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Abstract: To reveal key parameter-related physical mechanisms in simulating Madden-Julian
Oscillation (MJO), seven physical parameters in the convection and cloud parameterization schemes
of Beijing Climate Center Climate System Model (BCC_CSM1.2) are perturbed with Latin hypercube
sampling method. A new strategy is proposed to select runs with good and poor MJO simulations
among 85 generated ones. Outputs and parameter values from good and poor simulations are
composited separately for comparison. Among the seven chosen parameters, a decreased value of
precipitation efficiency for shallow convection, higher values of relative humidity threshold for low
stable clouds and evaporation efficiency for deep convective precipitation are crucial to simulate
a better MJO. Changes of the three parameters act together to suppress heavy precipitation and
increase the frequency of light rainfall over the Indo-Pacific region, supplying more moisture in
low and middle troposphere. As a result of a wetter lower troposphere ahead of the MJO main
convection, the low-level moisture preconditioning along with the leading shallow convection tends
to be enhanced, favorable for MJO’s further development and eastward propagation. The MJO’s
further propagation across the Maritime Continent (MC) in good simulations is accompanied with
more land precipitation dominated by shallow convection. Therefore, the above-mentioned three
parameters are found to be crucial parameters out of the seven ones for MJO simulation, providing
an inspiration for better MJO simulation and prediction with this model. This work is valuable as it
highlights the key role of moisture-shallow convection feedback in the MJO dynamics.

Keywords: Madden-Julian Oscillation; moisture-convection feedback; parameter perturbation;
eastward propagation; general circulation model

1. Introduction

The Madden-Julian Oscillation (MJO), named after its discoverers [1,2], is characterized by a
large-scale convection ensemble initiated over India Ocean. Statistically, the MJO propagates eastward
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slowly (~5 m/s) and dies after crossing the dateline, while the coupled planetary-scale baroclinic
circulation still propagates throughout the whole tropical belt at a relatively faster speed [3–5]. As the
dominant intraseasonal (30–90 days) signal in the tropical atmosphere [6], MJO affects the climate
and weather systems over the globe such as the outbreak and withdraw of monsoon systems [3],
the initiation of El Niño events [6], the genesis of tropical cyclones [7] and the evolution of extratropical
circulation patterns through teleconnection [8,9].

There is a growing body of theoretical work trying to understand the essential physical mechanisms
of the MJO [10]. Among the four basic theories, the first one, i.e., the convectively coupled Kelvin-Rossby
wave theory was firstly proposed by Wang and Rui [11]. It emphasizes the importance of the interaction
between convective heating, the low-frequency equatorial waves, and the boundary layer (BL) frictional
moisture convergence. Therefore, only dynamical wave feedback is resolved in this theory [12].
The second basic theory, i.e., the moisture mode theory [13–15] regards the atmospheric humidity as the
first order important variable under the weak temperature gradient approximation [10]. In this theory,
the eastward propagating MJO is simulated by the so-called moisture-convection feedback [16] and
moisture transport [17–20]. The third basic theory, i.e., the frictionally coupled dynamic moisture mode
theory combines the above two theories by including a simplified Betts-Miller cumulus parameterization
scheme, in which both the moisture-convection [21,22] and wave feedbacks [12] are resolved. The last
basic theory, namely, the multiscale interaction theory includes many different schools of thinking
about how mesoscale and synoptic-scale disturbances interact and contribute to the MJO dynamics. It
includes the MJO skeleton model [23–28], the MJO-synoptic wave interaction model; [23,24,26,28], the
multi-cloud model [29,30] and the gravity wave interference model [31–33]. Besides the aforementioned
four groups of basic MJO theories, there are also two specific theories including the boreal summer
intraseasonal oscillation (ISO) theory [34] and the atmosphere-ocean interaction theory [35–37].

Despite numerously conducted theoretical work trying to understand the MJO dynamics, most of
the state-of-the-art climate models still suffer from different hierarchies of deficiencies of simulating
realistic MJO structure and its eastward propagation [38–43]. Hung et al. [44], for example, demonstrated
that only about one-third of the General Circulation Models (GCMs) from the Coupled Model
Intercomparison Project phase 5 (CMIP 5) generate the spectrum peak of MJO precipitation between
30 and 70 days. Among them only one model produces the realistic eastward propagation. Jiang
et al. [41] found that only one-fourth of the latest-generation GCMs could accurately simulate the
systematic eastward propagation of MJO. These highlight the necessity to advance our understanding
of the potential mechanisms in shaping the fundamental behaviors of the MJO, especially its smooth
propagation from the Indian Ocean to the western Pacific seen in the observation statistics [2,45,46].

