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Abstract: Weather radar echo plays an important role in early warning and timely forecasting of
severe weather. However, the radar echo may not be accurate enough to predict or analyze small-scale
weather phenomenon due to the degradation of the observed radar. In order to solve this problem,
some radar echo super-resolution reconstruction algorithms have been proposed, but the algorithm
may result in an excessively smooth edge and detail in a local region. To reconstruct radar echo with
better edges and finer details, a novel nonlocal self-similarity sparse representation (NSSR) model is
proposed. The NSSR model is based on the sparse representation of weather radar echoes to better
reconstruct the echo edge and detail information. We exploit the radar echo nonlocal self-similarity to
recover more realistic details based on the NSSR model. Experiment results demonstrate that the
proposed NSSR outperforms current general-purpose radar echo super-resolution approaches on
both visual effects and objective radar echo quality.
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1. Introduction

Extreme weather events often result in serious economic loss. The key to disaster prevention and
mitigation is to provide early warning and timely forecasting of extreme weather. The new generation
of the Doppler weather radar system plays an important role in the monitoring and forecasting of
severe convective weather process. The volume scan time for the S-band China New Generation
Weather Radar (CINRAD-SA) in the volume coverage pattern (VCP) 21 mode is 6 minutes, and the
reflectivity distance resolution is 1 km. Small-scale severe convective weather systems have short
generation and rapid changes. For example, most tornadoes last only a few minutes. Small-scale
weather systems range from tens of meters to 2 kilometers. Therefore, the small-scale weather system
in radar echoes is only represented as having several valid data in the distance direction due to radar
resolution limitations. Besides, factors, such as blurring, deformation, and shifting, generated by
the receiver make it difficult to observe the detailed internal structure of the echoes. Enhancing the
resolution of weather radar echo data helps to observe and track the occurrence and development
of severe convective weather processes, obtain refined information about the internal structure of
atmospheric motion and meteorological targets, and provide stronger support for extreme weather
forecasts and warnings.

Peleg et al. [1] analyzed the characteristics of rainfall at the storm and convective rain cell scales
using high spatial-temporal resolution (1 km, 5 min) estimates from a uniquely long weather radar
record (24-year). The results indicated a reduction in the total rainfall amounts and an increased

Atmosphere 2019, 10, 254; doi:10.3390/atmos10050254 www.mdpi.com/journal/atmosphere

http://www.mdpi.com/journal/atmosphere
http://www.mdpi.com
http://www.mdpi.com/2073-4433/10/5/254?type=check_update&version=1
http://dx.doi.org/10.3390/atmos10050254
http://www.mdpi.com/journal/atmosphere


Atmosphere 2019, 10, 254 2 of 18

heterogeneity of the spatial structure of the storm rainfall for temperatures increasing up to 25 ◦C.
Kendon et al. [2] performed the first climate change experiments with a high resolution (1.5 km
grid spacing) model. The 1.5 km model showed a future intensification of short-duration rain in
summer, with significantly more events exceeding the high thresholds, indicative of serious flash
flooding. The experimental results obtained by Peleg et al. [1] and Kendon et al. [2] showed that higher
resolution weather radar data contains more climate change information and refined information about
atmospheric motion and meteorological targets that provide stronger support for extreme weather
forecasts and warnings.

Therefore, a lot of research has been done on improving the resolution of weather radar data.
Herman et al. [3] provided a sketch for a high-resolution radar system based on compressed sensing.
This novel compressed sensing approach offers great potential for better resolution over the classical
radar. Kumjian et al. [4] developed a rapid scanning strategy for the polarimetric prototype research
Weather Surveillance Radar-1988 Doppler (WSR-88D) radar. Data could be collected over an 80◦ sector
with 0.5◦ azimuthal spacing and a 250-m radial resolution (“super-resolution”) through the proposed
strategy, with 12 elevation angles. With the super-resolution data, the bulk microphysical properties
of the storm on small time scales (inferred from polarimetric data) were analyzed for the first time.
Borowska et al. [5] presented a method to obtain super-resolution data with a phased array radar (PAR) at
volume coverage speeds and the same azimuthal resolution as on the WSR-88D, which was achieved by
overlapping 50% of the time series data and applying a window function to these data before computing
spectral moments. Torres et al. [6] used simulated Doppler velocities for vortexlike fields to quantify the
effects of range-oversampling processing on the velocity signature of tornadoes when using WSR-88D
super-resolution data. The analysis showed that the benefits of range-oversampling processing in terms
of improved data quality should outweigh the relatively small degradation to the range resolution.

