have
more realistic rainfall than global climate models [33–35], providing future projections with greater
confidence. Thus, regional simulations constrained with large-scale forcing are crucial for determining
local climate extremes, and hence they are imperative for climate change planning for impact pathways
related to human and natural systems [36,37]. Dynamical and statistical downscaling methods
provide finer spatial resolution information for long-and short-term climate impact assessments.
However, the dynamically downscaled regional climate simulations have shown a higher skill in
capturing atmospheric variability [38–41]. Furthermore, literature shows that data assimilation
(nudging), especially the spectral nudging technique within the dynamical downscaling framework,
adds more variability and improves the model’s skill at smaller scales [42,43].

Interestingly, limited effort has been invested in validating the input large-scale forcing datasets for
regional climate models, especially in the context of extremes. This oversight may lead to the inadequate
understanding of biases in model outputs. At the same time, there is a debate in the research community
on the importance of increasing the spatial resolution of RCMs in simulating climate. Thus, the overall
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goal of this article is to evaluate multiple RCM model outputs at different resolutions (12- and 4-km)
and NARR datasets at 32-km resolution (a high-resolution NCEP model dataset with assimilated
observations) with commonly available gridded station observational data. Note, henceforth ‘horizontal
grid increments’ from the RCM will be called ‘resolution’ in the paper [44–47].

2. Methods

2.1. Gridded Observations

We used a gridded observational meteorological dataset at daily timescales and 1/16th-degree
(approx. 5 km) resolution over the Midwest and Great Lakes region. This dataset used a hybrid
product based on interpolated station records from the Daily Global Historical Climatology Network
(GHCN-Daily) station records, bias adjusted station records in Canada and regridded National Center
for Atmospheric Research (NCAR) Reanalysis [48] wind speed data. Gridded temperature and
precipitation products are based on techniques first developed by Maurer et al. [49] and Hamlet
and Lettenmaier [50]. Irregularly spaced meteorological observation station records were regridded
using the SyMAP (Synteny Mapping and Analysis Program) algorithm [51], which is an inverse
distance squared weighting scheme. The scheme also considered the relative position of stations
that are potentially cross-correlated with each other. In addition, adjustments for precipitation gauge
undercatch in the U.S. data were applied to the gridded precipitation products based on empirical
estimates of the catch ratio (CR) (defined as the ratio of long-term measurements of precipitation from
a standard 8-in U.S. precipitation gauge to those from an accurate reference precipitation gauge) [52].
The estimate of CR varies as a function of precipitation type (snow, mixed rain, and rain) and wind
speed [53]. Having established the CR for the meteorological conditions in each day, daily precipitation
values were then adjusted by multiplying by 1/CR. Precipitation undercatch in Canada was corrected by
interpolating daily station records with undercatch corrections already applied in previous efforts [54].
Additional details of this gridded meteorological dataset are presented in Byun and Hamlet [13].

2.2. NARR Datasets

We used time-varying, large-scale, 3-h National Centers for Environmental Prediction (NCEP)
North American Regional Reanalysis (NARR) simulations at 32-km resolution (http://rda.ucar.edu/

datasets/ds608.0/) as one of the datasets for comparison. NARR is a common dataset used by planners
to make impact decisions in the United States and Canada. The research community uses NARR
for creating climate and hydrology products. NARR model output is often downscaled to higher
resolutions (e.g., 1–4 km) for assessing local climate vulnerabilities. The quality of NARR data has
been evaluated with surface stations and sounding measurements [55]. Hence, it has been used in
numerous studies for the validation of regional climate simulations in North America (e.g., [56]).

2.3. WRF Model Implementation

This study used the Weather Research and Forecasting model (WRF model, Version 3.6.1) [57].
This is a non-hydrostatic, compressible model used extensively at multiple resolutions ranging from
meso-gamma (2–20 km) to local scales (~50 m) [22,24,58–63]. For the experiments in this study,
the model was configured such that the outer domain covering most of North America at 12-km
resolution (600 × 516 grid points) is centered at 52.24◦N and 105.5◦W. The inner domain at 4-km
resolution (420 × 366 grid points) covers the Great Lakes megaregion. Note, the outer 12-km domain is
big enough to account for all large-scale processes impacting the inner 4-km domain of our interest.
Note, we settled for the innermost domain’s resolution to be 4-km and not higher than that, as a tradeoff

