
Py4CAtS

PYthon for Computational ATmospheric Spectroscopy

(line-by-line)

Franz Schreier

DLR — Remote Sensing Technology Institute
Oberpfaffenhofen, 82234 Wessling, Germany

April 4, 2019

Abstract

Py4CAtS — PYthon scripts for Computational ATmospheric Spectroscopy is a
Python re-implementation of the Fortran infrared radiative transfer code GARLIC,
where compute-intensive code sections utilize the Numeric/Scientific Python modules
for highly optimized array-processing. The individual steps of an infrared or microwave
radiative transfer computation are implemented in separate scripts to extract lines of
relevant molecules in the spectral range of interest, to compute line-by-line cross sec-
tions for given pressure(s) and temperature(s), to combine cross sections to absorption
coefficients and optical depths, and to integrate along the line-of-sight to transmission
and radiance/intensity. Py4CAtS can be used in two ways, from the Unix/Linux (or
Windows/Mac) console/terminal or inside the (i)python interpreter. The basic design
of the package, numerical and computational aspects relevant for optimization, and a
sketch of the typical workflow are presented.

1

Contents

1 Introduction 4

2 Physical Basics of Infrared Radiative Transfer 4
2.1 Schwarzschild Equation and Beer’s Law . 4
2.2 Molecular Absorption . 5

2.2.1 Line strength and partition functions 6
2.2.2 Pressure (collision) broadening — Lorentz profile 6
2.2.3 Doppler broadening . 7
2.2.4 Combined pressure and Doppler broadening 7

3 Algorithms 8
3.1 Numerical Aspects — Computational Challenges 9
3.2 Voigt profile and Voigt function . 9
3.3 Multigrid algorithm . 11
3.4 Path Quadrature . 13

4 Verification and Validation 14
4.1 AMIL2DA . 15
4.2 IRTMW01 . 15
4.3 ARTS – GARLIC – KOPRA . 17
4.4 ACE-FTS . 17
4.5 GARLIC vs. Py4CAtS . 18

5 Py4CAtS — The Python Scripts 20
5.1 Examples . 22

5.1.1 Near Infrared . 22
5.1.2 Far Infrared . 25

5.2 Some Notes on Options . 26
5.3 The Atmospheric Datafile . 27
5.4 Misc Remarks . 27

6 Py4CAtS used within the (i)python shell 29
6.1 Setting up IPython for Py4CAtS . 29
6.2 Examples . 31

6.2.1 Atmospheric Data . 31
6.2.2 Shortwave Infrared . 32

6.3 Further remarks . 37
6.3.1 Input/Output: . 37
6.3.2 The subclassed numpy arrays . 38
6.3.3 Visualization . 38
6.3.4 Recursive functions . 39
6.3.5 Miscellaneous: Conversion of physical units 39
6.3.6 Geometry . 39

A Implementation Aspects 41
A.1 Structured Arrays . 41
A.2 The Option Parser Module command parser.py 41
A.3 Input/Output Utilities: the aeiou.py Module 41

2

A.4 The pairTypes.py Module . 41

B ToDo’s 42

C Known Problems 42

D Limitations — What Py4CAtS cannot do 42

List of Figures

1 Half widths (HWHM) for Lorentz-, Doppler- and Voigt-Profile 8
2 Relative accuracy of Humlicek1–Weideman24 approximation. 11
3 Decomposition of Lorentzian line profile function 13
4 Error of the two–grid approximation with Lagrange interpolation. 14
5 A model of computational validation . 15
6 AMIL2DA Forward model intercomparison: Limb emission 16
7 IRTMW01 intercomparison: case 3 and 4 up–looking 17
8 ARTS-GARLIC-KOPRA mean differences 18
9 Comparison of GARLIC with a spectrum observed by the ACE-FTS instrument. 18
10 Intercomparison with GARLIC. 19
11 From Hitran/Geisa to optical depths and radiance. 20
12 workflow lbl — xs — ac — od . 20
13 workflow lbl — od . 22
14 O2 lines found in Hitran 2008. 23
15 Lines found in Hitran 2008 in the region of the O2A band. 23
16 Cross sections of O2 in the region of the O2A band. 24
17 Optical depths in the region of the O2A band. 25
18 Spectral lines and cross sections in the FIR next to the 83.869 cm−1 OH triplet. 26
19 Impact of line wings: H2O. 28
20 Combination of line atlas and xsPlot. 33
21 Computing and combining optical depths. 35
22 Geometry of uplooking and downlooking path 40

3

1 Introduction

An essential prerequisite for the analysis of data recorded by atmospheric remote sensing
instruments as well as for theoretical investigations such as retrieval assessments is a flexible,
yet efficient and reliable high resolution radiative transfer code. Furthermore, as the retrieval
of atmospheric parameters is in general a nonlinear optimization problem (inverse problem),
the retrieval code has to be closely connected to the radiative transfer code (forward model).

Although a variety of general purpose high resolution radiative transfer models has been
developed in the past decades, nb. Fascode [Clough et al., 1988] and Genln2 [Edwards,
1988], a new code has been found to be desirable because implementation of these sophis-
ticated line-by-line (lbl) programs in retrieval algorithms is generally a non–trivial task.
Furthermore derivatives with respect to the unknown profiles are often not available or at
least difficult to access (more recent developments such as KOPRA Stiller et al. [2002] or
ARTS Buehler et al. [2005] providing analytical derivatives were not available then).

Given the variety of applications at DLR–IMF a new code has been designed for arbitrary
observation geometry and instrumental field-of-view (FoV) and instrumental line shape (ILS)
(a.k.a. spectral response function, SRF). The original implementation MIRART(Modular
InfraRed Atmospheric Radiative Transfer), written in Fortran 77, has been developed with
emphasis on efficient and reliable numerical algorithms and a modular approach appro-
priate for simulation and/or retrieval. More recently this has been translated to modern
Fortran 90/2003 as GARLIC (Generic Atmospheric Radiation Line-by-line Infrared Code)
[Schreier et al., 2014].

Concurrently a version of MIRART/GARLIC written in Python Langtangen [2004]
has been developed — named Py4CAtS for “Python for Computational Atmospheric
Spectroscopy”. Although highly optimized codes written in compiled languages such as For-
tran or C/C++ are indispensable for operational processing, radiative transfer tools devel-
oped in script/interpreter languages such as Python, IDL/GDL, or MatLab/Octave/SciLab
are an interesting alternative. Despite the reduced execution speed, script based tools are
attractive because they allow for “rapid prototyping”, can be executed on a large variety of
platforms, and provide easy access to intermediate quantities, hence facilitating visualization
and better understanding of the physics Lin [2012].

2 Physical Basics of Infrared Radiative Transfer

2.1 Schwarzschild Equation and Beer’s Law

In the infrared and microwave spectral range the intensity (radiance) I at wavenumber ν
received by an instrument at s = 0 can be described by the integral form of the equation
of radiative transfer (neglecting scattering and assuming local thermodynamic equilibrium)
[Liou, 1980, Goody and Yung, 1989, Zdunkowski et al., 2007]

I(ν) = Ib(ν)T (ν;∞) −
∫ sb

0

ds′ B(ν, T (s′))
∂T (ν; s′)

∂s′
(1a)

= Ib(ν)T (ν;∞) +

∫ τb

0

dτ B(ν, T (τ)) exp (−τ) (1b)

where Ib is a background contribution (e.g., solar radiation at the top of the atmosphere
in case of uplooking or limbviewing geometry, or surface emission in case of nadir viewing

4

geometry) and B is the Planck function at temperature T ,

B(ν, T) = 2hc2ν3
/(

ehcν/kBT − 1
)
, (2)

with c, h, kB denoting speed of light, Planck constant, and Boltzmann constant, respectively.
The partial derivative in Eq. (1a) is called the weighting function1, see Eq. (38). Note that
despite the minus sign the second term describing the atmospheric thermal emission is a
radiation source, i.e. a positive contribution.2

The monochromatic transmission T (relative to the observer) is given according to Beer’s
law by

T (ν; s) = e−τ(ν;s) (3)

= exp

[
−
∫ s

0

α(ν, s′) ds′
]
, (4)

α(ν; s) =
∑
m

km(ν, s) nm(s) + α(c)(ν, s) (5)

where τ is the optical depth, α is the volume absorption coefficient, km and nm are the
absorption cross section and density of molecule m, and α(c) the continuum absorption
coefficient. Note that the absorption cross section is a function of (altitude dependent)
pressure and temperature, but for brevity the condensed notation k(ν, z) = k

(
ν, p(z), T (z)

)
has been used. In (1) we have assumed an uplooking or limb viewing path geometry, but
(1) is easily rewritten to other slant path geometries. It should also be noted that the
instrumental influence on the measured spectrum has been neglected.

2.2 Molecular Absorption

In general the molecular cross section is obtained by summing over the contributions from
many lines,

km(ν, z) =
∑
l

S
(m)
l (T (z)) g(ν; ν̂

(m)
l , γ

(m)
l (p(z), T (z))) . (6)

In the infrared and microwave spectral range molecular absorption is due to radiative tran-
sitions between rotational and ro–vibrational states of the molecules. A single spectral line
is characterized by its position ν̂, line strength S, and line width γ, where the transition
wavenumber (or frequency) is determined by the energies Ei, Ef of the initial and final state,
|i〉, |f〉,

ν̂ =
1

hc
(Ef − Ei) (7)

For an individual line the cross section is the product of the temperature dependent line
strength S(T) and a normalized line shape function g(ν) describing the broadening mecha-
nism, k(ν, z) = S(T (z)) · g

(
ν, p(z), T (z)

)
. In the atmosphere the combined effect of pressure

broadening (corresponding to a Lorentzian line shape) and Doppler broadening (correspond-
ing to a Gaussian line shape) can be represented by a Voigt line profile.

1The term weighting function is frequently “misused” for the Jacobian, i.e. the partial derivatives of the
radiance (or transmission in case of absorption spectroscopy) with respect to the unknows to be retrieved
(the so-called “state vector”)

2In fact this might be confusing, however, the minus in Eq. (1a) “compensates” the minus in (4). Moreover,
the sign of the second term also “somehow” is depending on the path intergration variable: in case of a
downlooking spaceborne observer one could use altitude z instead of distance s = zobs − z to the observer.

5

2.2.1 Line strength and partition functions

The monochromatic absorption cross section for a single line is defined as the product of
the line strength S and a normalized line profile function g essentially determined by line
broadening,

k(ν; ν̂, S, γ) = S · g(ν; ν̂, γ) with

+∞∫
−∞

g dν = 1 . (8)

For electric dipole transitions the line strength is determined by the square of the tem-
perature dependent matrix element of the electric dipole moment and by further factors
accounting for the partition function, Boltzmann-distribution, and stimulated emission,

S(T) =
8π3

3hc

giIa
Q(T)

ν̂ e−Ei/kT
[
1− e−hcν̂/kT

]
Rif · 10−36 (9)

here gi is the degeneracy of the nuclear spin of the lower energy state, Ia is the relative
abundance of the isotope3, Q(T) is the total partition sum, Rif is the transition probability
given by the matrix element of the electric dipole operator Rif = |〈f |D|i〉|2. A similar
expression is found for the line strength of magnetic quadrupole transitions. In both cases
the ratio of line strength at two different temperatures is given by

S(T) = S(T0) ×
Q(T0)

Q(T)

exp (−Ei/kT)

exp (−Ei/kT0)
1 − exp (−hcν̂/kT)

1 − exp (−hcν̂/kT0)
. (10)

Q(T) is the product of the rotational and vibrational partition functions, Q = Qrot · Qvib,
whose temperature dependance are calculated from

Qrot(T) = Qrot(T0)

(
T

T0

)β
, (11)

Qvib(T) =
N∏
i=1

[1− exp(−hcωi/kT)]−di , (12)

where β is the temperature coefficient of the rotational partition function, and N is the
number of vibrational modes with wavenumbers ωi and degeneracies di. Data required to
calculate the vibrational partition sums have been taken from Norton and Rinsland [1991].

2.2.2 Pressure (collision) broadening — Lorentz profile

In case of pure pressure broadening the cross section for a single radiative transition is
essentially given by a Lorentzian line profile

gL(ν) =
γL/π

(ν − ν̂)2 + γ2L
. (13)

The Lorentz half width (at half maximum, HWHM) γL is proportional to pressure p and
decreases with increasing temperature. In case of a gas mixture with total pressure p and
partial pressure ps of the absorber molecule the total width is given by the sum of a self broad-
ening contribution due to collisions between the absorber molecules and an air-broadening
contribution due to collisions with other molecules,

γL(p, ps, T) =

(
γ
(0,air)
L

p− ps
p0

+ γ
(0,self)
L

ps
p0

)
×
(
T0
T

)n
. (14)

3 In the HITRAN– and GEISA databases the abundances of the Earth atmosphere are used.

6

The exponent n specifying the dependence of temperature is so far known for only a few
transitions of the most important molecules. The kinetic theory of gases (collision of hard

spheres) yields the classical value n = 1
2
. The self-broadening coefficient γ

(self)
L is so far known

for only a few transitions and will otherwise be set to the air-broadening coefficient γ
(air)
L

(mostly specified for N2 and/or O2), i.e.

γL(p, T) = γ
(air)
L

p

p0
×
(
T0
T

)n
(15)

Typical values of air-broadening coefficients are γL ≈ 0.1p [cm−1/atm] (see Tab. 2 in Roth-
man et al. [1987]).

Van Vleck-Weisskopf and van Vleck-Huber lineshapes Two variants of the Lorentz
line profile widely used in the microwave regime are

gvvw(ν) =
(ν
ν̂

)2 (γL/π

(ν − ν̂)2 + γ2L
+

γL/π

(ν + ν̂)2 + γ2L

)
, (16)

and

gvvh(ν) =
(ν
ν̂

) (ν tanh hcν
2kT

ν̂ tanh hcν̂
2kT

) (
γL/π

(ν − ν̂)2 + γ2L
+

γL/π

(ν + ν̂)2 + γ2L

)
. (17)

Note that the van Vleck-Huber profile is the default line shape used in Fascode [Clough
et al., 1988] and its successor LBLRTM [Clough et al., 2005]. Furthermore, tanh(x) ≈ x for
small arguments x.