An important factor leading to the unrealistic MJO simulations in GCMs has been widely
recognized as the uncertainty in cloud and convection parameterization schemes, which largely resolve
atmospheric subgrid-scale moist and convective processes [43,47–49]. For example, by increasing the
minimum value of cumulus entrainment rate of the environmental air in the Arakawa-Schubert (AS)
cumulus convection parameterization scheme, the equatorial intraseasonal signals are better simulated
by GCMs [50]. Wang and Schlesinger [51] demonstrated that the simulated Intraseasonal Tropical
Oscillation (ITO) becomes stronger by increasing relative humidity criterion for convective heating
(RHc) in three different parameterization schemes using one GCM model. The effects of convective
precipitation evaporation in unsaturated environmental air and unsaturated downdrafts are found
to be essential for the amplitude of simulated MJO in GCM [52]. The role of stratiform precipitation
portion in MJO simulation is investigated in Fu and Wang [53] and results show that increasing the
portion of stratiform precipitation by changing the value of deep or shallow convection detrainment
rate leads to a robust MJO in GCM. A robust relationship between environmental moisture and
convection was also confirmed in observation [54] and models [55,56].

In this study, we seek to find out certain cloud and convection parameter perturbations leading to
models’ best and worst ability of simulating MJO so that the parameter-related physical processes
crucial for MJO simulation could be found. Therefore, we perturb seven control parameters (such as
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the moisture thresholds related to convection trigger, the low and high stable clouds, the efficiencies
related to precipitation and evaporation in deep and shallow convections, and the adjustment timescale
for shallow convections) in the cloud and convection parameterization schemes, using Beijing Climate
Center Climate System Model (BCC_CSM1.2) with a revised Zhang and McFarlane’s convection
scheme (hereafter RZM) [49,57]. Therefore, a variety of model runs are generated after perturbing
these parameters in order to identify parameter perturbations leading to runs with a high-skill MJO
simulation (hereafter good simulations) and runs with a low-skill MJO simulation skill runs (hereafter
poor simulations).

The parameter perturbation strategy and model used in this study is the same as that in Liu
et al. [57], but for different purposes. Liu et al. [57] focused on the optimization of MJO simulation
and prediction skills, while this study emphasizes the crucial physical mechanisms for better MJO
simulation, which are modulated by values of cloud and convection parameters in this model. Besides,
to objectively select the good and poor integrations, a new evaluation strategy for the MJO simulation
skill is proposed in this study. Unlike Liu et al. (2018) who only select one high-skill run and one
low-skill run, this study would objectively identify those good and poor simulations with the new
evaluation strategy, and a composite analysis is then performed for the two groups of simulations.
In this way, a robust result may be shed light on, and more importantly, the parameter-related
mechanisms that are vital important to the better MJO simulations will be revealed in a robust way.

This paper is arranged as follows. Section 2 describes the data and methodology. The composite
good and poor simulations of the MJO are presented in Section 3. The diagnostics of mean states are
given in Section 4. Section 5 analyzes the MJO-scale cloud and moist processes, in which the key role
of moisture and shallow convection feedbacks are identified and studied. Finally, the summary and
discussion are given in Section 6.

2. Data and Methodology

2.1. Data

BCC_CSM1.2 model [58] is used in this study. BCC_CSM1.2 model is a climate system model
including 4 components. The atmospheric component of BCC_CSM1.2 is Beijing Climate Center
Atmospheric General Circulation Model (BCC_AGCM3.0), which adopts a spectral truncation of 106
waves (T106) in the horizontal and 40 layers (L40) in the vertical from surface to 0.31 hPa. Beijing Climate
Center Atmosphere-Vegetation Interaction Model (BCC_AVIM2.0) [59] is used as BCC_CSM1.2’s land
surface component with the same horizontal resolution as BCC_AGCM3.0. The global ocean general
circulation model in BCC_CSM1.2 called MOM4_L40v2 is modified from the Modular Ocean Model
(MOM4) to include the ocean carbon cycle [59] with a horizontal resolution of 1/3 degrees (~30 km)
and 40 vertical layers. BCC_CSM1.2 also includes the Sea Ice Simulator (SIS) [60] as its sea ice model.