between computational requirements for our large-scale and long-term climate simulations. The model
had 50 pressure-based terrain-following vertical levels from the surface to 100 hPa. High-resolution
static fields were used to the corresponding nested domains. The two-way nested model domains with
terrain height are shown in Figure 1a. Figure 1b shows eight U.S. states surrounding the Great Lakes
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region (viz., Illinois, Indiana, Michigan, Minnesota, New York, Ohio, Pennsylvania and Wisconsin)
along with the Canadian province Ontario in the north of the Great Lakes (Figure 1b).
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viscous sub-layer and standard similarity functions from look-up tables was used for the surface 
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Figure 1. (a) Two-way nested domains for the Weather Research and Forecasting model (WRF)
model with a grid size of 12- and 4-km as d01 and d02 respectively, overlaid on a terrain height
map; and (b) a map showing the states in the U.S. and Canadian province Ontario surrounding the
Great Lakes.

Time-varying, large-scale, 6-hourly National Center for Environmental Prediction (NCEP)-U.S.
Department of Energy (DOE) Atmospheric Model Intercomparison Project II reanalysis datasets
(NCEP-R2) [64] at T62 Gaussian grids and 17 pressure levels were applied as lateral boundary
conditions. Instantaneous model outputs at 3-hour intervals were used for analysis. Since the Great
Lakes themselves have a strong influence on the regional and local climate, sea surface temperature
(SST) and lake surface temperature (LST) were updated at the same interval as large-scale NCEP-R2
boundary conditions. This helped to provide a more accurate lower-boundary condition and capture
the possible lake effects in the WRF model. In addition, we employed spectral nudging for horizontal
winds, temperature, and geopotential height at the outer domain for the whole time-period to retain
the representation of large-scale dynamics. Note, the variables in the planetary boundary layer (PBL),
such as pressure and moisture, were not nudged because there is a strong coupling of the atmosphere
and land surface, and we allowed the atmospheric state at lower levels to adjust freely to surface
properties and forcings. For a better representation of landuse, we used 30-m 2006 National Land
Cover Data set (NLCD 2006) [65] regridded for both respective domain resolutions.

WRF model has multiple parameterizations for microphysics, convection, radiation,
boundary layer, and surface. Based on anteceded research over the region [20,24,43], we utilized the
WRF Single-Moment six-class graupel scheme (WSM6) [66] for microphysics for its robustness in
accounting for different heat and moisture tendencies in the atmosphere. We incorporated the Dudhia
scheme [67] for shortwave and the Rapid Radiative Transfer Model (RRTM) for longwave radiation
parameterizations [68]. The Monin–Obukhov similarity scheme based on Carlson–Boland viscous
sub-layer and standard similarity functions from look-up tables was used for the surface layer, and the
Yonsei University scheme [69] for PBL, and a four-layer Noah land surface model (LSM) [70] for surface
physics. Subgrid-scale cumulus convective parameterization was turned on only for the outer domain
(12-km) invoking the Kain–Fritsch scheme [71]. Since many cumulus parameterizations are poorly
posed at 4-km grid spacing, the rationale behind the choice of the Kain–Fritsch scheme was that it
activates for most of the cumulus events and yields more realistic precipitation features than fully
explicit simulations for the Great Lakes region [72–74] and other regions (e.g., [59,75]).

2.4. Experimental Design

We performed WRF simulations for a period of 10 years from 1991 to 2000. The model was
reinitialized for large-scale forcings (both atmospheric and surface) every year as previous studies have
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shown that reinitializations for long-term climate improve not only the forcing variables (e.g., pressure,
temperature, wind, and moisture) but also the model diagnostic variables (e.g., precipitation) [56,76–81].
A 24-h spin up time was used for each year. For the experiment, publicly available NARR datasets
were cropped and resized to domain d02. Note, the gridded observations over inner domain cover
only the neighboring Great Lakes states and not the rectangular domain d02.

In the analysis, we used precipitation and temperature variables in our assessment. For all
datasets, daily mean, maximum, and minimum values were calculated. We used decadal averages of
daily climatology (based on daily means) and interannual variability (based on the standard deviations
of daily means), percentile and dry days as metrics for inter-comparison for precipitation. We also
calculated decadal averages of summer and winter seasonal minimum, maximum, and average daily
temperature to delineate the temperature trends. Note, gridded observations lack data for some of the
regions in domain 2. For statistical analysis, we did not account for those regions in the simulated
datasets where observations were missing. Furthermore, note that gridded observations are missing
over the Great Lakes themselves, due to insufficient meteorological stations over open water to support
a gridded product.