2.2.3 Doppler broadening

The thermal motion of the molecules leads to Doppler broadening of the spectral lines, which
is described by a Gaussian line shape

gD(ν) =
1

γD

(
ln 2

π

)1/2

· exp

[
− ln 2

(
ν − ν̂
γD

)2
]
. (18)

The half width (HWHM) is essentially determined by the line position ν̂, the temperature
T , and the molecular mass m,

γD = ν̂

√
2 ln 2 kT

mc2
. (19)

For a typical atmospheric molecule one finds

γD ≈ 6 · 10−8 ν̂
√
T [K] for m ≈ 36 amu.

2.2.4 Combined pressure and Doppler broadening

The combined effects of both broadening mechanisms can be modelled by convolution, i.e.,
a Voigt line profile

gV(ν − ν̂, γL, γD) ≡ gL ⊗ gD
=

∫ ∞
−∞

dν ′ gL(ν − ν ′; ν̂, γL) × gD(ν ′ − ν̂; ν̂, γD) .
(20)

7

0.0 50.0 100.0
Altitude [km]

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

H
W

H
M

γ

[c
m

−
1]

γl

γd , ν0= 1.0 cm
−1

γd , ν0= 10.0 cm
−1

γd , ν0= 100.0 cm
−1

γd , ν0=1000.0 cm
−1

200.0

250.0

300.0

350.0

T
em

perature [K
]

Figure 1: Half widths (HWHM) for Lorentz-, Doppler- and Voigt-Profile as a function of
altitude for a variety of line positions ν̂. The Lorentz width is essentially proportional to pressure

and hence decays approximately exponentially with altitude. In contrast the Doppler width is only

weakly altitude dependent. In the troposphere lines are generally pressure broadened, the transition

to the Doppler regime depends on the spectral region. The dotted line indicated atmospheric

temperature. (Pressure and temperature: US Standard atmosphere, molecular mass 36amu)

Several empirical approximations for the half width (HWHM) of a Voigt line (defined by
gV (ν̂ ± γV) = 1

2
gV (ν̂)) have been developed [Olivero and Longbothum, 1977]. For the

approximation

γV =
1

2

(
c1γL +

√
c2γ2L + 4γ2D

)
with c1 = 1.0692, c2 = 0.86639 (21)

a accuracy of 0.02% has been specified, with c1 = c2 = 1 the accuracy is in the order of one
percent. A comparison of Lorentzian, Doppler, and Voigt half width is given in Fig. 1.

3 Algorithms

NOTE: For a more thorough and up-to-date discussion of algorithmic aspects see the GAR-
LIC paper [Schreier et al., 2014].

8

3.1 Numerical Aspects — Computational Challenges

The computational challenge of high resolution atmospheric radiative transfer modelling is
due to several facts. The summation in Eq. (6) has to include all relevant lines contributing
to the spectral interval considered. In many line–by–line codes a cutoff wavenumber of
25 cm−1 from line center is frequently employed for truncation of line wings. Note that the
widely used Hitran and Geisa spectroscopic databases [Rothman et al., 2013, Jacquinet-
Husson et al., 2008] list more than some million lines of about 40 molecules in the microwave,
infrared, to ultraviolet regime, whereas the JPL spectral line catalog [Pickett et al., 1998]
covering the submillimeter, millimeter, and microwave only has almost 2 million entries.

Furthermore the wavenumber grid has to be set in accordance with the line widths γ,
i.e. the grid spacing is typically chosen in the order of δν ≈ γ/4. Typical line widths due
to pressure broadening are in the order of γ(p) ≈ (p/p0) 0.1 cm−1 with p0 = 1013 mb. In the
atmosphere the pressure decays approximately exponentially with altitude z, and the line
width decreases accordingly until Doppler broadening (proportional to line position and the
square root of the temperature over molecular mass ratio) becomes dominant (cf. Fig. 1).
Hence, for an altitude of z = 100 km with a pressure p ≈ 10−4 mb the number of spectral
grid points required for a spectral interval ∆ν = 1 cm−1 in the microwave is in the order of
1/(0.1× 103/10−4) = 106. For a spectral interval of width ∆ν = 10 cm−1 in the region of the
CO2 ν2 band around 500 cm−1 the number of spectral grid points is in the order of 105.

A variety of approaches has been developed to speed–up the calculation and an essential
difference between different line–by–line codes is the choice of the line profile approximation,
wavenumber grid, and interpolation. Some of the algorithms are specifically designed for the
individual functions to be calculated, e.g., the Clough and Kneizys [1979] algorithm used
in Fascode [Clough et al., 1988]: The Lorentzian (or Voigt function) is decomposed using
three or four even quartic functions, each of them is then calculated on its individual grid.
(A similar technique using quadratic functions has been developed by Uchiyama [1992].)
Genln2 [Edwards, 1988] performs the line–by–line calculation in two stages, i.e., the entire
spectral interval of interest is first split in a sequence of “wide meshes”; contributions of
lines with their center in the current wide mesh interval are computed on a fine mesh,
and the contribution of other lines is computed on the wide mesh. Fomin [1995] defines
a series of grids and evaluates line wing segments of larger distance to the line center on
increasingly coarse grids. Sparks [1997] also uses a series of grids with 2k + 1 grid points
(k = 1, 2, . . . , where the coarsest grid with 3 points spans the entire region) and uses a
function decomposition similar to ours.

3.2 Voigt profile and Voigt function

The convolution of a Lorentz and a Gauss profile, commonly known as the Voigt profile, is
important in many branches of physics, nb. atomic and molecular spectroscopy, atmospheric
radiative transfer [Armstrong, 1967].

It is convenient to define the Voigt function K(x, y) normalized to
√
π,

K(x, y) =
y

π

∫ ∞
−∞

e−t
2

(x− t)2 + y2
dt , (22)

where the dimensionless variables x, y are defined in terms of the distance from the center
position, ν − ν̂0, and the Lorentzian and Gaussian half–widths γL, γG:

x =
√

ln 2
ν − ν̂
γG

and y =
√

ln 2
γL
γG

. (23)

9

The Voigt function represents the real part of the complex function

W (z) ≡ K(x, y) + iL(x, y) =
i

π

∫ ∞
−∞

e−t
2

z − t dt with z = x+ iy, (24)

that, for y > 0, is identical to the complex error function (probability function) defined by
[Abramowitz and Stegun, 1964]

w(z) = e−z
2

(
1 +

2i√
π

∫ z

0

et
2

dt

)
= e−z

2

(
1 − erf(−iz)

)
. (25)

The complex error function satisfies the differential equation

w′(z) = − 2z · w(z) +
2i√
π

(26)

and the series and asymptotic expansions (where Γ is the gamma function)

w(z) =
∞∑
n=0

(iz)n

Γ
(
n
2

+ 1
) (27)

w(z) =
i

π

∞∑
k=0

Γ
(
k + 1

2

)
z2k+1

. (28)

Unfortunately, none of these functions can be evaluated in closed analytical form and
a large number of numerical algorithms have been developed in the past [Schreier, 1992].
Most modern algorithms for the Voigt function employ approximations for the complex
error function. Actually this approach has further advantages, in particular it simultaneously
provides derivatives of these functions, required for, e.g., sensitivity analysis or optimization.
Furthermore, the complex error function can be used if more sophisticated line profiles, e.g.,
the Rautian for collisional narrowing, or line mixing effects have to be computed.

Rational approximations are known to give accurate and efficient algorithms for a large
class of functions, and also have been successfully used to approximate the complex error
function, e.g., Hui et al. [1978], Humĺıček [1979, 1982], Weideman [1994].

w(z) =
P (z̃)

Q(z̃)
=

M∑
m=0

amz̃
m

M+1∑
n=0

bnz̃n
where z̃ = y − ix. (29)

Because of the asymptotic behaviour of the complex error function w ∼ 1/z), the degree
of the nominator and denominator polynomials are constrained by N = M + 1. It should
be noted, that for atmospheric spectroscopy applications the Lorentz to Gauss width ratio
varies over many orders of magnitude, i.e., 10−7 < y < 104 (see Figures 2 and 3 in [Schreier,
2011]). On the other hand, K(x, y) and w(z) are especially difficult to evaluate for small
y < 1, and in most algorithms the x, y plane (or the first quadrant x, y ≥ 0 because of the
symmetry relations) is divided in several regions and appropriate methods are utilized, e.g.,
a series approximation for small x, y and an asymptotic approximation for large x, y.

The Hui et al. [1978] and Weideman [1994] rational approximations appear to be quite
tempting as they provide a single approximation applicable to the entire x, y plane. However,
the Hui et al. 1978 algorithm (with M = 6) has significant accuracy problems for small y

10

Figure 2: Relative accuracy of the combined Humliček I and Weideman approximation (left
N = 24 and right N = 32).

and medium x, and the Weideman 1994 approximations requires a large number of terms to
achieve sufficient accuracy for small y, making it computationally less efficient. The Humĺıček
[1982] code (or variations thereof, e.g., Kuntz [1997], Imai et al. [2010]) has been selected by
several authors, but its performance depends on the compiler’s efficiency to handle nested
conditional branches.

In order to avoid complicated if constructs for the calculation of the complex error
function, lbl2xs and lbl2od use an optimized combination of the Humĺıček [1982] and
Weideman 1994 algorithms [Schreier, 2011]

w(z) =

{
iz/
√
π

z2− 1
2

|x|+ y > 15,

π−1/2

L−iz + 2
(L−iz)2

∑N−1
n=0 an+1Z

n otherwise,
(30)

where Z = L+iz
L−iz and L = 2−1/4N1/2. For N = 24 this provides an accuracy better than 10−4

everywhere except for very small y < 10−5 and 4 < x < 15; for N = 32 the relative error
|∆K|/K is less than 8 · 10−5 for all x, y, cf. Fig. 2.

3.3 Multigrid algorithm

The problem is the efficient computation of a superposition of similar functions fl(x) over a
large region of its independent variable x,

F (xi) =
L∑
l=1

fl(xi) for xlo ≡ x0 < x1 < · · · < xi < · · · < xn ≡ xhi. (31)

11

Frequently the functions fl(x) vary rapidly only in a small region of the entire domain, but
the evaluation of F (x) covers a large x–interval where the individual fl is mostly smooth.
However, accurate modelling of the function sum requires appropriate sampling of the x–
grid, i.e., the grid interval size δx has to be chosen small enough to resolve the details of
fl(x) in the regions of strong variability. Thus, for an uniform/equidistant grid the spacing
δx is determined by the fine structure of the fl’s.

Computing fl(x) on a uniform, appropriately dense grid over the entire region of interest
is obviously not very efficient when fl is smooth everywhere except for a small subinterval of
[xlo, xhi]. The calculation is significantly accelerated when fl is decomposed into rapidly and
slowly varying contributions, where the fast part has to be computed on a fine grid in the
region of strong variability only and the smooth part is computed on a coarse grid covering
the entire interval of interest. Furthermore, if the smooth part is a continuous function of x
over the entire interval [xlo, xhi], the sum in (31) can be performed separately for the rapidly
and slowly varying contributions,

F fast(x) =
∑
l

f fast
l (x) where x ∈ {x0, . . . , xn} (fine grid) (32)

F smooth(X) =
∑
l

f smooth
l (X) where X ∈ {X0, . . . , XN} (coarse grid) (33)

and the interpolation to the fine grid x is required only once after the entire sum has been
evaluated,

F (x) = F fast(x) + I
[
F smooth(X)

]
(x) . (34)

Here I denotes an interpolation operator, i.e., I
[
F smooth

]
(x) is the interpolated sum of

smooth contributions (available at the coarse grid X) at the fine grid point x. In order to
guarantee an efficient interpolation, an equidistant set of N coarse grid points X0, X1, . . . , XN

with spacing ∆X satisfying ∆X/δx = n/N integer will be used (furthermore X0 = x0 and
XN = xn). For convenience ratios of power two will be used, i.e., n/N = 2m. Clearly, the
larger the ratio, the larger the computational speed–up. However, for very large coarse grid
spacings, errors due to inadequate sampling of the smooth contribution to f become too big.
For our applications ratios n/N = 4 and n/N = 8 have turned out to provide a reasonable
compromise between speed and accuracy.

Thus the problem of efficient calculation of the sum (31) has been transformed into the
problem of splitting off the smooth part of each fl, i.e.,

fl(x) = f smooth
l (x) + f fast

l (x) (35)

The simplest choice of the smooth function that automatically satisfies the constraints of
continuity is to use the function fl itself as smooth function f smooth

l , too. Note that the
sum of the smooth contributions F smooth is interpolated to the fine grid and then added
to the sum of the fine grid, quickly varying contributions. In order to compensate for the
interpolated smooth contributions in the regions of strong variability, the quickly varying
contribution is defined as

f fast
l (x) = fl(x)− I

[
f smooth

]
(x) for x in center region. (36)

Note that f fast
l or its first derivative may have discontinuities. In Fig. 3 this decomposition

is shown for the Lorentzian line shape.
The speed–up that can be achieved with the two–grid algorithm developed in the pre-

vious subsection is essentially determined by the ratio of grid points on the fine and coarse

12

703.0 703.5 704.0 704.5 705.0
Wavenumber [cm

−1
]

0e+00

2e−20

4e−20

6e−20

8e−20

1e−19

C
ro

ss
 s

ec
tio

n
[c

m
2 /m

ol
ec

]

fine
coarse
fine + I [coarse]

Figure 3: Lorentzian line profile function (13) decomposed in a slowly varying contribution
(evaluated on a coarse grid) and a rapidly varying contribution evaluated on a fine grid near
the center only (Two–point Lagrange interpolation). The example corresponds to CO2 cross
sections at 1013.25 mb and 296 K; for clarity only the strongest lines have been included.

grid, i.e. with n/N = 4 or n/N = 8 only a small computational gain is possible. A signifi-
cant acceleration can be achieved by using further grids with increasing grid point spacing.
However, for our applications to spectral modelling the computational overhead required to
control a series of grids turned out to partly compensate the speed–up provided by very
coarse grids, and simply using three grids turned out to be efficient [Schreier, 2006].