The RZM scheme invoked in our work is a revised version of the original scheme of Zhang and
McFarlane [48]. It is different from the original scheme in (a) the closure condition, where the original
scheme only assumes that convection acts to remove the atmospheric convective available potential
energy with a relaxation of 2 h while the RZM assumes that a quasi-equilibrium exists between
convection and the large-scale environment in the free troposphere above the boundary layer, (b) the
inclusion of a relative humidity threshold for convection triggering, which acts to suppress spurious
convection when the boundary layer is dry, and (c) the allowance for the bottom of the unstable lifted
layer’s occurrence above the boundary layer. Details about the revision could be found in Zhang and
Mu [49] and Wu et al. [61].

A series of experiments were run by perturbing the values of (1) adjustment time scale for
shallow convection (τ_shal), (2) precipitation efficiency for shallow convection (C0_shal), (3) relative
humidity threshold for low stable clouds (RH_low), (4) relative humidity threshold for high stable
clouds (RH_high), (5) relative humidity threshold for convection trigger (RH_trig), (6) precipitation
efficiency for deep convection (C0_deep) and (7) evaporation efficiency for deep convective precipitation
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(Ke_deep) [57]. These parameters are perturbed with Latin Hypercube sampling (LHS) method [62] to
sample points within the seven-dimensional parameter space. The Latin hypercube procedure selects
pseudo-random points from the full seven-dimensional parameter space, ensuring uniform coverage
across the space. Details of the experimental design could be found in Section 2.2.1 of Liu et al. [57].

Adopted from Liu et al. [57], Table 1 shows the default, maximum and minimum values of
seven chosen parameters. In total, 85 perturbed points or 85 sets of different parameter values are
sampled for seven parameters. The model is integrated with each set of parameters for seven years,
generating 85 sets of daily outputs on grids with a horizontal resolution of 1.125◦ × 1.125◦ at 40 vertical
layers. Considering that these integrations may take a few years to reach an equilibrated state after
changing values of these seven parameters, we examined the time series of tropical (30◦ S–30◦ N)
Surface Temperature and column-integrated (850–500 hPa) specific humidity in the 85 integrations (not
shown here). Results show that most of the integrations reach an equilibrated state after 1.5–2 years of
adjustment. Therefore, the last five years of each set of outputs are used for analysis.

Table 1. Description, default values and perturbed ranges of seven parameters in the model, adopted
from Liu et al. [57].

Parameter Description (units) Default Value Minimum Maximum

τ_shal Adjustment time scale for
shallow convection (s) 1.8 × 103 0.9 × 103 9.0 × 103

C0_shal Precipitation efficiency for
shallow convection (m−1) 0.8 × 10−4 0.5 × 10−4 3.0 × 10−4

RH_low Relative humidity threshold
for low stable clouds (fraction) 0.87 0.80 0.99

RH_high
Relative humidity threshold

for high stable clouds
(fraction)

0.65 0.65 0.85

RH_trig
Relative humidity threshold

for convection trigger
(fraction)

0.60 0.60 0.85

C0_deep Precipitation efficiency for
deep convection (m−1) 2.0 × 10−3 1.0 × 10−3 6.0 × 10−3

Ke_deep
Evaporation efficiency for
deep convective precipitation

(
(
kg m−2 s−1

)−1/2
s−1)

1.0 × 10−6 0.5 × 10−6 10.0 × 10−6

The observational data used in this study consists of the daily outgoing longwave radiation
(OLR) data from the National Oceanic and Atmospheric Administration (NOAA) polar-orbiting series
of satellites [63], TRMM based precipitation observations (version 3B42 v7) [64] and the European
Center for Medium-Range Weather Forecasting (ECMWF) ERA-Interim reanalysis [65] for the period
of 2000–2009. All datasets and model outputs are interpolated into a 2.5◦ × 2.5◦ longitude-latitude grid
and 19 vertical layers as ERA-Interim reanalysis data.