Li et al. [7] presented a new two-dimensional deconvolution technique on oversampled reflectivity
data to improve range and angular resolution simultaneously. Experimental results on CINRAD-SA
showed that the two-dimensional deconvolution methods were effective for super-resolution
enhancement of weather radar reflectivity data in range and angular resolution simultaneously.
However, deconvolution [7] is an ill-posed problem, and in order to address the problem that the
solution of deconvolution is sensitive to noise, various techniques have been proposed. Zha et al. [8]
presented a novel method for angular super-resolution imaging in scanning radar using the alternating
direction method for solving the constrained optimization problem. Experiments showed that the
proposed algorithm outperforms a number of existing deconvolution algorithms in terms of stability
and precision. A novel angular super-resolution approach for scanning radar was presented by
Wu et al. [9]. Simulations and experimental results demonstrated that the proposed method could
improve the azimuth resolution without noise amplification and loss of edge information. A penalized
maximum likelihood angular super-resolution method was proposed by Tan et al. [10]. Compared with
traditional statistical super-resolution methods, the proposed method has a better super-resolution
performance in reducing the spurious targets and enhancing the robustness to the noise amplification.
In order to solve the computational time of the deconvolution methods not meeting the real-time
requirements of radar imaging, Mao et al. [11] proposed a parallel processing plan based on the graphics
processing unit (GPU) frame to achieve real-time imaging by the Bayesian deconvolution algorithm.
Compared with the proposed algorithm in this paper, [7–10] proposed various algorithms to improve
angular resolution. Most of these algorithms used the oversampling strategy to achieve super-resolution
reconstruction, while this paper focuses on super-resolution reconstruction on radar data obtained
without changing the radar hardware or scanning mode. The method using oversampling strategy
requires the Analog to Digital (AD) converter to have a higher computing power. Zeng et al. [12]
studied the temporal and spatial correlation of weather radar echo data to provide a theoretical basis
for using data correlation to improve the resolution of weather radar data. He et al. [13] proposed an
improved Iterative Back-projection algorithm (IBP) algorithm to reconstruct super-resolution weather
radar echoes without updating the hardware of the radar system. Compared with the traditional
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IBP algorithm, it has a better reconstruction effect, and the proposed algorithm in this paper will be
compared with the IBP [13] for radar echo reconstruction. Narayanan et al. [14] proposed adaptive
backtracking matching pursuit (AdBMP) that makes use of ‘the partially known support’ (PKS) to
reconstruct the sparse version of the radar echo signal. Experimental results showed that the proposed
AdBMP made use of PKS more efficiently compared to that of existing PKS based on greedy algorithms.
Narayanan et al. [14] modeled a radar echo signal and adopted a sensing mechanism to acquire the
sparse version of the radar echo signal, while the results obtained using simulated radar data may
differ from those obtained using real radar data.

In this paper, firstly, we analyze the data characteristics of a weather radar based on three
characteristics of weather radar data. Then, we propose a nonlocal self-similarity sparse representation
weather radar echo super-resolution algorithm (NSSR). Using the input low-resolution weather radar
echo to learn a complete dictionary for radial reconstruction, NSSR adaptively selects the corresponding
dictionary to reconstruct the high-resolution radial, making full use of the radial correlation between
adjacent radials. Finally, the reconstruction performance of the NSSR algorithm is evaluated by the
complement of two evaluation indexes: Peak signal to noise Ratio (PSNR) and structural similarity
Structural Similarity index (SSIM).

The rest of this paper is organized as follows. Section 2 presents the sparse representation of the radar
echo. Section 3 provides the NSSR algorithm for solving the radar echo super-resolution reconstruction
problem. Section 4 presents extensive experimental results and Section 5 concludes this paper.

2. Weather Radar Echo Super-Resolution

2.1. Super-Resolution Observation Model

The degradation of weather radar echo quality is mainly due to the expansion of the radar antenna
beam at a long distance and the combination of blurring, deformation, shifting, and other factors
produced by the receiver. The Low-Resolution (LR) observation model is shown in Figure 1.
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The observed low-resolution echo, g , is a degraded (moved and blurred and down-sampled) 
version of the high-resolution echo, f . The degradation process can be expressed by: 

= +i i ng S BDf . (1) 

In the echo acquisition process, there is motion between the acquired low-resolution echoes due 
to atmospheric disturbances and the influence of radar receiver rotation. Here, iS  is a shifting 
operator, and iB  represents a blurring filter, while D  is a sampling operator. The additional 
variable, n , denotes the weather radar receiver noise, assuming n  conforms to the Gaussian 
distribution of zero means. For convenience, we call = i iT S BD  a degrading operator, T  is a 
composite operator of moving, blurring, and down-sampling. Equation (1) can be generally 
formulated by: 
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For Equation (2), super-resolution (SR) reconstruction of the radar echo refers to the reconstruction 
of the high-resolution echo, f , with the low-resolution echo, g . The reconstruction process is the 
reverse process of the LR observation model, as shown in Figure 2.  
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The observed low-resolution echo, g, is a degraded (moved and blurred and down-sampled)
version of the high-resolution echo, f. The degradation process can be expressed by:

g = SiBiDf + n. (1)

In the echo acquisition process, there is motion between the acquired low-resolution echoes
due to atmospheric disturbances and the influence of radar receiver rotation. Here, Si is a shifting
operator, and Bi represents a blurring filter, while D is a sampling operator. The additional variable, n,
denotes the weather radar receiver noise, assuming n conforms to the Gaussian distribution of zero
means. For convenience, we call T = SiBiD a degrading operator, T is a composite operator of moving,
blurring, and down-sampling. Equation (1) can be generally formulated by:

g = Tf + n. (2)

For Equation (2), super-resolution (SR) reconstruction of the radar echo refers to the reconstruction of
the high-resolution echo, f, with the low-resolution echo, g. The reconstruction process is the reverse
process of the LR observation model, as shown in Figure 2.