3.4 Path Quadrature

To evaluate the optical depth τ according to (3) it is necessary to compute the integral of
the absorption coefficient α(z) along the (vertical or slanted) path (Py4CAtS considers a
plane-parallel atmosphere, so lbl2od, dod2ri, . . . are restricted to up- and down-looking
viewing geometries, and limb viewing is not supported.)

The trapezoidal rule is perhaps the most basic and important Newton-Cotes formula for
numerical evaluation of an integral of a function y(x),∫ xn

x0

y(x) dx =
1

2

n∑
i=1

(yi + yi−1)(xi − xi−1) . (37)

Clearly the assumption behind the trapezoid rule, i.e. a linear polynomial interpolating the
function y in the subintervals [xi−1, xi], is hardly justified in view of the exponential depen-
dence of air number density or the presence of steep gradients of, e.g., the water concentration
profile. Nevertheless, the trapezoid rule is the most robust and fastest quadrature rule, and
it is the default rule used here.

13

700 701 702 703 704 705
Wavenumber ν [cm

−1
]

−0.003

−0.002

−0.001

0.000

R
el

at
iv

e
E

rr
or

∆k

/k

3 point interpolation
2 point interpolation

0e+00

1e−19

2e−19

C
ro

ss
 S

ec
tio

n
 k

 [
cm

2 /m
ol

ec
]

brute force XS
two−grid XS

Figure 4: Error of the sum of some Lorentzians (13) evaluated with a two–grid approximation
and linear and quadratic Lagrange interpolation. For two–point interpolation the fine grid
was used within νl ± 12γ around the line center. whereas for three–point interpolation the
fine grid extension was νl±10γ. The sum of Lorentzians (cross section, “XS”) evaluated with
the “brute force” and with the two–grid–algorithm are indistinguishable. (Same example as
in Fig. 3.)

As an alternative, lbl2od offers the possibility to use Simpson’s rule (using
integrate.simps from SciPy), the next higher Newton-Cotes formula assuming a quadratic
interpolating polynomial. Note that especially for the difference or cumulative optical depth
this can be very time-consuming.

For the evaluation of the Schwarzschild equation Py4CAtS uses optical depth τ as in-
tegration variable as in (1b), and the integral along the line-of-sight is approximated by a
sum over all layers. The default quadrature scheme assumes that the Planck function seen
as function of optical depth varies linearly with τ within a layer, i.e.

B(τ) =
τ − τl
τl+1 − τl

B(τl+1) +
τl+1 − τ
τl+1 − τl

B(τl)

with τl ≤ τ < τl+1. As an alternative, a “B exponential in optical depth” approach can
be used where the Planck function is approximated by B(T (τ)) = B(T (τl)) eβ(τ−τl) with
β = log

(
B(τl)/B(τl+1)

)
/(τl+1 − τl). See the GARLIC paper for more details.

4 Verification and Validation

Verification essentially is a check, if the (mathematical and/or physical) model of the real
word or nature is implemented correctly, whereas the aim of validation is to demonstrate
that the (correctly implemented code) models the real world correctly [Calder et al., 2004,
Einarsson et al., 2005].

14

Figure 5: A model
of computational vali-
dation (This is Figure
2.2 from Boisvert et al.
[2005].)

The standard approach to verification of LbL codes relies on cross checks against similar
codes. MIRART/GARLIC participated in three extensive intercomparisons. For a more
extensive discussion, along with a comparison of various path intergration schemes and
intercomparisons with real observed data (validation) see the recent GARLIC paper [Schreier
et al., 2014].

4.1 AMIL2DA

In order to assess the consistency of level 2 data generated from measurements by the MI-
PAS Fourier transform limb emission spectrometer onboard the ENVISAT satellite, the
AMIL2DA project aimed at careful comparison and characterization of algorithms and
data analysis stategies used by different European groups. An essential step of this project
was a cross comparison of the radiative transfer forward models to be used as part of the
group’s MIPAS data processing [von Clarmann et al., 2002]. The intercomparison was or-
ganized as a series of exercises, starting from simple settings proving basic functionalities
and proceeding to more complex and realistic scenarios. Accordingly the first exercises con-
sidered the transmission of a single N2O line for different pressures and temperatures, hence
testing line shape computation and line strength conversion. In a second set of exercises
radiance spectra for a limb viewing geometry with instrumental effects have been intercom-
pared. Figure 6 shows a comparison of a limb emission spectrum, revealing deviations well
below one percent.

4.2 IRTMW01

A major objective of IRTMW01 was the intercomparison of radiative transfer codes in the
microwave spectral domain [Melsheimer et al., 2005]. Similar to the AMIL2DA intercom-
parison it was organized in a series of progressively more sophisticated “cases”, starting with
an assessment of Voigt line shape and molecular absorption coefficient calculations. As for

15

1215 1215.5 1216 1216.5 1217
Wavenumber [cm

−1
]

0

50

100

150

∆
R

ad
ia

nc
e

[n
W

 /
(c

m
2 s

r
cm

−
1)]

MIRART
KOPRA

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

∆
R

ad
ia

nc
e

[n
W

 /
(c

m
2 s

r
cm

−
1)]

Figure 6: AMIL2DA Forward model intercomparison (Exercise 20):
KOPRA line–by–line code [Stiller et al., 2002] and MIRART.
Limb view with tangent altitude 40 km, apodized FTS instrument line shape, finite field–of–
view, H2O, CO2, O3, N2O, and CH4; CKD–continuum [Clough et al., 1988].

the corresponding AMIL2DA exercises MIRART exhibited slight deviations for spectra at
temperatures different from the database reference temperature, that have been attributed
to the use of different line strengths conversion approaches.

The purpose of case 3 was to check the correct implementation of the radiative transfer
algorithm, nb., the solution of the integrals in Eqs. (1) and (3). In order to allow to dis-
criminate different sources of possible deviations between the models, absorption coefficients
α(ν, z) have been pre–calculated by the University of Bremen group and used as common
input. Case 4 was aiming to test the entire computational chain of the codes including
LbL calculation, continuum corrections, and path quadrature. Geometries and instrument
settings were identical to case 3, thus changes from case 3 spectra to case 4 spectra have to
come from differences in the input data or from differences in the cross section and absorption
coefficient calculations.

The intercomparison was performed for different geometries, and for ideal monochromatic
spectra as well as ILS (instrument line shape) and FoV (field-of-view) convolved spectra.
Figure 7 shows the results for the uplooking geometry: Whereas case 3 spectra do not yield
visible differences, slight deviations show up in case 4 for small zenith angles. Similar results
were also found for the case 3 and case 4 down looking and limb viewing exercises.

16

4.725 4.73 4.735 4.74 4.745 4.75 4.755 4.76
Wavenumber [cm

−1
]

0

5

10

15

20

25
0 dg

4.725 4.73 4.735 4.74 4.745 4.75 4.755 4.76
0

10

20

30

T
em

pe
ra

tu
re

 [K
]

40 dg

4.725 4.73 4.735 4.74 4.745 4.75 4.755 4.76
0

20

40

60

80

100
80 dg

arts
mirart (qop)
mirart (trap)

4.725 4.73 4.735 4.74 4.745 4.75 4.755 4.76
Wavenumber [cm

−1
]

0

5

10

15

20

25
0 dg

4.725 4.73 4.735 4.74 4.745 4.75 4.755 4.76
0

10

20

30

T
em

pe
ra

tu
re

 [
K

]

40 dg
4.725 4.73 4.735 4.74 4.745 4.75 4.755 4.76
0

20

40

60

80

100
80 dg

mirart
arts

Figure 7: IRTMW01 intercomparison: case 3 (left) and 4 (right) up–looking:
ARTS line–by-line code (University of Bremen, Buehler et al. [2005]) vs. MIRART.
O3 and O2, perfect antenna (i.e. infinitesimal FoV), single side band receiver with Gaussian
ILS function with half width 0.25 MHz.

4.3 ARTS – GARLIC – KOPRA

An intercomparison of three line-by-line (lbl) codes developed independently for atmo-
spheric sounding — ARTS, GARLIC, and KOPRA — has been performed for a thermal
infrared nadir sounding application assuming a HIRS-like (High resolution Infrared Radia-
tion Sounder) setup. Radiances for the HIRS infrared channels and a set of 42 atmospheric
profiles from the “Garand dataset” [Garand et al., 2001] have been computed. Except for a
few channels and/or atmospheres, the codes generally agree quite well with deviations less
than one Kelvin. Averaging over all atmospheres (Fig. ??), discrepancies are smaller than
half a Kelvin except for a few channels, mostly due to the choice of the continuum model
used. Further results are presented in Schreier et al. [2018a].

4.4 ACE-FTS

Effective height transit spectra of Earth have been generated by combining representative
limb transmission spectra [Hughes et al., 2014] observed by the ACE-FTS [Bernath et al.,
2005, Bernath, 2017] solar occultation instrument. These spectra have been degraded to
moderate and low resolution and compared with spectra computed with GARLIC using
HITRAN (or GEISA) spectroscopic data. Inclusion or exclusion of molecules considered
in the modeling allowed to study their impact on the transit spectra. The main infrared
absorbers water, carbon dioxide, ozone, nitrous oxide, and methane can be clearly identified
in the effective height spectra. Furthermore, nitric acid is very prominent around 900 cm−1,
and the main constituents of Earth’s atmosphere, molecular oxygen and nitrogen, are also
important for modeling the spectra. To further reduce the discrepancies, heavy molecules
had to be considered, too. In particular, the “technosignatures” CFC11 and CFC12 are

17

0 5 10 15 20

Channel

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5
∆
T

B
[K

]

Garand 43 levels — Mean Differences (Continuum on & off, 85 levels dotted)

a-g
g-k
k-a

Figure 8: ARTS-
GARLIC-KOPRA mean
brightness temperature
differences: Solid lines:
43 level atmosphere
with continuum; dashed
lines: without contin-
uum; dotted lines: 85
level atmosphere without
continuum.

0

10

20

30

40

50

E
ff.

H
ei

gh
t

[k
m

] ACE-FTS
all 38
main23

1000 1500 2000 2500 3000 3500 4000

ν [cm−1]

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

∆
H

ei
gh

t
[k

m
]

10.0µm 6.7µm 5.0µm 4.0µm 3.0µm 2.5µm

0.462 2.37 76.06
0.471 2.42 77.26

Figure 9: Comparison of GARLIC effective height spectra (for 38 and 23 molecules) with
the “atlas” spectrum observed by the ACE-FTS instrument. The numbers in the legend
are the mean, maximum, and norm residuum of observation vs. model. (Sub)-arctic winter,
spectral response Gaussian with HWHM Γ = 1 cm−1.

visible in the moderate and low resolution spectra, cf. Fig. 9. The best matching model
has a mean residuum of 0.4 km and a maximum difference of 2 km to the measured effective
height. For details see Schreier et al. [2018b].

4.5 GARLIC vs. Py4CAtS

Fig. 10 shows an intercomparison of GARLIC and Py4CAtS radiance spectra. The Py4CAtS
modeling essentially comprises the lbl2od and dod2ri steps with an additional convolution
step radNadirGauss = radNadir.convolve(1.0,’gauss’) .

18

2130 2132 2134 2136 2138 2140

wavenumber ν [cm−1]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

ra
d

ia
n

ce
I
(ν

)
[e

rg
/
s/

(c
m

2
sr

cm
−

1
)]

180.0dg 294.2K

2100 2110 2120 2130 2140 2150

wavenumber ν [cm−1]

2.0

2.2

2.4

2.6

2.8

3.0

3.2

ra
d

ia
n

ce
I
(ν

)
[e

rg
/
s/

(c
m

2
sr

cm
−

1
)]

180.0dg 294.2K

Figure 10: Intercomparison of radiance spectra with corresponding spectra generated with
GARLIC. Midlatitude summer atmosphere, downlooking observer at ToA with viewing
zenith angle 180◦. Left: monochromatic spectra; Right: radiance convolved with a Gaussian
response function with HWHM = 1 cm−1.

19

-higstract
lines -lbl2xs

xs -xs2ac
ac -ac2od

od -dod2ri
ri

�
��

��
��
p, T

�
��

��
��
VMR

�
��

��
��
geo

Figure 11: From Hitran/Geisa via cross sections (xs) and absorption coefficients (ac) to
optical depths (od) and radiation intensity (ri). Note that cross sections are pressure and
temperature dependent, absorption coefficients also depend on composition, and optical
depth and radiation intensity depends on path geometry.

Figure 12: Typical workflow for line-by-line modelling with Py4CAtS: Hitran/Geisa −→ line
parameter extracts −→ cross sections −→ absorption coefficients −→ optical depth
Note that on the left hand side the output files are not indicated (usually done with the
-o option). Furthermore specification of atmospheric data (pressure and temperature for
lbl2xs, and additionally gas concentrations for xs2ac is not shown.)

5 Py4CAtS — The Python Scripts

Py4CAtS is a Python (www.python.org) re-implementation of the Fortran infrared radia-
tive transfer code MIRART/GARLIC. Clearly a pure Python implementations would be by
far too slow for a computational challening task such as line-by-line modeling, so Py4CAtS
makes heavy use of the Numeric Python extensions (www.numpy.org, Langtangen [2004]).
The motivation to rewrite the code in Python was to provide easy access to intermediate
quantities such as cross sections, absorption coefficients, or optical depths that is sometimes
quite useful to deepen the understanding of the “physics” involved in a particular remote
sensing application. Furthermore this appeared to be a way towards “computational steer-
ing”, i.e., combining the best of two worlds by letting Python do the control, book-keeping
etc., and executing the compute-intensive code-sections in compiled Fortran. However, the
original approach with PyFort Dubois and Yang [1999] turned out to be somewhat difficult
to port from machine to machine, and the recent advances with Numeric Python (allow-
ing highly optimized array-processing) made this need for Fortran–Python interfacing less
critical.