3. Results

3.1. Gridded Observations

Figure 2 shows seasonal climatology and interannual variability of observed precipitation for
1991 to 2000. For comparison, we defined the warm season from April to September and the
cold season from October to March. During the warm season, the Midwest U.S. and Great Lakes
region gets ample precipitation as rain mostly used for agriculture production. During the cold
season, the temperature drops significantly below freezing. Warm season observations showed an
average 4 mm/day precipitation (mostly in the form of rain) in the lower Great Lakes States and
reduced precipitation (~3 mm/day) for upper Great lakes U.S. region and lower Canadian provinces
(Figure 2a). Indiana, Illinois, Ohio, Wisconsin, and parts of Minnesota showed a relatively higher
rainfall in comparison with other U.S. states. Observations showed that with higher precipitation,
the interannual variability in the warm season was also higher (2–3 mm/day in wet areas vs. 1 mm/day
in drier areas) (Figure 2c). In the cold season, most of the precipitation occurs in the form of snow.
Observations showed that the eastern part of the U.S. and Canada had relatively large cold season
precipitation in comparison to the western parts of the domain. The average amount of precipitation
in the cold season was higher than warm season mostly due to the contribution of lake-effect snow
in winters on the east side of the Great Lakes (Figure 2b). Overall, the interannual variability of
precipitation for the cold season was lower than that for the warm season. However, the highest
interannual variability was found in the same locations that are prone to lake-effect snow.
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Figure 2. Seasonal climatology of observed gridded precipitation for (a) warm season from
April–September and (b) cold season from October to March for a period of 10 years from the
year 1991 to 2000. Similarly, seasonal interannual variability of observed precipitation for (c) warm and
(d) cold season.

3.2. NARR Datasets

During the warm season, NARR datasets showed a similar climatological trend as observations
over the southwest region of the domain (Figure 3a). However, NARR substantially underestimated
precipitation over the Great Lakes states. During the cold season, NARR dataset showed a low
precipitation bias throughout the domain (Figure 3b). The interannual variability of NARR dataset
during the warm season was less than 1 mm/day for northern and around 1.5–2 mm /day in the
southern region of the domain (Figure 3c). Note that due to poor resolution (32-km) of NARR data,
we also did not observe fine-scale spatial patterns of precipitation. Moreover, the interannual variability
of the simulations was also low in the cold season (Figure 3d). Surprisingly, NARR data did not
capture lake-effect snow bands observed on the east side of the Lakes in the cold season, resulting in
an underprediction of cold-season precipitation in these areas.
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3.3. WRF Model Simulations

Simulations with the WRF model were performed at 12- and 4-km resolutions for the years 1991 to
2000. Climatological model outputs for the warm and cold season at both 12- and 4-km showed
a similar spatial pattern (Figure 4). However, the amounts of precipitation at 4-km were less than at
12-km resolution. Recall that at 12-km resolution, we parameterize the convective precipitation using
Kain–Fritsch scheme, while at 4-km we explicitly resolve the convective precipitation. Warm season
climatology comparison of WRF simulations (Figure 4a,c) with observations (Figure 2b) suggested
that the increase in resolution for our case diminished the warm season precipitation amounts
over Wisconsin and Ohio. Both model resolutions also underestimated warm season precipitation
amounts (e.g., for Illinois and Indiana). However, during the cold season, WRF showed a good match
with observations (Figure 4b,d). The cold season precipitation reached a maximum of 6 mm/day.
Interestingly, simulations were able to capture the higher lake-effect precipitation in the east side of the
Great Lakes with fine-scale representation at 4-km in comparison to 12-km. The primary reason for the
improved capture of lake-effect precipitation was the explicit inclusion of lake surface temperatures as
a driver in our model dynamics. As evident, the model outperformed the relatively poor observations
in the cold season, as it is difficult to capture the lake-effect processes via observation stations [15].
Both 12- and 4-km simulations captured the seasonal difference in interannual variability (Figure 5).
Interannual variability was higher in the warm season (~2 mm/day) and lower in the cold season
(~1 mm/day).
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To further explore the differences between the 12-km domain with convective parameterization and
the 4 km domain that resolves convection explicitly, we investigated the climatology into monthly parts
(Figure 6). In this test, we assessed the monthly climatology for April, May, and June. Both simulations
at 12- and 4-km showed almost identical precipitation patterns in April. However, the differences
began with large-scale convection occurring in May (Figure 6b,e) and were even more evident in
June ((Figure 6c,f). With a higher convective activity, 4-km simulations without explicitly resolving
convection did not capture the higher precipitation amounts as evident in observations (Figure 2).
This is counter-intuitive to the findings in Sharma and Huang [59] where the grid-scale (i.e., with no
parameterized convection) precipitation amounts increased with an increase in resolution for complex
mountainous terrain. Thus, an increase in the resolution better captures mechanical/topographic lifting
processes in complex terrain but seems to be a disadvantage in capturing convective processes in the
relatively flat Midwestern landscape. It is not immediately clear whether these effects are related
simply to the need for additional model tuning and calibration at 4-km resolution, or whether physical
processes imperfectly captured at 4-km are likely reasons for the low bias in convective precipitation.