Atmosphere 2019, 10, 254 4 of 18
Atmosphere 2019, 10, x FOR PEER REVIEW 4 of 19 

 

Low
Resolution

Echo

Motion
Prediction

LR Echo
Interpolation

Denoise 
and

Deblurring

High
Resolution

Echo  

Figure 2. Reconstruction process. 

However, the output high-resolution data is very sensitive to the input low-resolution data in 
super-resolution reconstruction, because a slight change in the input data, such as the noise, receiver 
offset, etc., would cause large fluctuations in the output high-resolution echo. The weather radar echo 
degradation model is irreversible and cannot be accurately estimated. The reconstruction process as 
shown in Figure 2 can convert to solve an ill-posed problem. In the past decades, various 
regularization methods were proposed to address the ill-posed problem, such as [15–19]. Quadratic 
Tikhonov regularization [15] and TV regularization [16,18–20] are effective in reconstructing radar 
echo, but the classic regularization algorithm tends to over smooth the details of radar echo. In recent 
years, sparsity-based regularization [17,21–25] was proposed and has achieved promising results. 
The sparsity-based regularization algorithm is suitable for weather radar echo data super-resolution 
reconstruction because weather radar echo data has better sparsity than normal data, such as images 
and videos. 

2.2. Sparse Representation of Radar Echo 

The weather radar collects and records weather data in a unit of files. For different types of radar, 
the format of files is different. For the CINRAD-SA radar, a data file includes a volume scan header 
and volume data records. The volume scan data records usually contain a lot of missing data range 
bins. The missing data range bins refer to data that were sampled beyond the threshold for 8-bit 
reflectivity level codes or when the corresponding range bin is in an area of the atmosphere that 
weather does not exist in [26]. Figure 3 shows the proportion histogram of the missing data of level-
II radar data products in raw data. SAZ  and SAV  represent the reflectivity data and velocity data of 
the CINRAD-SA radar. Z , drZ , and ρ  denote the reflectivity, differential reflectivity, and 
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However, the output high-resolution data is very sensitive to the input low-resolution data in
super-resolution reconstruction, because a slight change in the input data, such as the noise, receiver offset,
etc., would cause large fluctuations in the output high-resolution echo. The weather radar echo degradation
model is irreversible and cannot be accurately estimated. The reconstruction process as shown in Figure 2
can convert to solve an ill-posed problem. In the past decades, various regularization methods were
proposed to address the ill-posed problem, such as [15–19]. Quadratic Tikhonov regularization [15] and TV
regularization [16,18–20] are effective in reconstructing radar echo, but the classic regularization algorithm
tends to over smooth the details of radar echo. In recent years, sparsity-based regularization [17,21–25]
was proposed and has achieved promising results. The sparsity-based regularization algorithm is suitable
for weather radar echo data super-resolution reconstruction because weather radar echo data has better
sparsity than normal data, such as images and videos.

2.2. Sparse Representation of Radar Echo

The weather radar collects and records weather data in a unit of files. For different types of
radar, the format of files is different. For the CINRAD-SA radar, a data file includes a volume scan
header and volume data records. The volume scan data records usually contain a lot of missing data
range bins. The missing data range bins refer to data that were sampled beyond the threshold for
8-bit reflectivity level codes or when the corresponding range bin is in an area of the atmosphere that
weather does not exist in [26]. Figure 3 shows the proportion histogram of the missing data of level-II
radar data products in raw data. ZSA and VSA represent the reflectivity data and velocity data of
the CINRAD-SA radar. Z, Zdr, and ρ denote the reflectivity, differential reflectivity, and correlation
coefficient of the X-band dual-polarization radar (XPRAD) [27]. We chose the rainfall XPRAD data
and tornado CINRAD-SA data as our test data. It can be seen that the missing data occupies a large
proportion of the raw data in Figure 3. Because of the existence of a large amount of missing data,
the weather radar data has better sparsity than the image data. The reconstruction method based on
sparse representation would achieve better performance in data that is more sparse [28]. In this paper,
sparsity-based regularization was adopted to reconstruct radar echo.
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Figure 3. The proportion histogram of the missing data of level-II radar data products in raw data.
The CINRAD SA reflectivity data is the first elevation cut of the radar at 11:24 (BJT) on 18 August 2018,
and the CINRAD SA velocity data corresponding to reflectivity is the second elevation cut of the radar.
The X-band dual-polarization radar (XPRAD) data is the first elevation cut of the radar at 10:43 (BJT)
on 28 May 2016.
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For Equation (2), the sparse representation model assumes that f ∈ Rn can be represented as
f ≈ Dα, where D ∈ Rn×K is an over-complete dictionary, where α ∈ RK is a vector with very few (� K)
nonzero entries. The representation of f over D can be obtained from its observation, g, by solving an
l0-minimization problem, formulated as αf = argminα‖α‖0, s.t.‖f−Dα‖2 ≤ ε, where the l0-norm counts
the number of nonzero coefficients in vector α, and ε is a small constant controlling the approximation
error. Since the l0-minimization is an Non-deterministic Polynomial (NP)-hard combinatorial search
problem, and we often use the l1-minimization, as the closest convex function to l0-minimization, as an
alternative approach to solve the sparse coding problem, as follows:

αf = argmin
α

{
‖f−Dα‖22 + λ‖α‖1

}
, (3)

where the constant, λ, denotes the regularization parameter that is used to adjust the convergence
speed of the algorithm. To solve Equation (3), many algorithms have been proposed, such as iterative
thresholding algorithms [17,29] and Bregman split algorithms [30,31].

For Equation (2), to recover high-resolution radar echo, f, from low-resolution radar echo, g,
first, we can acquire the sparse representation vector, αg, of g with respect to D by solving the
following problem:

αg = argmin
α

{
‖g− TDα‖22 + λ‖α‖1

}
. (4)

Then, f is reconstructed by f̂ = Dαg, where f̂ denotes the reconstructed high-resolution radar echo.
More precisely, for a low-resolution radar echo, g ∈ RN, we can obtain a low-resolution radar

echo patch of size
√

n×
√

n at location i, which is denoted as gi = Pig, where Pi is the matrix getting
patch, gi, at location i. With an over-complete dictionary, D ∈ Rn×M, n ≤M, each patch can be sparsely
represented as gi ≈ Dαg,i, by solving an l1-minimization problem:

αg,i = argmin
αi

{
‖gi −Dαi‖

2
2 + λ‖αi‖1

}
. (5)

Then, we can obtain the set of sparse code,
{
αg,i

}
. However, reconstructing high-resolution radar echo

from
{
αg,i

}
is an over-determined system, and a straightforward least-square solution is adapted to fix

that [21]. For convenience, we let:

f̂ ≈ D ◦αg =

 N∑
i=1

PT
i Pi


−1 N∑

i=1

(
PT

i Dαg,i
)
, (6)

where αg denotes the concatenation of all αg,i. For Equation (4), we can express this as follows:

αg = argmin
α

{
‖g− TD ◦α‖22 + λ‖α‖1

}
. (7)

Then, the high-resolution radar echo, f, is reconstructed by f̂ = D ◦αg.

3. Nonlocal Self-Similarity Sparse Representation (NSSR)

The sparse code of low-resolution radar echo should be as close as possible to the sparse code of
high-resolution radar echo in order to ideally reconstruct high-resolution radar echo. However, it is
difficult to obtain the sparse code of the high-resolution radar echo from the observed radar echo due
to the degradation process during observation. In this paper, the sparse coding noise [24] was adapted
to describe the difference between the sparse code of low-resolution radar echo and the sparse code
of high-resolution radar echo. Although the high-resolution radar echo cannot be directly obtained,
the sparse code of high-resolution radar echo can be estimated by using the spatial redundancy in
the observed low-resolution radar echo. A set of sub-dictionaries can be learned by training from the
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observed low-resolution radar echo, and the set of sub-dictionaries are adaptively used to code the
radar echo patch that needs to code. Hence, the proposed NSSR model is as follows:

αg = argmin
α

‖g− TD ◦α‖22 + λ
∑

i

∥∥∥αi − βi
∥∥∥

1

. (8)

Compared with Equation (7), the regularization term in Equation (8) is replaced with NSSR sparse
coding noise. D = {Dk|k = 1 · · ·K} is the concatenation of all sub-dictionaries of the observed radar
echo, λ is the regularization parameter, αi is the sparse coding vector for each radar echo patch, βi
is the estimation of αi, and α is the concatenation of all αi. For Equation (8), one key procedure is
the determination of D and we attempt to recover high-resolution radar echo based on the nonlocal
self-similarity [32] of the observed low-resolution radar echo. So, we need to learn a series of
sub-dictionaries to code the observed radar echo structures. At first, we extracted radar echo patches
with size

√
n ×
√

n from the observed radar echo. Then, the patch will be involved in dictionary
learning if its intensity variance exceeds the threshold, and the purpose of this process is to exclude
the invalid data from the observed radar echo and guarantee that the useful patches are involved in
dictionary learning.

For a radar echo patch to be coded, the most relevant sub-dictionary will be adaptively selected
to code it. To this end, the radar echo patches were selected by the observed echo that should be
clustered in K clusters by using the K-means clustering method, and learn a sub-dictionary from each
of the K clusters. Since the radar echo contains a lot of edge information, the feature for clustering is
represented by the high-pass filtering output of each radar echo. For each cluster, there are n numbers
of radar echo patches and the principal component analysis (PCA) is applied for each cluster to learn a
compact sub-dictionary. So far, we can get K sub-dictionaries, Dk, by applying the above procedures to
all the K clusters, and adaptively assign a sub-dictionary to each local radar echo patch of f by solving
Equation (9), as follows:

ki = argmin‖Dc f̂i −Dcµk‖2, (9)

where µk denotes the centroid of the clusters, Dc is the projection matrix composed by the first
several most significant eigenvectors, and f̂i denotes the high-pass filtered radar echo patch. Since
the radar echo, f, is unknown beforehand, we need to have an initial estimation of it by solving
Equation (7). The ki

th sub-dictionary, Dki , will be selected and assigned to the radar echo patch, f̂i, by
using Equation (9).