In Py4CAtS the individual steps of an infrared radiative transfer computation are im-
plemented in separate scripts, see Fig. 11:

20

www.python.org
www.numpy.org

• higstract: Hitran-Geisa-extract (select, grep, . . .) lines of relevant molecules in the
spectral range of interest4

• lbl2xs: compute line-by-line cross sections for given pressure(s) and temperature(s)

• xs2ac: multiply cross sections with number densities and sum over all molecules

• ac2od: integrate absorption coefficients along the line-of-sight through atmosphere

• od2ri: solve Schwarzschild equation (1b), i.e. integrate Planck function vs. opti-
cal depth along the line-of-sight through atmosphere (assuming a plane-parallel, non-
scattering, LTE atmosphere, the Schwarzschild equation can be easily evaluated by
standard numerical quadrature rules)

•

All these scripts read their input from external files, and save their results on files, too, see
the workflow indicated in Fig. 12. As a consequence, I/O operations can become quite time
consuming (as the number of spectral grid points can become quite big); Furthermore a
large part of the scripts was devoted to check the consistency of the various input files (e.g.,
the xs2ac script had to test that the different cross section files cover the same spectral
range (or at least a common subset) for the same altitude range etc.) On the other hand,
circumventing some of the intermediate files is straightforward, especially if one is mainly
interested in the final optical depth, cf. Fig. 13:

• lbl2ac compute line-by-line cross sections (for a series of p, T pairs) and combine to
absorption coefficients;

• lbl2od compute line-by-line cross sections and absorption coefficients as in lbl2ac,
then integrate through the atmosphere.

◦ NOTE: See the next section 6 “Py4CAtS within the (i)python shell” on an alternative
approach to bypass the I/O operations.

Finally, there are some scripts for quick plots, analysis and conversions:

• atmos1D: read atmospheric data (p, T , VMR’s, . . .) and convert, reformat, . . .

• molecules: show properties (mass, . . .) of IR relevant molecules

• plot atlas: read spectral lines (from higstract) and plot

• lines: read spectral lines (from higstract) and convert to new p, T

• xSection: read cross sections, plot and save again

• oDepth: read optical depths and plot or . . .

and some further scripts that are essentially subsidiaries (subroutines) required by the “main”
scripts, but can be run independently, e.g.

4Note that this module has been called extract.py in the Python 2 version and has been renamed to
higstract.py when porting to Python 3 in line with the function to be used inside the (I)Python interpreter
(see subsection 6.2.2) to avoid a name clash with numpy’s extract function!

21

Figure 13: Typical workflow: From Hitran/Geisa line parameter extract(s) directly to optical
depths.

• hitran: read the Hitran database (subsidiary to higstract)

• geisa: read the Geisa database (subsidiary to higstract)

• cgsUnit: unit conversion
NOTE: Internally py4cats uses cgs units !!!

5.1 Examples

In the following it is assumed that you have properly installed Py4CAtS, i.e., the executables
in the bin subdirectory of Py4CAtS are in the search path (see the html documentation how
to adjust the search path). Note that the executables in this bin directory should be symbolic
links to the scripts in the src directory (with the .py extension omitted).

5.1.1 Near Infrared

Assume you are interested in the so-called “O2A band”. To get started lets check the
HITRAN database where oxygen has spectral lines (note that the actual location of the
Hitran (or Geisa) database on your computer might be different, here it is assumed that line
data are stored in a /data/ directory with hitran/ and geisa/ subdirectories, that in turn
are further split into subsubdirectories for the different versions):

higstract -mO2 /data/hitran/2008/lines

This will write hundreds of lines to the screen, so tell the script to write its output to a file

higstract -mO2 -oO2.vSEan /data/hitran/2008/lines

The extension .vSEan tells the script to save the lines in a tabular form with five columns
for the “core” parameters line position ν̂ (note the visual similarity with the latin “v”),
strength S, energy E, air-broadening widths and exponent n (i.e. not in the original
hitran format). The script informs you that it finds 1314 lines in 6256.380089 ...

15927.230093 cm-1, and you can visualize these with

lines --plot S O2.vSEan

22

Figure 14: O2 lines found in
Hitran 2008 with the extract

script and plotted with the
lines script.

Figure 15: Lines found in Hitran 2008 in the region of the O2A band.

which produces the plot in Fig. 5.1.1. (Calling the script without any options simply gives
a summary.)

Obviously the strongest lines are found in the region around 13 000 cm−1, which is exactly
the O2A band complex. In the following lets concentrate on this spectral region and first
look into Hitran again for any other molecules absorbing in this spectral region:

higstract -x 12500,13500 -o O2.vSEan /data/hitran/2008/lines

which results in 22787 lines extracted from /data/hitran/2008/lines with five more
molecules in addition to oxygen: H2O, CO2, OH, HCl, and HF, see Fig. 15.

Next take a look at the cross sections defined in (6):

lbl2xs -oO2.xs O2.vSEan

Note that the -o option has been used again in order to save the data to a file, which then
can be plotted easily (Fig. 16 left):

xSection --plot O2.xs

23

Figure 16: Cross sections of O2 in the region of the O2A band.

Cross sections are pressure dependent due to air-broadening, see subsection 2.2.2, and this
can readily be studied with

lbl2xs -p 1000,100,10 -x13122,13180 -oO2.xs O2.vSEan

where the wavenumber range has been restricted to see things clearer (Fig. 16 right). In a
similar way the temperature dependence can be studied using the -T option.

Cross sections of all molecules absorbing in this spectral region can also be generated
with this script, essentially lbl2xs *.xs or more specifically like this

lbl2xs -x 13122,13180 -fa -o xs O2.vSEan H2O.vSEan

Because several input files are used (all with the same extension!) the script automat-
ically replaces the common extension “vSEan”with “xs”, i.e. the -o xs option is used
to indicate the output files’ extension. Furthermore the -f a option has been used to
force an ascii tabular output format (default is to save cross sections in the Python spe-
cific “pickle” format), so the cross sections can be plotted with any plot package, e.g.
ACE/Gr (a.k.a. xmgr, see https://github.com/mlund/xmgr-resurrection) or xmgrace
(http://plasma-gate.weizmann.ac.il/Grace).

Finally look at optical depths. Assume you have atmospheric data also stored in the
/data/ directory (as for the line data the actual path/location of the atmospheric data
file(s) might be different on your computer!), then use the command

lbl2od -o nir.dod /data/atmos/20/US.xy O2.vSEan H2O.vSEan

where the output file extension “dod” has been selected to indicate “delta optical depth”.
Note that lbl2od assumes that the very first input file contains the atmospheric data (here
a coarse, 20 level version of the US Standard atmosphere). If you only need the total optical
depth (sum of all layer optical depths) you can either produce them directly using the mode
option, i.e. lbl2od -mt ... , or you can combine the layer optical depths just produced
with

oDepth -mt -o nir.tod nir.dod

(The mode “t” converts optical depth to transmission (τ −→ T = e−τ), and mode “T”
produces total transmission.

24

https://github.com/mlund/xmgr-resurrection
http://plasma-gate.weizmann.ac.il/Grace

Figure 17: Delta optical
depths in the region of the
O2A band. The title indi-
cates the number of spectral
data points and the number
of layers (nLevels-1). (Note
that matplotlib’s legends are
not visually “perfect”.)

5.1.2 Far Infrared

The OH radical has several groups of transitions in the far infrared, e.g. one around
83.869 cm−1. To properly model the impact of line wings lets extend the 83 – 84 cm−1 spectral
range and extract the molecular lines (remember that the path to Hitran used here might
not work on your system):

higstract --main -x 73,94 /data/hitran/2008/lines

The boolean option tells higstract to select only the “main” molecules, i.e. the seven
molecules collected in the very first edition of the Hitran database (selecting all molecules
would have generated list for some dozen molecules). OH has been added in later editions,
its molecule number is 13 in Hitran (or molecule # 14 in Geisa), so get its lines with another
call of the script:

higstract -mOH -x 73,94 -oOH.vSEan /data/hitran/2008/lines

These two commands produce six files, that can be plotted with

plot atlas -a -g9 *.vSEan

where the boolean -a option choses the old xmgr based plotting tool, and the -g option
distributes the datasets to separate graphs as shown in Fig. 18 (left).

In a next step generate cross sections of the three “more important” molecules for two
pressures

lbl2xs -p 100,1 -fxy -o xs -x83,84 H2O.vSEan O3.vSEan OH.vSEan

and plot these, again using xmgr

xmgr -log y -nxy -legend load *.xs

After some fine tuning this gives the plot shown on the right of Fig. 18.
In a third step compute optical depths

lbl2od -o fir.dod --BoA 10 /data/atmos/USS 20.xy {H2O,O3,OH}.vSEan
Because the troposphere is largely opaque in the far infrared (absorption by water), only
optical depths above 10 km altitude are calculated.

25

75 85 95
position [cm

−1
]

10
−80

10
−60

10
−40

10
−20
10

0

OH

W
ed

 J
an

 2
2

16
:4

8:
41

 2
01

4

10
−3010
−2810
−2610
−2410
−2210
−20

O3
W

ed
 J

an
 2

2
16

:4
8:

41
 2

01
4

10
−35

10
−30

10
−25

10
−20

S
 [c

m
−

1 /
(m

ol
ec

.c
m

−
2)]

O2

W
ed

 J
an

 2
2

16
:4

8:
41

 2
01

4

10
−30

10
−25

10
−20

10
−15

H2O

W
ed

 J
an

 2
2

16
:4

8:
41

 2
01

4

10
−35

10
−30

10
−25

10
−20

CO

W
ed

 J
an

 2
2

16
:4

8:
41

 2
01

4

10
−2910
−2810
−2710
−2610
−2510
−24

CH4

W
ed

 J
an

 2
2

16
:4

8:
41

 2
01

4

83 83.2 83.4 83.6 83.8 84
Wavenumber [cm

−1
]

10
−24

10
−22

10
−20

10
−18

10
−16

10
−14

C
ro

ss
 s

ec
tio

n
[c

m
2 /

m
ol

ec
]

W
ed

 J
an

 2
2

15
:3

2:
08

 2
01

4

H2O 100mb
H2O 1mb
O3 100mb
O3 1mb
OH 100mb
OH 1mb

Figure 18: Left: lines found in Hitran 2008 in the FIR region next to the OH triplet around
83.869 cm−1. (The blue arrow indicates the OH triplet of interest.) Right: some cross
sections.

5.2 Some Notes on Options

• Some options are used by (almost) all scripts:

-h to request help (usage description)

-c to override the default character # used to indicate comment lines in data files

-o to specify an output file (default: standard out)

-v to request more informative output messages (verbose)

• Many options require one or several argument(s) (except for the boolean ones such as
-h). The type of argument(s) is indicated in the help documentation:

char a single character (usually a letter or digit)

string a string (if there are blanks, enclose the string in quotes)

file essentially a string specifying a valid file name

int an integer

float a real number (e.g. 3.14 or 1.23e45) (the ”d” or ”D” for the exponent of 10 is
not allowed)

interval two (usually real) numbers separated by comma (no blanks!)

26

• Some scripts allow to specify a list of integers, floats, strings etc. as an option (e.g.
a sequence of pressures). Use commas as separator, but do not use blanks between
the list elements, i.e. say lbl2xs -p 1013,800,500 (or enclose everything in quotes:
lbl2xs -p ’1013, 800, 500’)

• Some scripts such as lbl2xs produce an output file for each input file. In these cases the
-o option is used to specify the extension of the output file(s) (Typically the input files
will have the same extension, and there will be a list of output files with the common
extension replaced by the string given in the -o option)

5.3 The Atmospheric Datafile

The file containing an user’s atmospheric profile data has to be in tabular / ascii / xy format:

• comment lines in this file have to begin with # in the first column
(the -c option can be used to change this commentChar)

• a comment line starting with #where: can be used to include some info for the job

• at least 2 comment lines are mandatory:
#what: followed by identifiers, e.g. altitude, molecular names, pressure, or temperature
#units: followed by the physical units, e.g. km, mb, K, ppm

• a column for altitudes is mandatory (marked “ALTITUDE” or “HEIGHT” or “z” in
the #what: record)

• columns with profiles not requested by the user (e.g. IR inactive gases) are ignored

• the number of columns in the data section and the number of identifiers and units
given above have to be identical

Example:

#comment this line will be ignored

#info: this is ignored, too

#note: the next line is optional

#where: bavarian winter

#what: z pressure temperature H2O CO2 O3 CO

#units: km mb K ppm ppm ppm ppm

0.0 1018 272.200 4.32e+03 360 0.0278 0.15

1.0 897.3 268.700 3.45e+03 360 0.028 0.145

2.0 789.7 265.200 2.79e+03 360 0.0285 0.14

3.0 693.8 261.700 2.09e+03 360 0.032 0.135

4.0 608.1 255.700 1.28e+03 360 0.0357 0.131

5.0 531.3 249.700 824 360 0.0472 0.13

7.5 373.4 234.700 170 360 0.0914 0.122

10.0 256.8 219.700 29.6 360 0.237 0.0996

20.0 53.7 215.200 4.5 360 2.9 0.0133

5.4 Misc Remarks

NOTE: See also the FAQ’s in the html documentation.