2.2. Methodology

2.2.1. Evaluation of MJO Simulation with Three Canonical Methods

Many metrics regarding MJO variability and its internal physics have been given in previous
studies [41,42,44,45,55,66–69]. Jiang et al. [41] proposed two metrics to evaluate the models’ ability of
simulating realistic MJO. The first approach (Lag-correlation hereafter) is defined as the average value
of two pattern correlation coefficients (PCCs) in each model. The equatorial (10◦ S–10◦ N) 20–100–day
filtered precipitation in GCM outputs and observation are lag regressed from day -20 to 20, against the
area-averaged time series of itself over India Ocean (75–85◦ E; 5◦ S–5◦ N) and Pacific Ocean (130–150◦ E;
5◦ S–5◦ N), respectively. Two regional Hovmöller plots (day −20 to 20, (60◦ E–180◦)) are given in each
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GCM and observation by averaging the regressed precipitation in meridional direction. Two PCCs are
computed by regional Hovmöller plots in GCM and observation. The averaged value of these two
PCCs is thus defined as the MJO simulation skill score by Lag-correlation. The other approach is based
on the regional (60◦ E–180◦) space-time power spectral analysis of precipitation or other convection
related variables over an equatorial belt [70], and it is defined as the ratio of the spectral power for the
eastward to westward propagation component (E/W ratio hereafter) on MJO time and space scales
(period of 30–90 days, zonal wavenumber of 1–3). Another approach called “MJO tracking method”
is also used to examine the MJO simulation qualities in different models in previous study [42]. It is
based on the Hovmöller diagrams of filtered equatorial precipitation. A set of criteria is used to track
the MJO events in model outputs. Each event’s amplitude, propagation range and life span are also
given by this method. Details about the MJO tracking method could be found in Zhang and Ling [71].

Three aforementioned approaches (Lag-correlation, E/W ratio and MJO tracking method) are used
to examine the MJO simulation skills in 85 integrations. It is worth noting that the Lag-correlation and
E/W ratio scores are computed based on the OLR data, considering that OLR is a good representation
of organized convection systems and has a normal distribution. However, the MJO tracking method
is still based on equatorial precipitation data because this method includes some criteria especially
designed by using precipitation data like the reference longitude and the criteria used to determine
the initiating and ending date of each MJO event [71]. Using OLR in MJO tracking method without
changing these criteria leads to its failure to track MJO events. Therefore, we still use precipitation
data in the MJO tracking method for convenience. Figure 1 shows the scores of 85 integrations given
by Lag-correlation. Runs of the top 10 and bottom 10 scores are labeled in red and blue, respectively.
The top (bottom) 10 is then identified as stronger (weaker) MJO runs. Compared with the result in
Jiang et al. [41], the diversity of scores in our study is clearly smaller with most of them lying between
0.7 and 0.85. The E/W ratio scores computed with OLR are given along with the Lag-correlation scores
in Figure 2a. Integrations identified as strong (weak) MJO simulations are scattered in red (blue). The
E/W ratio scores in all 85 runs are above 1.0, indicating that the eastward propagating components of
large-scale intraseasonal signals in 85 integrations are stronger than that of the westward propagation
component. However, the correlation coefficient between Lag-correlation scores and E/W ratio scores
is only 0.23, and the stronger MJO integrations identified by Lag-correlation scores lie in almost the
same zone in E/W ratio as weaker MJO integrations. The linear fit between two scores also shows that
two scores no longer corroborate each other in MJO simulation skill measurement. Considering that
the Lag-correlation scores are computed with OLR data filtered only in time dimension while OLR
data is filtered both in time and zonal dimension before computing E/W ratio scores, the E/W ratio
in the same times scale of 30–90 days but at different wavenumbers of 1–15, and 4–15 are computed,
as shown in Figure 2b,c, along with Lag-correlation scores. The regression lines in Figure 2b,c are
much steeper compared with that in Figure 2a, but it is probably due to the narrower spread of E/W
ratio values in the x axis. The correlation coefficient between these two scores slightly increases when
including intraseasonal signals of all zonal wavenumbers. The correlation coefficient decreases to 0.13
if only a wavenumber of 4–15 spectral power is included to compute the E/W ratio.
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Figure 1. Scores of 85 integrations by Lag-correlation defined as the average values of two pattern
correlation correlations (PCCs) in each run. The PCCs of each run are computed between the Hovmöller
diagrams in it and observation, which are given by averaging equatorial (10◦ S–10◦ N; 60◦ E–180◦)
lag regressed 20-100 day filtered outgoing longwave radiation (OLR) from day −20 to 20 against the
area-averaged time series of itself over India (5◦ S–5◦ N; 75◦ E–85◦ E) and Pacific (5◦ S–5◦ N; 130◦