For Equation (8), how to obtain a good estimation, βi, of αi is a key step in the model solution.
Considering the spatial redundancy of the radar echo data, the estimated β is learned from the observed
radar echo. Let pi denote the radar echo patch at location i in the observed radar echo. For each local
radar patch, pi, radar echo patch redundancy is utilized by searching for the nonlocal similar patches
to the given patch in a large window centered at the given radar patch, pi, as Figure 4 shows.
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Figure 4. An example of searching for the nonlocal similar patches to the given radar echo patch.
The black square in the left Plan Position Indicator (PPI) represents the given patch which needs to
search the nonlocal similar patches. The big square in the right PPI represents the search window,
the red square represents the given patch, and the other squares in the right PPI represent the similar
patches to the given patch using the moving window model within the search window. The tested data
is the first elevation cut of the CINRAD SA radar on 23 September 2008 at 20:13 (BJT), which has 360
radials in an elevation cut. Each radial has 460 range bins.

Then, each echo patch, pi, has a set of its similar patches that is denoted by Ωi. Finally, the optimal
estimation, βi, of αi can be obtained from the sparse codes of the radar echo patches within Ωi. More
specifically, αi,q denotes the sparse codes of the radar echo patch, pi,q, within set Ωi, then βi can be
computed as the weighted average of pi,q, as follows:

βi =
∑
q∈Ωi

ωi,qαi,q, (10)

where ωi,q is the weight vector. The weight parameters are inversely proportional to the distance
between the radar echo patches, pi and pi,q, as follows:

ωi,q =
1
W

exp
(
−‖p̂i − p̂i,q‖

2
2
/h

)
. (11)

Here, p̂i = Dα̂i and p̂i,q = Dα̂i,q are the estimation of the radar echo patches, pi and pi,q; h is a
pre-determined scalar; and W is the normalization factor. The sparse codes, α̂i and α̂i,q, can be
calculated by α̂i = DTp̂i and α̂i,q = DTp̂i,q. The flow of the NSSR algorithm is shown in the following
Table 1.

Table 1. The flow of the nonlocal self-similarity sparse representation (NSSR) algorithm.

Proposed Nonlocal Self-Similarity Sparse Representation (NSSR) Algorithm

1. Initialization: Set the initial estimation, f̂, and initial regularization parameter, λ.
2. Outer loop: Dictionary learning and parameter estimation. Iterate on l = 1, 2, · · · , L:

(a) Update the dictionaries {Dk}.
(b) Inner loop: reconstruct radar echo. Iterate on k = 1, 2, · · · , K.

(I) Initialize β(−1)
i = 0.

(II) Compute f(0) = D ◦α(0)g .

(III) Each radar echo patch, Pi, computes the nonlocal estimation, β(0)i , using Equations (9) and (10).

(IV) Repeat the above three steps until its convergence in the lth iteration. Compute α(l)g using Equation (8).

(V) Radar echo estimate update: f̂
(l)

= D ◦α(l)g using Equation (6).
3. Results: Output the reconstructed HR radar echo, f.
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In NSSR algorithm, we use the bicubic interpolation of the low-resolution radar echo as an initial
estimation of the high-resolution radar echo. NSSR algorithm is empirically convergent in general,
such as those presented in [33].

4. Experiments

The radar echo super-resolution reconstruction performance of the proposed NSSR algorithm
was tested by the level-II weather radar data from China Meteorological Administration. Various
weather phenomena were also selected to verify the universality of the algorithm for complex
weather conditions.

The rainfall data of XPRAD radar in the South China Heavy Rainfall Observation Experiment and
the tornado data of the CINRAD SA radar in Guangzhou were selected as the tested data. Since the
weather radar echo degradation model, as shown in Figure 1, is irreversible and cannot be accurately
estimated and the point spread functions of different imaging systems are different, so, Gaussian noise
is usually used to simulate the process of the degradation of radar echo [7,13,23,24,32,34]. The degraded
radar echoes were generated by applying a 7× 7 Gaussian kernel of a standard deviation of 1.5 to the
high-resolution radar echo and then down-sampled the blurred radar echo by a scaling factor 2 and
4 in both the horizontal and vertical directions. Additionally, the parameter initialization of NSSR
was as follows: The number of the PCA sub-dictionary is K = 64, the regularization parameter is
λ = 7. We compared the proposed NSSR approach with the bicubic interpolation and the iterative
back-projection algorithm [13].