Atmosphere 2019, 10, x FOR PEER REVIEW 9 of 19 

 

To further explore the differences between the 12-km domain with convective parameterization 
and the 4 km domain that resolves convection explicitly, we investigated the climatology into 
monthly parts (Figure 6). In this test, we assessed the monthly climatology for April, May, and June. 
Both simulations at 12- and 4-km showed almost identical precipitation patterns in April. However, 
the differences began with large-scale convection occurring in May (Figure 6b,e) and were even more 
evident in June ((Figure 6c,f). With a higher convective activity, 4-km simulations without explicitly 
resolving convection did not capture the higher precipitation amounts as evident in observations 
(Figure 2). This is counter-intuitive to the findings in Sharma and Huang [59] where the grid-scale 
(i.e., with no parameterized convection) precipitation amounts increased with an increase in 
resolution for complex mountainous terrain. Thus, an increase in the resolution better captures 
mechanical/topographic lifting processes in complex terrain but seems to be a disadvantage in 
capturing convective processes in the relatively flat Midwestern landscape. It is not immediately clear 
whether these effects are related simply to the need for additional model tuning and calibration at 4-km 
resolution, or whether physical processes imperfectly captured at 4-km are likely reasons for the low 
bias in convective precipitation.  

 

Figure 6. Top panel shows the monthly climatological precipitation for WRF model domain at 12-km 
with explicitly resolve convective precipitation for (a) April, (b) May, and (June). Bottom panel (d), 
(e) and (f) are same as top panel (a), (b) and (c) respectively but for domain at 4-km without explicit 
resolved convection. 

3.4. Inter-Comparison among all Datasets 

For a detailed comparison between gridded observations, 32-km NARR, and 12- and 4-km WRF 
model outputs, we plotted summer (June–July–Aug) and winter (Dec–Jan–Feb) average precipitation 
(Figure 7). During summers, average NARR precipitation compared well with observations for the 
regions south of the Great Lakes. North of the Great Lakes, observations and simulations matched 
well for both 12- and 4-km WRF resolutions. However, 4-km as noted earlier showed relatively poor 
performance in comparison to observations. Interestingly during winters, NARR overall showed 
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Figure 6. Top panel shows the monthly climatological precipitation for WRF model domain at 12-km
with explicitly resolve convective precipitation for (a) April, (b) May, and (June). Bottom panel (d–f)
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3.4. Inter-Comparison among all Datasets

For a detailed comparison between gridded observations, 32-km NARR, and 12- and 4-km WRF
model outputs, we plotted summer (June–July–Aug) and winter (Dec–Jan–Feb) average precipitation
(Figure 7). During summers, average NARR precipitation compared well with observations for the
regions south of the Great Lakes. North of the Great Lakes, observations and simulations matched
well for both 12- and 4-km WRF resolutions. However, 4-km as noted earlier showed relatively poor
performance in comparison to observations. Interestingly during winters, NARR overall showed poor
average precipitation amounts throughout the domain, and both WRF simulations showed comparable
results, especially on the eastern side of the Great Lakes (Figure 7b,d,f,h). This suggests that all three
models are inheriting these errors primarily from the large-scale forcing. In particular the 4-km likely
“inherits” large-scale winter storms from the 12-km simulations. That the large-scale forcing should
play an important role makes sense given that winter storms are often large-scale cyclonic events.
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Figure 7. Left panel shows summer (June–July–Aug) average precipitation for a period of 10 years
from the year 1991 to 2000 from (a) observations, (c) NARR dataset (e) WRF model output at 12-km,
and (g) WRF model output at 4-km. The right panel (b,d,f,h) is the same as left, but for winter
(Dec–Jan–Feb).