E–150◦ E). The highest (lowest) 10 runs are labeled with their experiment identification number in
red (blue).
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Figure 2. Scatter plot of scores by Lag-correlation (y axis) against scores by E/W ratio (x axis) of
zonal wavenumber (a) 1–3, (b) 1–15, and (c) 4–15. The scores by Lag-correlation are the same as
those in Figure 1. Scores by E/W ratio are defined as the values of dividing the spectra power in the
eastward-propagating component by that in the westward-propagating component on MJO time and
space scales (period of 30–90 days, zonal wavenumber of 1–3) in each run. The power spectral analysis
is conducted with regional OLR (5◦ S–5◦ N; 60◦ E–180◦) and then averaged meridionally. The 10
integrations identified by Lag-correlation as with stronger (weaker) MJO are scattered in red (blue)
while the others in black. The dot line donates the linear fit by least squares means. The correlation
coefficients are also displayed.

The same diagrams are done to investigate the correlation between scores given by quantities of
MJO events, Lag-correlation and E/W ratio. Ling et al. [42] proposed a hypothesis after evaluating
27 GCMs that the model’s ability of simulating MJO is highly related to the quantity of MJO events
in model integration. The more frequent model produces MJO events, the higher MJO simulation
skill the model has. Therefore, MJO tracking method is applied to get the quantity of MJO events in
85 integrations. Figure 3 presents the same scatter plots as Figure 2 but with X axis referring to the
quantity of tracked MJO events in 85 integrations and Y axis referring to E/W ratio scores in Figure 3a–c,
and Lag-correlation scores in Figure 3d. Among 4 correlation coefficients in scatter plots of Figure 3,
the correlation coefficient between quantities of MJO events and E/W ratio is the highest, but only
reaching 0.26. The low correlation coefficients in Figure 3 indicate that scores given by quantity of MJO
events do not corroborate with those given by Lag-correlation, nor E/W ratio.
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2.2.2. A New Strategy to Evaluate the MJO Simulation Skill

A new evaluation strategy is therefore proposed to identify integrations with good and poor MJO simulations.
The contradiction in scores using the above three different canonical approaches individually makes
it difficult to find out one certain integration with the highest MJO modulation skills in all respects.
However, the two approaches (Lag-regression and E/W ratio) in Jiang et al. [41] are still widely used
to evaluate model’s MJO simulation skills. The Lag-correlation examines the propagation quality of
intraseasonal signals while E/W ratio investigates whether the eastward propagation is dominant in
MJO time and space scales. Therefore, a combination of Lag-regression and E/W ratio scores is used to
identify good simulations and poor simulations. The new evaluation strategy consists of three steps:
(i) rank 85 integrations twice, in order of Lag-correlation and E/W ratio scores respectively from high
to low, (ii) divide two ranks respectively into three tiers (the top, middle and bottom tiers). Two rank’s
top and bottom tier sizes (hereafter tier-size) are same. (iii) identify good and poor simulations. If
one integration lies in top (bottom) tier of both two ranks, this integration is thought to be good
(poor) simulation.

Attempts are made to choose the appropriate tier-size during dividing two ranks into three tiers
in step ii. Three rules need to be considered while choosing: (i) the quantities of selected good and
poor simulations should be sufficient to do the composite analysis, (ii) the difference between the
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case numbers of selected good and poor simulations is small enough to fairly compare the composite
results, and (iii) the mean scores in good and poor simulations show distinct differences. Figure 4
shows the quantities of selected good and poor simulations and the difference between mean scores of
these two groups according to different tier-sizes. Based on the second rule, tier-size of 10, 20 and 33
are worth considering. However, the quantities of selected good and poor simulations are too small to
do the composite analysis when tier-size is under 16 and the difference between mean scores decreases
rapidly when tier-size is greater than 20. Therefore, we choose 20 as the appropriate tier-size by which
six good simulations (integration 1, 6, 23, 33, 38 and 48) and eight poor simulations (integration 10,
14, 18, 30, 43, 45, 55 and 70) are identified for the following analysis. Distributions of MJO scores are
analyzed to investigate the validity of this new strategy. Figure 5 presents the distribution of good
and poor simulations selected by this new strategy in scores of Lag-correlation and E/W ratio among
85 integrations. Uniform higher scores could be seen in good simulations compared with poor ones,
especially of E/W ratio scores, indicating that such new evaluation strategy is effective in selecting
high-skill and low-skill MJO simulations.
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Figure 5. Scatter plots of scores by Lag-correlation (y axis) against scores by E/W ratio (x axis) with
good (poor) simulations selected by the new evaluation strategy scattered in red stars (blue triangles)
while the rest of 85 runs scattered in black dots.