For level-II CINRAD SA data, we adopted the reflectivity and mean radial velocity data as the
tested data. The reflectivity data product contains 11 elevation cuts, and each elevation cut includes
360 radials with 460 range bins per radial direction. The distance resolution of the data is 1 km.
The mean radial velocity data format is slightly different from the reflectivity data format, as every
mean radial velocity data product has 920 range bins for each of the 360 radials in an elevation cut,
and the distance resolution is 0.25 km. For XPRAD data, the reflectivity, differential reflectivity, and
correlation coefficient data were selected as the tested data. The XPRAD data products contain 14
elevation cuts, and each elevation cut includes 360 radials with 4000 range bins per radial direction.
The distance resolution of the data is 0.075 km. We used the top 600 range bins as our experimental
data, because the stronger rainfall attenuation in the X-band results in lower data availability from
the radar.

The experiment used the original echo data as high-resolution echo data. First, the original echo
data was blurred and down-sampled to obtain simulated low-resolution echo data. Additionally, the
bicubic interpolation results of the low-resolution echo data were used as the input of the proposed
algorithm. Super-resolution reconstruction of the low-resolution echo data was then performed using
different algorithms. Finally, the subjective visual quality and objective evaluation of the high-resolution
echo data and super-resolution reconstructed echo data were compared. Objective evaluation criteria
included: PSNR (peak signal to noise ratio) describing the reconstruction quality and SSIM (structural
similarity index) describing the structural similarity.

CINARAD SA data (the tested data is the first elevation cut of the CINRAD SA radar at 11:24 (BJT)
on 18 August 2018, Tornado, Xuzhou City, Jiangsu, China) was used to test the effectiveness of the
algorithm for CINARAD data. Reflectivity and mean radial velocity data were selected as the test data.
The visual comparison of the radar echo reconstruction methods and their corresponding original
level-II CINARAD SA data products’ PPI are presented in Figures 5 and 6. From Figure 5, we can see
that the bicubic interpolation tends to over-smooth the reconstructed radar echo, resulting in the partial
loss of the red strong echo information in the black square in Figure 5a, while both IBP [13] and NSSR
can reconstruct most of the red strong echo information. The reconstructed echoes by NSSR are more
similar to the original radar echo than that reconstructed by IBP [13], especially in radar echo edges
and detailed information. Figure 6 represents the mean radial velocity PPI of the tornado CINRAD SA
data, and the purple area in the black rectangle represents the center of the tornado. As can be seen
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from Figure 6a, the velocity PPI reconstructed by NSSR can better restore the details of the tornado
center, while the other methods cannot reconstruct the tornado center in the radar echo. According
to Figures 5 and 6, the NSSR algorithm has a good effect on the super-resolution reconstruction of
CINRAD SA data. In order to verify whether the NSSR is universal for adaption to different weather
phenomena, five groups of severe convective weather, rainfall event, and sunny day CINARAD SA
data were selected, respectively, and the reconstructed radar echo was compared with the original
high-resolution radar echo. The PSNR and SSIM results are shown in Tables 2 and 3. From Tables 2
and 3, we can see that the proposed NSSR algorithm achieves the highest PSNR and SSIM against the
other algorithms, and the experimental results show that the NSSR algorithm has good adaptability to
various weathers. From the experiments on the CINRAD SA data, we can see that the effect of the
reflectivity super-resolution reconstruction is better than the velocity, because the NSSR algorithm is
based on the sparsity of the radar data and the reflectivity data is more sparse than the velocity data.
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SA radar at 11:24 (BJT) on 18 August 2018. 

Figure 5. Radar echo reconstruction comparison on reflectivity data. (a) 2× reconstruction of reflectivity
data. From left to right and top to bottom: bicubic interpolation echo, the reconstructed echo by IBP [13]
(PSNR = 35.3572; SSIM = 0.9556), original radar echo, and the reconstructed echo by the proposed NSSR
algorithm (PSNR = 37.3138; SSIM = 0.9609). (b) 4× reconstruction of reflectivity data. From left to right
and top to bottom: LR radar echo, the reconstructed echo by IBP [13] (PSNR = 30.5857; SSIM = 0.8656),
original radar echo, and the reconstructed echo by the proposed NSSR algorithm (PSNR = 33.5267;
SSIM = 0.9062). The tested data is the first elevation cut of the CINRAD SA radar at 11:24 (BJT) on
18 August 2018.
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Figure 6. Radar echo reconstruction comparison on radial velocity data. (a) 2× reconstruction of radial
velocity data. From left to right and top to bottom: bicubic interpolation echo, the reconstructed echo
by IBP [13] (PSNR = 30.0435; SSIM = 0.9184), original radar echo, and the reconstructed echo by the
proposed NSSR algorithm (PSNR = 31.1579; SSIM = 0.9253). (b) 4× reconstruction of reflectivity data.
From left to right and top to bottom: bicubic interpolation echo, the reconstructed echo by IBP [13]
(PSNR = 26.8634; SSIM = 0.8303), original radar echo, and the reconstructed echo by the proposed
NSSR algorithm (PSNR = 28.4852; SSIM = 0.8524). The tested data is the second elevation cut of the
CINRAD SA radar, which is the same as the data used in Figure 5.
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Table 2. Average PSNR (dB) and SSIM results of the reconstructed echo of five groups of level-II
CINRAD SA data.