27

10 15 20 25

position ν̂ [cm−1]

10−33

10−31

10−29

10−27

10−25

10−23

10−21

10−19
S

tr
en

g
th
S

[c
m
−

1
/
(m

o
le

c.
cm
−

2
)]

Hitran 2008 — H2O

228 lines in 6 – 26cm−1

74 lines in 14 – 19 cm−1

43 lines in 15 – 18 cm−1

17 lines in 16 – 17 cm−1

16.0 16.2 16.4 16.6 16.8 17.0

wavenumber ν [cm−1]

10−23

10−22

cr
o
ss

se
ct

io
n
k
(ν

)
[c

m
2
/
m

o
le

c]

p=1 atm and T=296 K

228 lines in 6 – 26cm−1

74 lines in 14 – 19 cm−1

43 lines in 15 – 18 cm−1

17 lines in 16 – 17 cm−1

Figure 19: Impact of line wings on H2O cross section in the ODIN [?] 501 GHz channel. A
series of cross sections has been computed taking into account more and more lines to the
left and right of the 16 to 17 cm−1 window.

Selection of spectral range, contributions from line wings
In order to compute cross sections, absorption coefficients, and optical depths for some
spectral range νlo . . . νhi, all lines in an extended spectral range νlo − δ . . . νhi + δ should be
considered, where δ is typically some wavenumbers (cm−1) (the actual size of δ depends on
the number, density, and strengths of lines outside ’your’ interval and on further factors such
as pressure). As the higstract and lbl2od (or lbl2xs) scripts are completely independent,
this extension is not done automatically. The impact of line wing contributions on cross
sections is demonstrated in Fig. 19.

Optical depths, transmission, and radiance for horizontal view
The functions ac2od or lbl2od do not have an angle as argument, so the optical depth
returned is always the vertical optical depth thru the atmosphere. If you need transmission
(or weighting functions) for a horizontal path, i.e. zenith angle 90◦, hence a homogeneous
atmosphere without any path dependence, then “extract” the absorption coefficient α(ν, z)
(that is defined for a set of altitude levels z1, z2, . . . , zL) for the corresponding altitude level zl
and evaluate transmission T (ν) = exp (−αl(ν)s) as a function of path length s. To compute
transmission as a function of (horizontal) distance, simply evaluate the exponent for an
array (or list) of distances. Likewise, for the weighting functions compute the product of
transmission times absorption coefficient for some distances (see Eq. (38)).

28

6 Py4CAtS used within the (i)python shell

Until recently the scripts provided in Py4CAtS could only be used as commands from the
Unix/Linux shell. These scripts read their input data from external files, and save their
results to files, too. As a consequence, I/O operations can become quite time–consuming
esp. for “large” spectra.

However, in view of the impressive advancements and progress of interactive Python
shells, in particular IPython (see www.ipython.org), the scripts have been substantially
rewritten to provide an easy way to do lbl modeling within (i)python. Furthermore, a
considerable part of the scripts presented in the previous chapter is devoted to consistency
checks of the data read back from file(s).

6.1 Setting up IPython for Py4CAtS

NOTE: This setup is far from perfect and might change soon (e.g. when Py4CAtS is orga-
nized as a package and/or when setup tools such as distutils are used).
Furthermore, the details of the IPython configuration are — unfortunately — version de-
pendent, so the description given here might be outdated if you use a more recent version.

There are several ways to start Py4CAtS in an interactive (I)Python console. Essen-
tially the setup is done by executing the py4cats.py module, that is located in the src

subdirectory of Py4CAtS.This script tries to “adjust” the Python search path (the list of
directories in sys.path) and then import all “important” modules. Note that numpy (and
scipy, matplotlib) are not imported here, it is assumed that you are doing this anyway.

Whatever your method to start Py4CAtS, you should see a list of modules/functions
imported and finally the message INFO --- py4cats: setup done along with the number
of directories in Python’s sys.path and the very first directory there, which should be the
location of Py4CAtS’s sources.

IPython without a new profile

Probably the easiest way is to start IPython, ideally with the --pylab option to automati-
cally load numpy and matplotlib:

ipython --pylab &

or better (the qtconsole supports embedded matplotlib figures and makes command editing
easier and more flexible; alternatively you might want to consider the notebook)

ipython qtconsole --pylab &

and then %load or %run Py4CAtS setup file by hand inside the IPython shell5

%load /a/very/long/path/to/py4cats/src/py4cats.py

or

%run /a/very/long/path/to/py4cats/src/py4cats.py

5Note that “sometimes” IPython apparently loads the file, but does not give a prompt afterwards. This
happens even for “simple” test files to be loaded, and is probably related to the qtconsole and/or the IPython
version.

29

www.ipython.org

IPython using the standard PYTHONSTARTUP

If you use Py4CAtS frequently, this becomes inconvenient and tedious. However, IPython
is recognizing the “classical” Python startup file, so you can adjust the corresponding envi-
ronment variable PYTHONSTARTUP6

ln -s /a/very/long/path/to/py4cats/src/py4cats.py ∼/
setenv PYTHONSTARTUP ∼/py4cats.py

(for the csh/tcsh, or an equivalent statement for the bash) and start IPython “as usual”.

Defining a IPython profile

As described in the IPython documentation, a new profile can be setup with the command
(given on the (unix) shell)

ipython profile create py4cats

In a typical Unix/Linux system this will generate a new subdirec-
tory in the .config/ipython directory in your home directory, e.g.
/users/schreier/.config/ipython/profile py4cats/ with some files and subdirectories
in it. Next copy (or symbolically link) the py4cats.py file,

cp ∼/src/py4cats/src/py4cats.py ∼/.config/ipython/profile py4cats/startup/

where we assume that the Py4CAtS modules are in the ∼/src/py4cats/src directory.
If Py4CAtS is somewhere else, change the catsPath variable in the py4cats.py file, i.e.
correct catsPath = os.path.join(os.path.expanduser(’∼’), ’src’, ’py4cats’) to
whatever else (e.g. catsPath=’/a/very/long/path/to/py4cats’) and also adjust the copy
command given above.)

Now you should be ready to start lbl modeling within the (i)python shell

ipython qtconsole --pylab --profile py4cats &

The --pylab option tells IPython to load numpy and matplotlib, too. Use --pylab=inline

to embed the plots/figures in the qtconsole7. If you prefer the standard IPython shell or the
IPython notebook, omit the qtconsole or replace it with notebook. If you have a “standard”
Python startup file you want to ignore for the lbl modeling, it might be convenient to define
an alias, e.g.

alias ipy4cats ’unsetenv PYTHONSTARTUP && ipython qtconsole --pylab --profile py4cats &’

6In the setup phase, Python automatically inserts the directory containing the startup file at the top of
sys.path and removes this afterwards. So if PYTHONSTARTUP specifies the “true/actual” py4cats.py file,
then the Py4CAtS directory (including this file) will be removed from sys.path after execution! Therefore
link or copy py4cats.py to some convenient place, e.g. your home directory.

7According to ipython qtconsole --help graphics are inlined with the option --matplotlib=inline,
but this (or --matplotlib inline) does not work if you also set --pylab! You can toggle between the
modes with the IPython magics %matplotlib qt and %matplotlib inline

30

Alternatives without IPython

As an alternative (e.g. in case you do not use ipython) you can use the py4cats.py file as
Python’s startup file (see above). Then start Python as usual.

Another possibility is to simply start the “good/old/traditional” Python shell
and tell Python to read the Py4CAtS startup file before going interactive, i.e.
python -i ∼/src/py4cats/src/py4cats.py .

Or, slightly more “advanced” with IDLE, Python’s first (?) Integrated DeveLopment Envi-
ronment:
idle -r ∼/src/py4cats/src/py4cats.py . Note that in both cases Matplotlib’s plotting
function are not loaded automatically! Furthermore, note that IDLE does not show any error
messages issued by raise SystemExit statements, so some operations might fail without
any info/warning.

6.2 Examples

In the following it is assumed that you have properly installed Py4CAtS, e.g. using an
IPython profile, i.e., when starting IPython it will automatically adjust the search path for
modules and import (important) Py4CAtS modules. Or, at least, you should have %loaded
Py4CAtS. Furthermore familiarity with Python and numpy is assumed.

The line data and atmospheric data required by Py4CAtS are stored internally in so-
called “structured arrays”, see appendix A.1. For example, reading one of the atmospheres
in the py4cats/data/atmos/ subdirectory will result in a structured array with several
columns with field names ‘z‘, ‘p‘, ‘T‘, ‘H2O‘, ‘CO2‘, More precisely, if you have
read one of the AFGL atmospheres given on the original altitude grid (available in the
py4cats/data/atmos/50/ subdirectory), then the structured array will have 50 rows.

6.2.1 Atmospheric Data

First read a dataset from a file (see subsection 5.3 for details) using the atmRead function8

of the atmos1D.py module

mls = atmRead(’∼/src/py4cats/data/atmos/20/mls.xy’)

and do some prints for information

print len(mls), gases(mls))

which should return 20 (the number of levels) and a list of gases such as [’H2O’, ’CO2’,

’O3’, ’N2O’, ’CO’, ’CH4’, ’N2’]. Note that atmRead expects a “complete” atmospheric
data file, i.e. with altitude, pressure, temperature,and molecular concentrations. If you want
to read a file with only concentrations vs. altitude, use the vmrRead function instead.

mls is an example of a structured array (see the appendix A.1), where the individual
profiles can be accessed by their name, e.g. mls[’T’] or mls[’H2O’], and the data for a
specific level l are given by the row index, e.g., mls[0] or mls[-1] for the bottom and top
level. Note that you can specify “rows” and “columns” in two ways; for example, the BoA
(bottom-of-atmosphere) temperature is mls[’T’][0] = mls[0][’T’].

Suppose you have read the midlatitude summer and winter atmospheres. Then you can
easily compare the temperatures with

8Note that in the Python 2 version this function has been called atmos1D.

31

atmPlot ([mls,mlw])

which is essentially a shortcut for plot (mls[’T’],mls[’z’], mlw[’T’],mlw[’z’]). The
summer ozone number density is depicted using atmPot (mls,’O3’) . Note that atmPlot

expects either a single structured array or a list thereof.
Molecular concentrations are stored internally as number densities (i.e. if the data file

contains volume mixing ratios (VMR), these are converted to densities by multipication with
the air number density n = p/(kT)). Volume mixing ratios (in units “pp1”) can be obtained
with the vmr function, e.g. vmr(mls) .

The function vcd integrates the (molecular and air) number densities along a vertical
path through the atmosphere (N =

∫
n(z) dz, default from bottom to top), e.g.

vcd(mls) or vcd(mls, zMax=80.0) or vcd(mls, ’CO’, zMin=3.0) ,
where the last example gives the CO column above the Zugspitze mountain. (Remember
that Py4CAtS internally uses cgs units consistently, including cm for altitudes. As a conve-
nience, PyCAtS interprets “very small” altitudes (smaller than 250) as km, assuming that
for atmospheric radiative transfer altitudes smaller than 250 cm do not make sense. (Might
not work perfect, but . . .))

Finally, the “Column Mixing Ratio”, i.e. the ratio of the molecular VCD’s and the air
VCD, can be computed by, e.g., cmr(mls) . And the atmRegrid (mls, zNew, ...) func-

tion allows to interpolate the atmospheric data to a new altitude grid (where parseGridSpec
from the grid module can help to setup the new grid).

To combine atmospheric data from different files, use atmMerge, e.g.
combiAtm = atmMerge (mlw, traceGases) . (here the second data set “traceGases” is

likely comprising only concentration profiles that can be read with the vmrRead function.)
If the two data sets are given on different altitude grids, profiles from the second set will be
interpolated to the grid of the first set. If a profile is defined in both data, then by default
the second is ignored unless the flag replace is “switched on”.

6.2.2 Shortwave Infrared

Line Parameters: To model atmospheric absorption in SCIAMACHY’s channel 8
mainly used for CO retrievals we need the spectral lines of CO and the interfering species: 9

dictOfLineLists = higstract(’/data/hitran/2012/lines’, (4250,4330))

returns a dictionary of 20 line lists, more precisely structured arrays, one array for each
molecule with transitions in this spectral range around 2.3µm. Actually, these arrays
are subclassed numpy arrays lineArray holding some extra information as attributes,
e.g. dictOfLineLists[’CO’].p and dictOfLineLists[’CO’].t will give Hitran’s reference
pressure 1013.25 103 dyn/cm2 and temperature 296.0 K, respectively. If you extract lines from
a single molecule only (e.g., higstract(’/data/geisa/2003/lines’, molecule=’CO’)),

a single lineArray is returned. (However, if you don’t specify a molecule, but higstract

finds lines from just one molecule in the given spectral range, a dictionary is returned with
just one entry.)

You can easily plot the line parameters using the standard matplotlib functions, e.g.
semilogy (dictOfLineLists[’CO’][’v’], dictOfLineLists[’CO’][’S’],’+’) for line
position vs. strength, or more simply with Py4CAtS’ own atlas function, e.g.

9The module containing this function has been called extract.py in the Python 2 version and has been
renamed to higstract.py. Unfortunately a function with the same name would conflict with numpy’s
extract function, so the new name higstract, short for hitran-geisa-extract.