Analysis of 99th percentile extreme daily precipitation (PCP) showed important findings for
summer and winter (Figure 8). During summers, NARR showed poor results for PCP, even though it
performed well in capturing the mean statistics. This means that extreme storms with high intensity
were muted in NARR. However, WRF simulations performed well in comparison with observations for
PCP in summers. Interestingly, 4-km WRF simulations that did not show a good match for the mean
statistics performed well for the extreme statistics for PCP as shown in Figure 8g. Likewise, WRF PCP
at both resolutions also performed well in winters. However, NARR results in PCP underperformed in
comparison to observations. The low bias in NARR PCP is to be expected given the scale mismatch
between model and observations. That is, event statistics averaged over larger grid scales should show
lower values than those observed or simulated at a higher resolution. It is also worth noting that
stations often miss extreme storms in summer, so the model underprediction for NARR may be even
worse than that shown here.
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Similarly, we calculated the number of average dry days per year for the 1991–2000 period
(Figure 9). During summers, the 4-km WRF simulations performed the best among all products.
For example, observations and 4-km output showed a better comparison than other models for Illinois
(~65 dry days), Ohio (~50 dry days) and Wisconsin (~40 dry days). Surprisingly, the 4-km simulations
did not perform well in reproducing mean climatology statistics for these states. NARR data showed
a lesser number of dry days than observations. However, NARR predicted a similar spatial pattern for
dry days in the region south of the Great Lakes in winters. NARR again performed poorly for the
region north of the Great Lakes showing its weakness in calculating precipitation extremes in winters.
WRF models at 12- and 4-km resolutions also underperformed in calculating dry days throughout the
domain in winters.
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We also compared summer and winter 2-m average daily maximum, mean, and minimum
temperatures (refer to Supplementary material). All datasets showed a decreasing trend in temperature
with an increasing latitude, as expected. Both NARR and WRF simulations at 12- and 4-km showed
a good match with observations for daily maximum and mean temperatures for summers. While WRF
simulations well represented the decadal daily average minimum temperatures for summers, the NARR
datasets produced 3 deg C higher temperatures for regions south of the Great Lakes (see Figure S1).
The wintertime, average daily maximum, mean, and minimum temperatures compared well for
all three datasets (see Figure S2). The temperature simulations matched observations better than
precipitation in part because the temperature is a prognostic variable rather than a diagnostic variable
like precipitation.

4. Discussion and Conclusions

This article investigated the dependence of simulated precipitation and temperature validation
on the model type and resolution over a ten-year period from 1991 to 2000. Specifically, NARR
data at 32-km resolution and, 12-km and 4-km WRF simulations were compared to gridded
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observations for the Midwest U.S. and the Great Lakes region for both the warm and cold seasons,
and summer and winter seasons. We designed this study with an overarching hypothesis that
model performance would improve with an increase in resolution from NARR (32-km) to WRF
at 12- and 4-km. Temperature, which is a prognostic variable, and was well captured by all three
models. However, we found different strengths and weaknesses related to precipitation for different
model formulations.

A detailed evaluation of NARR data for the Great Lakes region showed that it is a useful
precipitation product for mean warm season and summer climatological studies, but is extremely
poor for winter and cold seasons. One plausible reason for the poor performance for NARR in cold
conditions is an inaccurate representation of snow processes and/or data assimilation from observed
station datasets that contain an inherent cold-season low bias (snow undercatch). A similar problem
with negative precipitation bias was found in observed station datasets, and thus gridded observed
stations in this study were bias corrected for precipitation using surface winds (please refer Byun
and Hamlet [13] for more details). NARR products, in general, also do not perform well for extreme
precipitations, i.e., for both dry days and 99th percentile PCPs. For flood assessment and developing
Intensity-Duration-Frequency (IDF) curves, NARR data must not be used for the Great Lakes region.
However, NARR data can be used to further downscale for regional and local climate modeling for
quiescent summer periods with no convective activity (e.g., a few studies that have successfully used
NARR data with such constraints (e.g., [20,24])).

In winter, the NARR showed a strong underprediction of precipitation over most of the inner
domain, suggesting too much simulated flow of cold, dry arctic air from the north in winter. These effects
could be caused by missing Great Lakes effects in the NARR simulations [15]. Furthermore, it is likely
that explicit coupling of a hydrodynamic lake model with an atmospheric model such as WRF can
improve the model performance significantly in future projections [15]. The need for such an integrated
land-lake-atmosphere modeling system is further exemplified in this study, especially for future climate
simulations that lack the lake surface temperatures to drive the regional climate models [82].