Level-II Radar
Data Products (2×)

Severe Weather Rainfall Sun Day

Bicubic IBP NSSR Bicubic IBP NSSR Bicubic IBP NSSR

Reflectivity 32.996 35.055 37.123 31.669 34.141 35.750 33.817 35.228 36.353
0.8933 0.9500 0.9598 0.8450 0.9284 0.9441 0.9098 0.9421 0.9552

Velocity 27.911 29.459 30.169 26.999 28.916 30.562 29.194 30.025 32.343
0.8287 0.8937 0.9056 0.8465 0.8948 0.9209 0.8572 0.9179 0.9345

Table 3. Average PSNR (dB) and SSIM results of the reconstructed echo of five groups of level-II
CINRAD SA data.

Level-II Radar
Data Products (4×)

Severe Weather Rainfall Sun Day

Bicubic IBP NSSR Bicubic IBP NSSR Bicubic IBP NSSR

Reflectivity 30.588 30.694 33.411 30.244 31.213 32.486 33.817 35.228 36.353
0.8412 0.8699 0.9031 0.8241 0.8356 0.8978 0.9098 0.9421 0.9552

Velocity 26.921 26.883 28.415 26.332 26.127 28.179 29.194 30.025 32.343
0.7546 0.8324 0.8501 0.7231 0.8035 0.8471 0.8572 0.9179 0.9345

To verify that the NSSR algorithm is also applicable to dual-polarization weather radar data, the
reflectivity, differential reflectivity, and correlation coefficient data were selected as the tested data (the
tested data is the first elevation cut of the XPRAD at 10:43 (BJT) on 28 May 2016, rainfall event, Xinfeng
County, Guangdong Province, China). The visual comparison of the radar echo reconstruction methods
and their corresponding original level-II XPRAD data products’ PPI are presented in Figures 7–9. From
Figures 7–9, we can see that the NSSR can also apply to XPRAD data: The reconstructed XPRAD echo
by NSSR can better restore the details and edges than IBP [13]. Similarly, to verify whether the NSSR
is universal for adaption to different weather phenomena, five groups of severe convective weather,
rainfall event, and sunny day XPRAD data were selected, respectively, and the reconstructed radar
echo was compared with the original high-resolution radar echo. The PSNR and SSIM results are
shown in Tables 4 and 5. From Tables 4 and 5, we can see that the proposed NSSR algorithm achieves
the highest PSNR and SSIM against the other algorithms. The experimental results show that the NSSR
algorithm has good adaptability to various weather events. Although the differential reflectivity and
correlation coefficient data achieved the highest PSNR and SSIM in radar echo reconstruction, the
visual quality was not very good compared with original echo and other reconstructed level-II radar
data products. The reason is the range of the differential reflectivity and correlation coefficient data is
small and, especially on rainy days, most correlation coefficients are close to 1. From Figure 3, we can
see that the XPRAD data is more sparse than the CINARAD SA data, so, the PSNR and SSIM results of
the reconstructed XPRAD echo by NSSR are better than that of the CINARAD SA.
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Figure 7. Radar echo reconstruction comparison on reflectivity data. (a) 2 × reconstruction of 
reflectivity data. From left to right and top to bottom: bicubic interpolation echo, the reconstructed 
echo by IBP [13] (PSNR = 39.1936; SSIM = 0.9867), original radar echo, and the reconstructed echo by 

Figure 7. Radar echo reconstruction comparison on reflectivity data. (a) 2× reconstruction of reflectivity
data. From left to right and top to bottom: bicubic interpolation echo, the reconstructed echo by
IBP [13] (PSNR = 39.1936; SSIM = 0.9867), original radar echo, and the reconstructed echo by the
proposed NSSR algorithm (PSNR = 41.9943; SSIM = 0.9877). (b) 4× reconstruction of reflectivity data.
From left to right and top to bottom: bicubic interpolation echo, the reconstructed echo by IBP [13]
(PSNR = 32.9533; SSIM = 0.9221), original radar echo, and the reconstructed echo by the proposed
NSSR algorithm (PSNR = 37.1748; SSIM = 0.9588). The tested data is the first elevation cut of the
XPRAD at 10:43 (BJT) on 28 May 2016.
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Figure 8. Radar echo reconstruction comparison on differential reflectivity data. (a) 2 ×  
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interpolation echo, the reconstructed echo by IBP [13] (PSNR = 54.6148; SSIM = 0.9971), original radar 
echo, and the reconstructed echo by the proposed NSSR algorithm (PSNR = 57.1143; SSIM = 0.9983). 
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Figure 8. Radar echo reconstruction comparison on differential reflectivity data. (a) 2× reconstruction
of differential reflectivity data. From left to right and top to bottom: bicubic interpolation echo,
the reconstructed echo by IBP [13] (PSNR = 54.6148; SSIM = 0.9971), original radar echo, and the
reconstructed echo by the proposed NSSR algorithm (PSNR = 57.1143; SSIM = 0.9983). (b) 4×
reconstruction of differential reflectivity data. From left to right and top to bottom: bicubic interpolation
echo, the reconstructed echo by IBP [13] (PSNR = 49.3183; SSIM = 0.9871), original radar echo, and the
reconstructed echo by the proposed NSSR algorithm (PSNR = 52.9308; SSIM = 0.9943). The tested data
is the first elevation cut of the XPRAD, which is the same as the data used in Figure 7.
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Figure 9. Radar echo reconstruction comparison on correlation coefficient data. (a) 2 ×  reconstruction 
of correlation coefficient data. From left to right and top to bottom: bicubic interpolation echo, the 
reconstructed echo by IBP [13] (PSNR = 71.6387; SSIM = 0.9998), original radar echo, and the 
reconstructed echo by the proposed NSSR algorithm (PSNR = 73.3858; SSIM = 0.9999). (b) 4 ×
reconstruction of correlation coefficient data. From left to right and top to bottom: bicubic 
interpolation echo, the reconstructed echo by IBP [13] (PSNR = 66.7864; SSIM = 0.9994), original radar 