32

4270 4275 4280 4285 4290 4295 4300 4305 4310 4315

position ν̂ [cm−1]

10−36

10−34

10−32

10−30

10−28

10−26

10−24

10−22

10−20

St
re

ng
th

S
[c

m
−

1
/(

m
ol

ec
.c

m
−

2
)]

CO p=1e+06 T=296.0
H2O p=1e+06 T=296.0
CH4 p=1e+06 T=296.0
N2O p=1e+06 T=296.0

10−28

10−27

10−26

10−25

10−24

10−23

10−22

10−21

10−20

10−19

cr
os

s
se

ct
io

n
k

(ν
)

[c
m

2
/m

ol
ec

]

1.01e+03mb 296.00K N2O
1.01e+03mb 296.00K CH4
1.01e+03mb 296.00K H2O
1.01e+03mb 296.00K CO

Figure 20: Combination of line atlas and xsPlot. This example has been generated with
dll = higstract(’/data/hitran/2000/lines’,(4273,4312), ’main’)

xss = lbl2xs(dll)

atlas(dll); twinx(); xsPlot(xss)

atlas(dictOfLineLists[’CO’], yType=’E’)

will show you the lower state energies of the CO transitions, or the linestrengths of all
molecules

atlas(dictOfLineLists)

The atlas function automatically selects a logarithmic y-axis for line strengths (or ener-
gies) and a linear scale otherwise. (If you don’t like it, you can easily toggle the ’log’ ↔
’linear’ scaling of y-axes using matplotlib’s event keys, see http://matplotlib.org/users/
navigation_toolbar.html#navigation-keyboard-shortcuts.) If later on you want to
see the molecular cross section (or absorption coefficients or optical depths etc.) overlayed
on top of the line atlas, you can you use matplotlib’s twinx() function, see Fig. 20.

The (core) line parameters of a certain molecule can be saved on file using the
write lines xy function (the output corresponds to the file produced by the extract.py

script, see subsection 5.1). Later on you can read a set of line parameter files with the func-
tion get dictOfLineLists, and read line file reads a single file. (Note December 2016:
read line file now works recursively, i.e. returns a dictOfLineLists when you give a list
of files.)

Absorption cross sections: Having read atmospheric and spectroscopic data you are
ready to compute absorption cross sections (in units cm2/molecules) as defined in Eq. (6):

33

http://matplotlib.org/users/navigation_toolbar.html#navigation-keyboard-shortcuts
http://matplotlib.org/users/navigation_toolbar.html#navigation-keyboard-shortcuts

xs = lbl2xs(dictOfLineLists[’CO’]) will return the cross section of CO in the spectral
range around 4300 cm−1 for the database (here HITRAN) reference pressure and tempera-
ture. Actually lbl2xs returns a subclassed numpy array (i.e. type(xs) = xsArray) with
the “attributes” such as lower and upper wavenumber bound, pressure, temperature, and
molecule stored in further items, e.g. xs.x or xs.p. Note that the cross sections are evaluated
on a uniform (equidistant) wavenumber grid, so it is sufficient (and more memory efficient)
to save the very first and very last grid point only.

To get cross sections for different p, T try 10

lbl2xs(dictOfLineLists[’CO’], pressure=500e3)

for p = 500 mb = 500 · 103 g/cm/s2 or

xss = lbl2xs(dictOfLineLists[’CO’], temperature=[200,300,400]) .

CO cross sections for all levels (i.e. p, T pairs) of the midlatitude summer atmosphere11 can
be obtained by

xss = lbl2xs(dictOfLineLists[’CO’], mls[’p’], mls[’T’])

and cross sections for all molecules and levels are produced by

xssDict = lbl2xs(dictOfLineLists, mls[’p’], mls[’T’], (4280.,4305.))

In the very last example we have also specified the wavenumber range as the fourth argument,
because otherwise lbl2xs (or lbl2ac and lbl2od) would consider all lines extracted from
Hitran/Geisa (see also the first remark in subsection 5.4).

Note that the data type returned by lbl2xs in these examples is different, i.e. the type
is depending on the number of p, T pairs and number of molecules. In the very first example
(CO and one p, T) above a single subclassed numpy array xsArray is returned, whereas a
list of xsArray’s is returned for a list of p, T pairs and a single molecule. Finally, the last
example will give a dictionary of lists of xsArray’s, each list for a single molecule and a
dictionary entry for each molecule.

Because the cross-section-dictionary does not store the wavenumber grid, you cannot
simply plot cross sections vs. wavenumber using matplotlib’s function. The xSection.py

module has a function xsPlot to visualize the cross sections, e.g. xsPlot(xss) . This
function works recursively, i.e. it can be called with a single xsArray, a list thereof, or a
dictionary of (lists of) xsArray’s.

To save cross section(s) to file(s) use the xsSave (xss, ...) function of the
xSection.py module.

Absorption coefficients: Given cross sections of some molecules on a set of p, T levels
along with the atmospheric data, in particular the molecular number densities, the absorption
coefficient (5) for all levels are generated with absCoList = xs2ac (mls, xssDict) . The
list contains a ”spectrum” for each atmospheric p, T level, where each spectrum is stored in
a subclassed numpy array: type(absCoList[0]) → acArray similar to the cross sections,
i.e. with attributes stored as, e.g., ac.x and ac.z for the wavenumber range and altitude,

10Important: remember that “internally” lbl2xs expects cgs units, esp. pressures in dyn/cm2 = g/cm/s2.
As a convenience, you can give a list/tuple of pressures with the unit as very first or very last entry, e.g.
pressure = [1013, 300., 100., ’mb’]

11See the example in subsubsection 6.2.1.

34

delta optical depth list

dodl = lbl2od(mls, dictOfLineLists)

the first two layers and their sum

odPlot([dodl[0], dodl[1],

dodl[0]+dodl[1]])

also plot total optical depth

odPlot(dod2tod(dodl))

2125 2130 2135 2140 2145 2150

wavenumber ν [cm−1]

10−2

10−1

100

101

102

o
p

ti
ca

l
d

ep
th
τ
(ν

)

1.01e+03 - 902mb

902 - 802mb

1.01e+03 - 802mb

1.01e+03 - 2.27e-05mb

Figure 21: Computing and combining optical depths.

respectively. Note that the number of levels in the atmospheric data set (here mls) and
the lengths of the cross section lists in the xssDict has to be identical. Furthermore, all
molecules with cross section data must be contained in the atmospheric data (but there can
be some “unused” molecules in the atmospheric data set).

The absorption coefficients (in units 1/cm) can be easily plotted with the stan-
dard matplotlib functions, but Py4CAtS also has a function to make this easier:
acPlot(absCoList) . The function acInfo(absCoList) prints essential information
about the absorption coefficients (Actually its just a loop calling the corresponding info

method of acArray, i.e. for ac in absCoList: ac.info()).
The data can be saved to file (tabular-ascii) with the standard numpy savetxt or

Py4CAtS’ awrite function. The acSave function will automatically save the absorption
coefficients along with the atmospheric data, and the acRead function allows you to read
the data (incl. the associated atmosphere) back from file, e.g. absCo = acRead(acFile) .
Both acSave and acRead also support Hitran formatted files or Python/numpy’s internal
pickle format.

Optical depth: The next step is to integrate the absorption coefficients along the (verti-
cal) path through the atmosphere: dodList = ac2dod (acList) . Similar to cross sections
and absorption coefficients this will return a list of (nLevels-1) subclassed numpy arrays
odArray, where each list member is essentially the delta / differential / layer optical depth
spectrum along with its attributes lower and upper altitudes, pressures, and temperatures
(and the wavenumber interval, too).

Note that these optical depths instances can be combined by addition or subtrac-
tion, e.g. the delta optical depths of the first (bottom) two layers can be added
dodList[0]+dodList[1] (Note that addition will fail if the two layers are not neighboring).

If you are interested in the total optical depth only, simply use tod = dod2tod(dodList) ,
see Fig. 21. Likewise, if you want to have the accumulated optical depth do
codList = dod2cod(dodList) to start accumulating with the very first (usually at BoA)

layer (default) or codList = dod2cod(dodList,True) to start accumulating with the very
last layer. In the first case, the very last element of the cod list should be the total optical
depth, in the back=True case the very first cod[0] corresponds to the total opotical depth.

Save the data to a file with savetxt(’myOptDepth.xy’, column stack([vGrid,

od])), or slightly more convenient using Py4CAtS’ awrite function, i.e. awrite([vGrid,

35

dod], ’myOpticalDepth.xy’). However, in both cases all the “attributes” are lost,
these functions only save the “raw” numpy arrays, so the recommended approach is
odSave (dodList, ’myOptDepth’) . Further options allow to select netcdf output and to

convert from wavenumbers to wavelengths (nanometer). Later on, you can read the optical
depth data back from file into a (new) ipython session with oDepth = odRead (odFile) .

Similar to the cross sections, optical depths can be plotted using the standard matplotlib
functions, but you can also use the “special” odPlot (optDepth) .

The oDepth function in the oDepth.py module offers several possibilities to “transform”
the optical depth, e.g. to sum-up the delta optical depth to the total optical depth.

The oDepthOne function returns the distance s1 from the (uplooking or downlooking)
observer to the point, where the optical depth is one, τ(ν, s1) = 1.0, corresponding to a
transmission that has decreased to T = 1/e. This distance should roughly correspond to the
location of the weighting function maximum.

Weighting functions are an important concept for atmospheric temperature sounding
and are a measure of the contribution of a particular atmospheric layer to the radiation seen
by an observer, see Eq. (1a). They are defined by ∂T

∂z
for a vertical path, or more generally

∂T (ν, s)

∂s
= − T (ν, s)α(ν, s) (38)

for a slant path with s = z/ cos θ (where α is the absorption coefficient, see (5)) and can
be computed with wgtFct = ac2wf(acList,zObs,angle) function. (The zenith angle θ

is zero for an uplooking observer and 180◦ for a downlooking observer.) Optionally ac2wf

also allows to treat finite field-of-view effects with an extra argument FoV to set the type
and width (HWHM, in degree) (e.g. FoV=’Gauss 7.5’). Like cross sections, absorption
coefficients, and optical depth the weighting functions are stored in a sub-classed numpy
array wfArray with special attributes for the limits of the wavenumber grid vGrid, path
distance, viewing angle etc.

Alternatively, given the delta/layer optical depths the weighting functions can be approx-
imated by finite differencing using dod2wf(dodList,zObs,angle) function, but starting
from the absorption coefficient is much more reliable!

Note that the weighting functions returned by ac2wf and dod2wf are “matrices” with
nLevels columns and len(vGrid) rows. Furthermore, sGrid contains the distances w.r.t.
the observer, i.e. from ToA to BoA in case of a downlooking nadir view (in this case you can
easily “translate” to altitudes in kilometers with cgs(’!km’,mls[’z’][-1]-sGrid)).

The function wfPlot(wgtFct, wavenumber, header) provides a simple visualization

tool (with all arguments except for the first being optional), and wfSave(wgtFct,... writes
the data to a file.

For weighting functions of a horizontal path (zenith angle θ = 90◦) see the second remark
in subsection 5.4.

Radiation intensity: The dod2ri function can be used to evaluate the Schwarzschild
integral (1b), i.e. the Planck function B(ν, T) is integrated along a line-of-sight through
the atmosphere. radiance = dod2ri (dod) will return the intensity (again a sub-
classed numpy array with attributes for wavenumber interval, altitude, pressure, and tem-
perature minimum/maximum, observer zenith angle, and background temperature) as
seen by an uplooking observer at the surface (“bottom-of-atmosphere”, BoA), whereas
dod2ri (dod, 180.0, mls[’T’][0]) will give the radiance for a nadir-viewing observer

36

looking down from top-of-atmosphere (ToA) with an angle of 180.0◦ (relative to the zenith
angle) to Earth (or whatever . . .); the third argument specifies the surface temperature Tb
(here the BoA temperature of the midlatitude summer (mls) atmosphere) that is used to
evaluate a Planck background contribution in Eq. (1) with Ib(ν) = B(ν, Tb).

Note that dod2ri does not have any argument to specify the observer altitude, i.e. it
computes the radiance at BoA or ToA for an angle smaller or larger than 90◦ (a horizontal
path with angle 90◦ is not implemented). If you want to model the radiance, say, for an
airborne observer downlooking from 10 km and have a list of layer optical depths for an
atmosphere with a uniform altitude grid of 1 km (hence layer thickness 1 km), supply a list
of the first ten optical depths only, i.e. dod2ri(dodList[:10],180). (See also the remark
on “observer inside” in App. D.)

A further Boolean optional argument can be given to switch to the “B exponential in τ”
approximation instead of the default “B linear in τ”, see subsection 3.4.

To plot and save the radiance spectrum (along with the wavenumber grid) in a file
use the riPlot and riSave functions, respectively. To convolve the radiance spectrum
with a spectral response function, a special method convolve has been implemented, e.g.
radBox1 = radiance.convolve() will use the default “box” with a half width 1.0. Like-

wise, radGauss2 = radiance.convolve(2.0,’G’) will use a Gaussian response function
with HWHM 2.0.

Shortcuts: If you do not need the absorption coefficients, you can directly go from cross
sections to optical depth with deltaOptDepthList = xs2dod (mls, xssDict) . Further-
more, you can bypass the cross sections with the lbl2od function, e.g.

deltaOptDepthList = lbl2od (mls, lineListsDict)

or similarly acList = lbl2ac (mls, lineListsDict) . Note that lbl2od “inherits” most
options accepted by lbl2xs or xs2ac, in particular the mode option.

6.3 Further remarks

In the previous subsection a typical iPy4CAtS session has been worked out for demonstration.
Here we give a brief (and probably incomplete) survey of some “common” things.

6.3.1 Input/Output:

Cross sections, absorption coefficients, and optical depths can be read from data files with the
functions xsRead, acRead, and odRead. Likewise, these data are written to files using xsSave,
acSave, and odSave. In all cases tabular ascii files are supported, in some cases Python’s /
numpy’s pickle format or netcdf I/O is also available. Cross section and absorption coefficient
files can also use the Hitran format.

Atmospheric data are read from ascii tabular files with the atmRead function (see subsec-
tion 6.2.1) and can be written (back) to file with atmSave. And finally, the riSave function
can be used to write a radiance spectrum to file.

For completeness the higstract function to read the Hitran and Geisa database (and
extract some lines) should be mentioned here, too. The extracted lines can be saved to
file with save_lines_core for the “core parameters” only (i.e. position, strength etc.) or
save_lines_orig for the original format (Note that there is no tool to convert data from
Hitran to Geisa format or back). To read a set of line data files (Hitran/Geisa extracts of

37

core parameters) use read_line_file that will return a dictionary with a “lineArray” for
each molecule.