2.2.3. Compositing Technique and Significance Test

Before the composite analysis, a linear regression technique was conducted for each group of
simulation. The referenced time series is calculated as the 20–100-day, bandpass-filtered OLR anomaly
averaged over the Indian Ocean (5◦ S–5◦ N; 75◦–85◦ E) and Pacific Ocean (5◦ S–5◦ N; 130◦–150◦ E).
Then, the MJO-scale perturbations are obtained by regressing any atmospheric or oceanic parameters
against this referenced time series. The composite results of the six good simulations and eight poor
simulations are calculated using their associated regression patterns, respectively, in which the lags
from −20 to 20 days is used to thoroughly observe the entire life cycle of the MJO. The significance test
of the composite results at the 90% confidence level is based on the Student’s t statistic that obeys a
distribution with a degree of freedom (DOF) of N. The DOF N is 6(8) for the good (poor) simulations.

3. Composites of Good and Poor Simulations

3.1. Parameter Values

Average values of seven chosen parameters in good and poor simulations are given in Figure 6.
Seven chosen parameters differ largely in their magnitudes as Table 1 shows. In order to visualize
each parameter’s perturbation in good and poor simulations and to compare their differences, the
values of these parameters are converted to their percentiles in each parameter’s changing range
(maximum-minimum as in Table 1). Three parameters such as precipitation efficiency for shallow
convection (C0_shal), relative humidity threshold for low stable clouds (RH_low) and evaporation
efficiency for deep convective precipitation (Ke_deep) exhibit significant differences between good and
poor simulations. In good simulations, values of RH_low and Ke_deep are about twice of those in poor
simulations while the value of C0_shal is only about the one third of it in poor simulations.
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Individual changes in values of the above three parameters lead to changes in cloud and convection.
Increasing RH threshold for low stable clouds value leads to a reduction of low-level clouds, and this
reduction results in an additional moisture accumulation beneath low stable clouds. The decrease in
value of precipitation efficiency for shallow convection makes it harder for water in shallow convective
clouds to convert to rain droplets. Therefore, this would decrease the shallow convective precipitation
and thus humidifying the low troposphere. The sharp increase in the value of evaporation efficiency for
deep convective precipitation causes a higher ratio of deep convective rain droplets evaporating while
falling down. So, the deep convective precipitation declines largely due to this change. Interestingly,
research shows that this change not only influences the deep convection, but also is favorable for
low cloud formulation and development of shallow convection [72]. In general, the sharp contrasts
between good and poor simulations in terms of these three parameter values have implied the crucial
role of the lower-tropospheric moistening in supporting the better MJO simulation (e.g., Yoneyama et
al. [73]; Wei et al. [74]).

3.2. Zonal Wavenumber-Frequency Spectrum

To check the characteristics of MJO along with other Convection Coupled Equatorial Waves
(CCEWs), Figure 7 shows the signal-to-noise ratio of OLR anomalies computed using the space-time
spectral analysis method [70]. In observation, three main CCEWs are clearly shown in Figure 7a.
Westward-propagating Equatorial Rossby (ER) waves are dominant in low-frequency period of
wavenumbers 3–5 while eastward-propagating Kelvin waves and MJO are also identified. The spectral
band of MJO signals lies within zonal wavenumbers of 1–3 and timescales of 30–90 days, with a single
peak at wavenumber of 1 and frequency of 0.15 cycles per day (period of 40 days). The timescales of
Kelvin waves in observation vary between three days and 15 days with greater zonal wavenumbers
of 2–8. The gap between Kelvin waves and MJO in the power spectral is distinct in observation.
Figure 7b presents the composite result of spectral analysis in poor simulations. Compared with
observation, the ER waves in poor simulations exhibit a new independent power center at wavenumber
6. MJO-related signals greatly shrink and are divided into two individual peaks (at wavenumber 1
and 4) with a much weaker amplitude. Kelvin waves are not well simulated in poor simulations.
Kelvin waves vanish in shorter timescales and larger zonal wavenumbers. The residual part of
Kelvin wave is connected with weak MJO, filling the gap between them in observation. Composite
result of good simulations shows improvement in simulation of CCEWs. MJO-related signals are
amplified with a center at zonal wavenumber 1 compared with poor simulations. Kelvin waves are also
improved by enhancing the spectral power of its fast components with larger zonal wavenumbers. The
improvement of Kelvin waves accompanied with better MJO in models is also proposed in the previous
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study [75,76]. ER waves are also improved by eliminating the positive bias in zonal wavenumber 6 of
westward-propagating component.Atmosphere 2019, 10, x FOR PEER REVIEW 11 of 26 
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Figure 7. Boreal-winter (November–April) Signal-to-noise ratio in the wavenumber–frequency spectral
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of poor simulations, (c) composite of good simulations and (d) difference between composited results
of good and poor simulations.