Figure 9. Radar echo reconstruction comparison on correlation coefficient data. (a) 2× reconstruction
of correlation coefficient data. From left to right and top to bottom: bicubic interpolation echo,
the reconstructed echo by IBP [13] (PSNR = 71.6387; SSIM = 0.9998), original radar echo, and the
reconstructed echo by the proposed NSSR algorithm (PSNR = 73.3858; SSIM = 0.9999). (b) 4×
reconstruction of correlation coefficient data. From left to right and top to bottom: bicubic interpolation
echo, the reconstructed echo by IBP [13] (PSNR = 66.7864; SSIM = 0.9994), original radar echo, and the
reconstructed echo by the proposed NSSR algorithm (PSNR = 68.8336; SSIM = 0.9998). The tested data
is the first elevation cut of the XPRAD, which is the same as the data used in Figure 7.
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Table 4. Average PSNR (dB) and SSIM results of the reconstructed echo of five groups of level-II
XPRAD data.

Level-II Radar
Data Products (2×)

Severe Weather Rainfall Sun Day

Bicubic IBP NSSR Bicubic IBP NSSR Bicubic IBP NSSR

Reflectivity 35.362 38.798 40.809 35.691 38.038 40.557 37.188 38.524 41.807
0.9338 0.9823 0.9844 0.9393 0.9789 0.9843 0.9598 0.9843 0.9989

Differential
Reflectivity

51.007 52.840 55.621 46.910 48.501 50.410 46.860 48.822 50.635
0.9891 0.9935 0.9975 0.9821 0.9835 0.9942 0.9851 0.9853 0.9947

Correlation
Coefficient

67.436 70.223 72.121 67.936 70.404 72.029 70.080 72.246 74.542
0.9996 0.9998 0.9999 0.9996 0.9997 0.9999 0.9998 0.9998 0.9999

Table 5. Average PSNR (dB) and SSIM results of the reconstructed echo of five groups of level-II
XPRAD data.

Level-II Radar
Data Products (4×)

Severe Weather Rainfall Sun Day

Bicubic IBP NSSR Bicubic IBP NSSR Bicubic IBP NSSR

Reflectivity 32.294 32.458 35.525 32.883 32.454 36.140 34.531 33.325 37.698
0.8834 0.9113 0.9446 0.8966 0.9185 0.9519 0.9348 0.9461 0.9689

Differential
Reflectivity

48.479 48.562 50.156 45.055 45.128 47.124 45.627 45.500 47.130
0.9816 0.9876 0.9924 0.9654 0.9727 0.9831 0.9741 0.9779 0.9855

Correlation
Coefficient

64.571 65.487 67.102 65.799 66.175 68.058 65.794 68.315 70.231
0.9988 0.9992 0.9996 0.9986 0.9993 0.9998 0.9990 0.9996 0.9998

5. Conclusions

These results prove the outstanding performance of NSSR for level-II weather radar data
super-resolution reconstruction. The NSSR model is suitable for super-resolution reconstruction of
both CINRAD radar data and dual-polarized weather radar data products. In particular, the model has
excellent reconstruction effects on the edge and structural details of weather radar echoes. The NSSR
method can be applied to enhance the resolution of weather radars and space-time integration of
networked observations at different frequencies.

Weather radar data is different from image or video data. Since spatial target distribution tends to
be concentrated in a certain area, meteorological radar data is sparser than image data. The better
sparsity makes the reconstruction of the structure and edge information of the reconstruction results
more precise. Most of the super-resolution reconstruction algorithms use an iterative algorithm with
a large amount of computation. Excessive computational complexity is an important factor that
constrains the application of its super-resolution algorithms. We compared the time taken by NSSR and
IBP [13] to super-resolution reconstruct the same radar echo under the same environment. Five groups
of strong convective weather, rainfall event, and sunny day CINARAD SA data and XPRAD data were
selected, respectively. The experimental results showed that NSSR spends more time than IBP [13],
and the NSSR algorithm need to be further optimized to meet the needs of real-time applications.
According to different application requirements, the design of the corresponding super-resolution
reconstruction algorithm still requires a lot of work.
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