All routines saving data in ascii format use the awrite function from the aeiou module,
see the appendix A.3 for details.

6.3.2 The subclassed numpy arrays

The spectra of molecular cross sections, absorption coefficients, (layer, cumulative, and total)
optical depths, weighting functions, and radiances are stored in subclassed numpy arrays to
hold extra information as attributes, e.g. the minimum and maximum wavenumber is stored
in xs.x, ac.x, and od.x, . . . , respectively (technically the x attribute is an instance of the
Interval class defined in the pairTypes.py module, see Appendix A.4). Pressure and tem-
perature of the cross section and absorption coefficient are single floats for the corresponding
atmospheric level, whereas for optical depths they are PairOfFloats corresponding to the
atmospheric layer.

In addition to these attributes, xsArray defines several methods, e.g. (note the paren-
theses!)

xs.info() — print “essential” information;

xs.dx() — compute the grid point spacing (essentially xs.x.size()/(len(xs)-1));

xs.grid() — returns the uniform wavenumber grid array;

xs.regrid(n) — interpolate to a denser uniform grid (so n must be larger than len(xs));

xs. eq (other) — compare two cross sections using the == operator, i.e. xs1==xs2 returns
True if the wavenumber intervals, pressure, temperature, and the spectra itself agree
(approximately).

The same methods are also defined for acArray, odArray, and riArray, where in addition
there is also a method truncate returning the spectrum in a smaller wavenumber interval.
Furthermore, a method convolve has been implemented in the riArray class in order to
smooth the radiance with a box, triangle, or Gaussian spectral response function.

For odArray there are also add and sub methods to add and subtract optical
depths, see Fig. 21. These combinations can only be performed if both spectra are defined
in the same wavenumber interval, i.e. od1.x and od2.x are identical. In general, the two
optical depths will be given on different wavenumber grids, so the coarser spectrum will be
regridded to the resolution of the denser spectrum first. The mul method can be used to
scale optical depths with a (float) number, e.g. to account for a slant path od/cosdg(60).

The core parameters (position, strength, width, . . .) of the lines extracted from the Hi-
tran or Geisa databases are also saved internally in a subclassed array lineArray. However,
in contrast to the arrays mentioned above (that all have just a single dimension) this has
“rows and columns”, where the rows correspond to the spectral lines/transitions, and the
columns correspond to center wavenumber ν̂l, line strength Sl, etc. To make these columns
easily accessible, lineArray is a subclassed structured array (see Appendix A.1) with at-
tributes holding information about molecule and reference pressure and temperature.

6.3.3 Visualization

The functions atmPlot, atlas, xsPlot, acPlot, odPlot, riPlot, and wfPlot can be used to
plot atmospheric profiles (default temperature vs. altitude, with z (default, or p) as vertical

38

abscissa), spectroscopic line data (default strength vs. position), molecular absorption cross
sections and coefficient, optical depths, radiance/intensity, and weighting functions. The
name atlas goes back to the Atlas of absorption lines from 0 to 17900 cm−1 by Park et al.
[1987] that served as pictorial representation of the Hitran 86 database.

Please note that these functions serve to provide quicklooks of the various spectra etc.
and are not designed for highly fancy, publication-ready plots. However, you can exploit the
source code of these functions as a starting point for more sophisticated plots. And you can
change x or y axis labels and limits, legend (entries, positions, . . .), title, and curve colors,
markers, styles and widths interactively in IPython / matplotlib.

6.3.4 Recursive functions

Some functions exploit Python’s recursive capabilities in order to make their use as flexible
as possible. In particular, lbl2xs can be called with

• a single lineArray holding the line parameters (position strengths, . . .) of a single
molecule and a single (p, T) pair (that defaults to STP 1 atm, 296 K);

• a dictionary or list of lineArray’s and a single (p, T) pair;

• a single lineArray and a list/array of pressures and/or a list/array of temperatures (if
both p and T are arrays (or list), their length has to be identical!);

• a dictionary (list) of lineArray’s and (a list/array of) pressure(s) and temperature(s).

Likewise, xsPlot can be called with a single cross section xsArray, or with a (nested) list
or dictionary of xsArray’s. Similarly, an odArray instance or a list of optical depths can be
visualized using odPlot, and acPlot and riPlot work in the same way. And atmPlot and
atmInfo accept a single or a list of atmospheric data. Finally, ac2wf is called recursively in
case of a finite field-of-view.

6.3.5 Miscellaneous: Conversion of physical units

The function cgs from the cgsUnits module can be used to convert physical quan-
tities (scalar or array) to or from the cgs base unit, e.g. cgs(’kg’) −→ 1000. or

cgs(’!km’) −→ 1e-5 or cgs(’mb ! atm’,1013.25) −→ 1.0 (where the exclamation

mark separates the original (input) and final (output) unit). Note that the optional second
argument “data” can be a float, list/tuple of floats, or a numpy array (In case of several
data a array is always returned).

Two further modules radiance2radiance.py and radiance2Kelvin.py help to convert
radiances. With the function radiance2radiance you can change the power and/or area
and/or spectral unit of radiances, e.g. nW ↔ erg/s or wavenumber ↔ frequency ↔ wave-
length. Likewise, radiance2Kelvin allows you to convert radiances to equivalent brightness
temperatures using the “inverse” of the Planck function (2).

6.3.6 Geometry

As mentioned above (section 3.4, see also appendix D) Py4CAtS assumes a plane-parallel
geometry, i.e. simulations of transmission and radiance for a limb-sounding configurations
are not possible. Nevertheless, a sketch of the geometry for uplooking and downlooking
(nadir) viewing in a spherical atmosphere might be useful. In particular, the “viewing
angle” α considered by GARLIC and Py4CAtS is always measured relative to the observer
with respect to the zenith.

39

α

ψ

β

robs

rToA

rEarth

rt

s

t

α

ᾱ

ψ

β

rEnd

robs

rEarth

rt

s

t

Figure 22: Geometry of uplooking (left) and downlooking (right) path: The observer is
looking upwards (downwards) with an angle α from the zenith along the line-of-sight (red).

40

A Implementation Aspects

A.1 Structured Arrays

As described in the numpy User Guide http://docs.scipy.org/doc/numpy/user/basics.
rec.html, “These arrays permit one to manipulate the data by the structs or by fields of the
struct”. The main difference to standard numpy arrays is that you can access the columns
of these arrays by names instead of numbers, similar to dictionary entries.

Py4CAtS uses structured arrays for the atmospheric data (see subsection 6.2.1) and the
line parameters (see subsection 6.2.2).

A.2 The Option Parser Module command parser.py

When development of the Py4CAtS tools started, Python only offered the getopt mod-
ule providing only limited functionality. Parsing the arguments and options given on the
(Unix/Linux) shell command line essentially comprises a series of common tasks, e.g. type
checking and conversion, so these extra steps were finally implemented in a new module
command parser.py building on top of getopt.py. Later on a new module optparse had
been added to the Python Standard Library, which is now superseded by the newer and
more advanced argparse module.

Although argparse has some nicer features (currently) not available in our
command parser, it also has one serious deficiency related to range checks of the given
input. In case of integer or float input arguments/options it is frequently required to check if
the number falls within a certain range, e.g. pressures and temperatures should be positive,
or the percentage concentration should be in the range (0.0, 100.0). argparse only can
check if the input is in a given list of possibilites, e.g. diceNumber in [1,2,3,4,5,6], but
a statement like 200<=temperature<=300 cannot be used. (Several solutions are discussed
in the web, but none of them appears attractive.) And more sophisticated checks such as
constraint=’all([digit.strip().isdigit() for digit in split(columns,",")])’

are impossible.

A.3 Input/Output Utilities: the aeiou.py Module

A set of functions for some common tasks as reading and parsing the comment file header
are collected in this module. In addition there is the awrite function that serves as a
“slightly better” version of numpy’s savetxt function: the format option is more intelli-
gent, and instead of a single header string to be written to the file header awrite also
accepts a list of strings for the header. Most importantly, there is only a single manda-
tory argument: the data array to save/write. If no output file is given, awrite prints
the output on the screen (sys.stdout). (Accordingly, the sequence of arguments is changed
from savetxt(fname,data,...) to awrite(data,fname=None,...).) Furthermore awrite
makes it easier to save several numpy arrays (all with the same number of rows), for example
awrite ([xGrid, yValues, aMatrix], ’allInOne.file’).

A.4 The pairTypes.py Module

This module defines several classes for Interval, pairOfInts, and PairOfFloats. The
Interval is frequently used in Py4CAtS, e.g. for the wavenumber region of interest:
xLimits=Interval(10.,20.) .

41

http://docs.scipy.org/doc/numpy/user/basics.rec.html
http://docs.scipy.org/doc/numpy/user/basics.rec.html

B ToDo’s

• Packaging, disutils,

• Consolidate the various subclassed numpy arrays (xsArray, acArray, odArray,
riArray, . . . , see 6.3.2) using a super-subclass specArray defining the common things;

• Clean-up, esp. make names more consistent, e.g.
’p’ ↔ ’press’ ↔ ’pressure’ ↔ ’pressures’;

• Interpolation: clean-up & more consistent, too;

• Exploit astropy (see www.astropy.org, esp. for unit conversion, maybe for data I/O);

• Finalize the new atmos1D.py (e.g. add regridding to the command line options),
Merging “main gases” data with trace gases data files (also clean-up data/atmos);

• FoV for radiance, transmission
Spectral response convolution

C Known Problems

• Module atmos1D.py: when this is called from lbl2od and the atmospheric data are
converted to cgs units (e.g. pressure to dyn/cm2), numpy raises a “FutureWarning”
related to copying arrays?¿?
(See also https://github.com/numpy/numpy/issues/8383.)

• Wavenumber interval limits, xLimits, impact of line wings, . . .

• Python’s search path sys.path, a list of directories to search for modules to be
imported: After IPython has executed its config file(s), the very first directory in
sys.path (pointing to this config) is removed. This might conflict with Py4CAtS’
assumption, that sys.path[0] is the directory of Py4CAtS’ source files.

D Limitations — What Py4CAtS cannot do

• Spherical atmospheres: modeling radiance and/or transmission for limb sounding is
not possible (and probably will never be); Py4CAtS is assuming a plane parallel at-
mosphere.

• No continuum contribution to molecular absorption

• Scattering: so far only the Schwarzschild equation with the Planck function as source is
supported. However, you can use the optical depths as input for any multiple scattering
solver [e.g. DISORT Stamnes et al., 1988], see libRadtran [Mayer and Kylling, 2005,
Emde et al., 2016].

• Observer “inside” a layer, i.e. observer altitude different from any atmospheric altitude
grid point. If you definitely need an observer, say, at 3.14159 km you can interpolate
the atmospheric profiles to a new grid including this point and proceed as usual.

• Line shapes beyond Voigt (well, “brute-force” line-mixing added recently)

42

www.astropy.org
https://github.com/numpy/numpy/issues/8383

References

M. Abramowitz and I.A. Stegun. Handbook of Mathematical Functions. National Bureau of Standards,
AMS55, New York, 1964. 3.2

B.H. Armstrong. Spectrum line profiles: The Voigt function. JQSRT, 7:61–88, 1967. doi: 10.1016/
0022-4073(67)90057-X. 3.2

P. Bernath, C. T. McElroy, M. C. Abrams, C. D. Boone, M. Butler, C. Camy-Peyret, M. Carleer, C. Cler-
baux, P.-F. Coheur, R. Colin, P. DeCola, M. DeMaziere, J. R. Drummond, D. Dufour, W. F. J. Evans,
H. Fast, D. Fussen, K. Gilbert, D. E. Jennings, E. J. Llewellyn, R. P. Lowe, E. Mahieu, J. C. McConnell,
M. McHugh, S. D. McLeod, R. Michaud, C. Midwinter, R. Nassar, F. Nichitiu, C. Nowlan, C. P. Rinsland,
Y. J. Rochon, N. Rowlands, K. Semeniuk, P. Simon, R. Skelton, J. J. Sloan, M.-A. Soucy, K. Strong,
P. Tremblay, D. Turnbull, K. A. Walker, I. Walkty, D. A. Wardle, V. Wehrle, R. Zander, and J. Zou.
Atmospheric Chemistry Experiment (ACE): Mission overview. Geophys. Res. Letters, 32:L15S01, 2005.
doi: 10.1029/2005GL022386. 4.4

P.F. Bernath. The atmospheric chemistry experiment (ACE). JQSRT, 186:3 – 16, 2017. doi: 10.1016/j.
jqsrt.2016.04.006. 4.4

Ronald F. Boisvert, Ronald Cools, and Bo Einarsson. Assessment of accuracy and reliability. In Bo Einarsson,
editor, Accuracy and Reliability in Scientific Computing, chapter 2. SIAM, Philadelphia, PA, 2005. 5

S.A. Buehler, P. Eriksson, T. Kuhn, A. von Engeln, and C. Verdes. ARTS, the atmospheric radiative transfer
simulator. JQSRT, 91:65–93, 2005. doi: 10.1016/j.jqsrt.2004.05.051. 1, 7

A. Calder, J. Dursi, B. Fryxell, T. Plewa, G. Weirs, T. Dupont, H. Robey, J. Kane, B. Remington, F. Timmes,
G. Dimonte, J. Hayes, M. Zingale, P. Drake, P. Ricker, J. Stone, and K. Olson. Validating astrophysical
simulation codes. Computing in Science & Eng., 6(5):10–20, 2004. doi: 10.1109/MCSE.2004.44. 4

S.A. Clough and F.X. Kneizys. Convolution algorithm for the Lorentz function. Appl. Opt., 18:2329–2333,
1979. doi: 10.1364/AO.18.002329. 3.1

S.A. Clough, F.X. Kneizys, G.P. Anderson, E.P. Shettle, J.H. Chetwynd, L.W. Abreu, L.A. Hall, and R.D.
Worsham. FASCOD3: spectral simulation. In J. Lenoble and J.F. Geleyn, editors, IRS’88: Current
Problems in Atmospheric Radiation, pages 372–375. A. Deepak Publishing, 1988. 1, 2.2.2, 3.1, 6