In this study, we hypothesized that increasing the model resolution from 12- to 4-km using the
WRF model would improve the ability to capture spatial patterns and the intensity of the precipitation.
However, the 12-km resolution average seasonal summertime precipitation performed better than the
4-km model. Figure 7 showed that even though the 12-km model outputs drove the 4-km simulations,
the 12-km results were superior in reproducing summer precipitation averages in the inner domain,
especially during summers. In particular, the 4-km simulations in the southern parts of the domain
in Illinois, Indiana, and Ohio showed substantially lower precipitation than observations in summer,
and also a substantially larger number of dry days (Figure 9) whereas the 12-km simulations were
a closer match with observations. The same underlying issues were present for the 99th percentile
extremes shown in Figure 8, however, in this case, the 12-km and 4-km simulations were comparable
and showed a similar low bias in the southern parts of the domain. These results demonstrate that
the 12- and 4-km simulations are a part of a “grey zone” for which the convective phenomenon
is only partly resolved. Both these resolutions are equally capable of capturing strong convective
storms in summer that produce extreme precipitation. The results also suggest that the initiation of
convective storms and precipitation recycling is weak in the 4-km simulations, resulting in the elevated
number of dry days (Figure 9), and low summer precipitation bias for the 4-km simulations in the
southern parts of the domain (Figure 7). In summer, however, the results are strongly related to internal
dynamics associated with small-scale convective storms, precipitation recycling, interactions with the
Great Lakes, etc. Thus, we hypothesize that the poor agreement with observations in summer for the
4-km model is likely due to the problems with convection and weak precipitation recycling. This also
explains the inability of our high-resolution WRF model (4-km) without convective parameterization
to capture summertime convective precipitation (Figure 6) in comparison with 12-km simulations
invoking convective parameterization. Our high-resolution 4-km WRF model simulations captured
both extremes, viz., dry days and 99th percentile PCPs. Overall, the difficulty was observed in capturing
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seasonal precipitation totals and variability. The very close agreement between WRF winter simulations
at 12- and 4-km shows the dominant contribution of the large scale forcing in this season.

The 12- and 4-km WRF simulations performed much better in winters, albeit with a substantial wet
bias over the western part of the inner domain. In winter, although biased with respect to observations,
12-km and 4-km WRF simulations showed very close agreement for seasonal totals, extremes, and dry
days. This was expected, since the storms are typically large-scale events in winter, and the large-scale
forcing is in a close agreement between the 12- and 4-km and 12-km runs.

Thus, there may be no need to push for higher resolution for studying convective rainfall.
This exercise implies that the parameterization schemes for precipitation are not resolution-independent;
thus, a refinement of resolution is no guarantee of a better result. Both WRF model resolutions
were able to capture the lake-effect precipitation successfully which was muted/absent in previous
studies (e.g., [83,84]). This was due to the inclusion of SST/LST in the WRF model as more accurate
lower-boundary surface conditions driving the WRF model that captured the lake effect. At the same
time, there need to be considerable efforts to improve numerical model sensitivities to convection,
microphysics and the water temperature in simulating winter lake-effect snow [73,85–87]. It is beyond
the scope of this manuscript to study these aspects.

In conclusion, our study cautions against hastily pushing for increasingly higher resolution in
climate studies especially within the “grey zone” around 4-km, and also highlights the need for the
careful selection and validation of large-scale boundary forcing data. Alternatively, to avoid the “grey
zone,” future studies should use either 10–12 km grid resolution with convective parameterization,
or use a very high resolution, say 1-km and explicitly represent the cumulus cloud systems.
As mentioned in our experimental design, the choice of the resolution is also dictated by the tradeoffs
between computational requirements for large-scale and long-term climate simulations. At the same
time, improper validation of input forcing data will also likely produce systematic errors and forced bias
correction for one set of simulations may not work for a similar study for a different period or region.
We also recognize that the WRF simulations may improve with some form of land data assimilation
or longer spin up time (e.g., [20]). We hope to test this hypothesis in future studies. Given our
findings, we encourage readers to carefully validate the observed, assimilated, and simulated datasets
by validating climatology and extremes before using them for further downscaling and/or impact
assessment studies. We hope that lessons from this study will help direct the efforts of researchers to
design better-informed climate experiments with improved impact assessments.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4433/10/5/266/s1,
Figure S1: Left panel shows observed summer 2-m daily maximum average from (a) observations, (d) NARR
dataset (g) WRF model output at 12-km, and (j) WRF model output at 4-km for a period of 10 years from year
1991 to 2000. Middle and right panels are same as left, but for mean and minimum temperatures respectively,
Figure S2: Same as Figure S1, but for the winter season.
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