S.A. Clough, M.W. Shephard, E.J. Mlawer, J.S. Delamere, M.J. Iacono, K. Cady-Pereira, S. Boukabara,
and P.D. Brown. Atmospheric radiative transfer modeling: a summary of the AER codes. JQSRT, 91(2):
233–244, 2005. doi: 10.1016/j.jqsrt.2004.05.058. 2.2.2

P.F. Dubois and T.-Y. Yang. Extending Python with Fortran. Computing in Science & Eng., 1(5):66–73,
1999. doi: 10.1109/5992.790589. 5

D.P. Edwards. Atmospheric transmittance and radiance calculations using line–by–line computer models.
In Modelling of the Atmosphere, volume 928, pages 94–116. Proc. SPIE, 1988. 1, 3.1

Bo Einarsson, Ronald Boisvert, Françoise Chaitin-Chatelin, Ronald Cools, Craig Douglas, Kenneth Dritz,
Wayne Enright, William Gropp, Sven Hammarling, Hans Petter Langtangen, Roldan Pozo, Siegfried
Rump, Van Snyder, Elisabeth Traviesas-Cassan, Mladen Vouk, William Walster, and Brian Wichmann.
Accuracy and Reliability in Scientific Computing. SIAM, Philadelphia, PA, 2005. 4

C. Emde, R. Buras-Schnell, A. Kylling, B. Mayer, J. Gasteiger, U. Hamann, J. Kylling, B. Richter, C. Pause,
T. Dowling, and L. Bugliaro. The libRadtran software package for radiative transfer calculations (version
2.0.1). Geosci. Model Dev., 9(5):1647–1672, 2016. doi: 10.5194/gmd-9-1647-2016. D

B.A. Fomin. Effective interpolation technique for line–by–line calculation of radiation absorption in gases.
JQSRT, 53:663–669, 1995. doi: 10.1016/0022-4073(95)00029-K. 3.1

L. Garand, D.S. Turner, M. Larocque, J. Bates, S. Boukabara, P. Brunel, F. Chevallier, G. Deblonde,
R. Engelen, M. Hollingshead, D. Jackson, G. Jedlovec, J. Joiner, T. Kleespies, D.S. McKague, L.M.
McMillen, J.-.L. Moncet, J.R. Pardo, P.J. Rayer, E. Salathé, R. Saunders, N.A. Scott, P. Van Delst,
and H. Woolf. Radiance and Jacobian intercomparison of radiative transfer models applied to HIRS and
AMSU channels. J. Geophys. Res., 106(D20):24017–24031, 2001. doi: 10.1029/2000JD000184. 4.3

R.M. Goody and Y.L. Yung. Atmospheric Radiation — Theoretical Basis. Oxford University Press, second
edition, 1989. 2.1

R. Hughes, P. Bernath, and C. Boone. ACE infrared spectral atlases of the Earth’s atmosphere. JQSRT,
148:18 – 21, 2014. doi: 10.1016/j.jqsrt.2014.06.016. 4.4

A.K. Hui, B.H. Armstrong, and A.A. Wray. Rapid computation of the Voigt and complex error functions.
JQSRT, 19:509–516, 1978. doi: 10.1016/0022-4073(78)90019-5. 3.2, 3.2

J. Humĺıček. An efficient method for evaluation of the complex probability function: the Voigt function and

43

its derivatives. JQSRT, 21:309–313, 1979. doi: 10.1016/0022-4073(79)90062-1. 3.2

J. Humĺıček. Optimized computation of the Voigt and complex probability function. JQSRT, 27:437–444,
1982. doi: 10.1016/0022-4073(82)90078-4. 3.2, 3.2

K. Imai, M. Suzuki, and C. Takahashi. Evaluation of Voigt algorithms for the ISS/JEM/ SMILES L2 data
processing system. Adv. Space Res., 45:669–675, 2010. doi: 10.1016/j.asr.2009.11.005. 3.2

N. Jacquinet-Husson, N.A. Scott, A. Chedin, L. Crepeau, R. Armante, V. Capelle, J. Orphal, A. Coustenis,
C. Boonne, N. Poulet-Crovisier, A. Barbe, M. Birk, L.R. Brown, C. Camy-Peyret, C. Claveau, K. Chance,
N. Christidis, C. Clerbaux, P.F. Coheur, V. Dana, L. Daumont, M.R. De Backer-Barilly, G. Di Lonardo,
J.M. Flaud, A. Goldman, A. Hamdouni, M. Hess, M.D. Hurley, D. Jacquemart, I. Kleiner, P. Köpke, J.Y.
Mandin, S. Massie, S. Mikhailenko, V. Nemtchinov, A. Nikitin, D. Newnham, A. Perrin, V.I. Perevalov,
S. Pinnock, L. Regalia-Jarlot, C.P. Rinsland, A. Rublev, F. Schreier, L. Schult, K.M. Smith, S.A. Tashkun,
J.L. Teffo, R.A. Toth, Vl.G. Tyuterev, J. Vander Auwera, P. Varanasi, and G. Wagner. The GEISA
spectroscopic database: Current and future archive for Earth and planetary atmosphere studies. JQSRT,
109:1043–1059, 2008. doi: 10.1016/j.jqsrt.2007.12.015. 3.1

M. Kuntz. A new implementation of the Humlicek algorithm for the calculation of the Voigt profile function.
JQSRT, 57:819–824, 1997. doi: 10.1016/S0022-4073(96)00162-8. 3.2

Hans Petter Langtangen. Python Scripting for Computational Science, volume 3 of Texts in Computational
Science and Engineering. Springer, 2004. 1, 5

Johnny Wei-Bing Lin. Why Python is the next wave in earth sciences computing. Bull. Am. Met. Soc., 93
(12):1823–1824, 2012. doi: 10.1175/BAMS-D-12-00148.1. 1

Kuo-Nan Liou. An Introduction to Atmospheric Radiation. Academic Press, Orlando, 1980. 2.1

B. Mayer and A. Kylling. Technical note: The libradtran software package for radiative transfer calcu-
lations — description and examples of use. Atm. Chem. Phys., 5(7):1855–1877, 2005. doi: 10.5194/
acp-5-1855-2005. D

C. Melsheimer, C. Verdes, S.A. Buehler, C. Emde, P. Eriksson, D.G. Feist, S. Ichizawa, V.O. John, Y. Kasai,
G. Kopp, N. Koulev, T. Kuhn, O. Lemke, S. Ochiai, F. Schreier, T.R. Sreerekha, M. Suzuki, C. Takahashi,
S. Tsujimaru, and J. Urban. Intercomparison of general purpose clear sky atmospheric radiative transfer
models for the millimeter/submillimeter spectral range. Radio Sci., 40:RS1007, 2005. doi: 10.1029/
2004RS003110. 4.2

R.H. Norton and C.P. Rinsland. ATMOS data processing and science analysis methods. Appl. Opt., 30:
389–400, 1991. doi: 10.1364/AO.30.000389. 2.2.1

J.J. Olivero and R.L. Longbothum. Empirical fits to the Voigt line width: a brief review. JQSRT, 17:
233–236, 1977. doi: 10.1016/0022-4073(77)90161-3. 2.2.4

J.H. Park, L.S. Rothman, C.P. Rinsland, D.J. Richardson, and J.S. Namkung. Atlas of absorption lines from
0 to 17900 cm−1. Reference Publication 1188, NASA, September 1987. 6.3.3

H.M. Pickett, R.L. Poynter, E.A. Cohen, M.L. Delitsky, J.C. Pearson, and H.S.P. Müller. Submillimeter,
millimeter, and microwave spectral line catalog. JQSRT, 60:883–890, 1998. doi: 10.1016/S0022-4073(98)
00091-0. 3.1

L.S. Rothman, R.R. Gamache, A. Goldman, L.R. Brown, R.A. Toth, H.M. Pickett, P.L. Poynter, J.-M. Flaud,
C. Camy-Peyret, A. Barbe, N. Husson, C.P. Rinsland, and M.A.H. Smith. The HITRAN database: 1986
edition. Appl. Opt., 26:4058, 1987. 2.2.2

L.S. Rothman, I.E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P.F. Bernath, M. Birk, L. Bizzocchi,
V. Boudon, L.R. Brown, A. Campargue, K. Chance, E.A. Cohen, L.H. Coudert, V.M. Devi, B.J. Drouin,
A. Fayt, J.-M. Flaud, R.R. Gamache, J.J. Harrison, J.-M. Hartmann, C. Hill, J.T. Hodges, D. Jacque-
mart, A. Jolly, J. Lamouroux, R.J. Le Roy, G. Li, D.A. Long, O.M. Lyulin, C.J. Mackie, S.T. Massie,
S. Mikhailenko, H.S.P. Müller, O.V. Naumenko, A.V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E.R.
Polovtseva, C. Richard, M.A.H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G.C. Toon, Vl.G.
Tyuterev, and G. Wagner. The HITRAN2012 molecular spectroscopic database. JQSRT, 130:4–50, 2013.
doi: 10.1016/j.jqsrt.2013.07.002. 3.1

F. Schreier. The Voigt and complex error function: A comparison of computational methods. JQSRT, 48:
743–762, 1992. doi: 10.1016/0022-4073(92)90139-U. 3.2

F. Schreier. Optimized evaluation of a large sum of functions using a three-grid approach. Comp. Phys.
Comm., 174:783–802, 2006. doi: 10.1016/j.cpc.2005.12.015. 3.3

F. Schreier. Optimized implementations of rational approximations for the Voigt and complex error function.
JQSRT, 112(6):1010–1025, 2011. doi: 10.1016/j.jqsrt.2010.12.010. 3.2

F. Schreier, S. Gimeno Garćıa, P. Hedelt, M. Hess, J. Mendrok, M. Vasquez, and J. Xu. GARLIC – a

44

general purpose atmospheric radiative transfer line-by-line infrared-microwave code: Implementation and
evaluation. JQSRT, 137:29–50, 2014. doi: 10.1016/j.jqsrt.2013.11.018. 1, 3, 4

F. Schreier, M. Milz, S.A. Buehler, and T. von Clarmann. Intercomparison of three microwave/infrared high
resolution line-by-line radiative transfer codes. JQSRT, 211:64–77, 2018a. doi: 10.1016/j.jqsrt.2018.02.032.
4.3

F. Schreier, S. Städt, P. Hedelt, and M. Godolt. Transmission spectroscopy with the ACE-FTS infrared
spectral atlas of Earth: A model validation and feasibility study. Molec. Astrophysics, 11:1–22, 2018b.
doi: 10.1016/j.molap.2018.02.001. 4.4

L. Sparks. Efficient line–by–line calculation of absorption coefficients to high numerical accuracy. JQSRT,
57:631–650, 1997. doi: 10.1016/S0022-4073(96)00154-9. 3.1

K. Stamnes, S-Chee Tsay, W. Wiscombe, and K. Jayaweera. Numerically stable algorithm for discrete–
ordinate–method radiative transfer in multiple scattering and emitting layered media. Appl. Opt., 27:
2502–2509, 1988. doi: 10.1364/AO.27.002502. D

G.P. Stiller, T. von Clarmann, B. Funke, N. Glatthor, F. Hase, M. Höpfner, and A. Linden. Sensitivity
of trace gas abundances retrievals from infrared limb emission spectra to simplifying approximations in
radiative transfer modelling. JQSRT, 72:249–280, 2002. doi: 10.1016/S0022-4073(01)00123-6. 1, 6

A. Uchiyama. Line–by–line computation of the atmospheric absorption spectrum using the decomposed
Voigt line shape. JQSRT, 47:521–532, 1992. 3.1

T. von Clarmann, M. Höpfner, B. Funke, M. López-Puertas, A. Dudhia, V. Jay, F. Schreier, M. Ridolfi,
S. Ceccherini, B.J. Kerridge, J. Reburn, and R. Siddans. Modeling of atmospheric mid–infrared radiative
transfer: The AMIL2DA algorithm intercomparison experiment. JQSRT, 78:381–407, 2002. doi: 10.1016/
S0022-4073(02)00262-5. 4.1

J.A.C. Weideman. Computation of the complex error function. SIAM J. Num. Anal., 31:1497–1518, 1994.
doi: 10.1137/0731077. 3.2, 3.2

W. Zdunkowski, T. Trautmann, and A. Bott. Radiation in the Atmosphere — A Course in Theoretical
Meteorology. Cambridge University Press, 2007. 2.1

45

	Introduction
	Physical Basics of Infrared Radiative Transfer
	Schwarzschild Equation and Beer's Law
	Molecular Absorption
	Line strength and partition functions
	Pressure (collision) broadening — Lorentz profile
	Doppler broadening
	Combined pressure and Doppler broadening

	Algorithms
	Numerical Aspects — Computational Challenges
	Voigt profile and Voigt function
	Multigrid algorithm
	Path Quadrature

	Verification and Validation
	AMIL2DA
	IRTMW01
	ARTS – GARLIC – KOPRA
	ACE-FTS
	GARLIC vs. Py4CAtS

	Py4CAtS — The Python Scripts
	Examples
	Near Infrared
	Far Infrared

	Some Notes on Options
	The Atmospheric Datafile
	Misc Remarks

	Py4CAtS used within the (i)python shell
	Setting up IPython for Py4CAtS
	Examples
	Atmospheric Data
	Shortwave Infrared

	Further remarks
	Input/Output:
	The subclassed numpy arrays
	Visualization
	Recursive functions
	Miscellaneous: Conversion of physical units
	Geometry

	Implementation Aspects
	Structured Arrays
	The Option Parser Module command_parser.py
	Input/Output Utilities: the aeiou.py Module
	The pairTypes.py Module

	ToDo's
	Known Problems
	Limitations — What Py4CAtS cannot do