3.3. Hovmöller diagrams

In order to investigate the propagation of intraseasonal convection systems, the boreal winter
Hovmöller diagrams in observation, good and poor simulations are given in Figure 8. The equatorial
(10◦ S–10◦ N), 20–100-day band-pass-filtered OLR in boreal winter is lag-regressed form day −20
to 20, against the time series of itself averaged over equatorial India Ocean (75◦–85◦ E; 5◦ S–5◦

N) and west Pacific (130◦–150◦ E; 5◦ S–5◦ N), respectively. The three-dimensional coefficient is
then averaged in meridional direction to obtain the Hovmöller plots. In observation as Figure 8a,b
show, the convection systems are initiated over Indian Ocean. Well-organized eastward propagation
is produced over both India and Pacific Ocean at a speed of about 5 m/s. The barrier effect of
Maritime Continent on MJO’s propagation is also indicated in Figure 8b with the propagation slowed
down while crossing. In poor simulations given by Figure 8c,d, the regressed coefficient exhibits a
strong westward-propagating feature over India Ocean. The propagation over Pacific is relatively
better with a weaker westward-propagating component, but the MJO convection dies quickly before
reaching the dateline. Also, discontinuous signals are generated after day 0 over west Pacific to
motivate the eastward propagation faster than observation. While in good simulations as Figure 8e,f
show, the propagation of intraseasonal convection systems is improved both over India and Pacific
Ocean. The westward propagations over India Ocean in poor simulations are eliminated. A new
eastward-propagating convection signal occurs over Maritime Continent a few days after day 0,
indicating that the intraseasonal convection initiated over India Ocean propagates further across MC
in good simulations. These improvements have reached 90% confidence level. The improvement of
MJO convections over Pacific Ocean is relatively weaker with a continuous signal developed at lag
day −10 propagating eastward at almost the same speed in observation. The propagation range over
Pacific Ocean in good simulations also gets improved with convections triggered at or even east of
dateline, similar with the observational situation.
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improved by amplifying rainfall in Maritime Continent, mainly over land. The positive biases over 
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Figure 8. Boreal winter (November–April) Lag-longitude cross section of the correlation coefficient of
20–100 day filtered OLR anomalies against the area-averaged time series of itself in observation (a and
b), poor simulations (c and d) and good simulations (e and f) at the reference area of equatorial India
Ocean (5◦ S–5◦ N; 75◦–85◦ E) (left column) and Pacific Ocean (5◦ S–5◦ N; 130◦–150◦ E) right column).
The regressed coefficient is averaged over 10◦ S–10◦ N. (d) and (e) are dotted where the difference
between composite of good and poor simulations reach 90% confidence level.

4. Diagnostics of Climatology

4.1. Mean State

Previous studies of the MJO concluded that a reasonable mean state is necessary to simulate
realistic MJOs [41,77]. Figure 9a–d show the winter-mean precipitation in the composite of poor
simulations, the composite of good simulations, observation and the difference between good and poor
composites, respectively. As shown in Figure 9a, poor simulations suffer from the problem of double
inter-tropical convergence zone (ITCZ). Insufficient precipitation occurs over the Maritime Continent
and the east boundary of the Bay of Bengal. Excessive precipitation is dominant in the South Pacific
Convergence Zone (SPCZ) and southwest India Ocean. After changing the values of seven parameters,
the composite pattern of climatological-mean precipitation in good simulations does not change much
in the overall distribution. However, the composite of good simulations is improved by amplifying
rainfall in Maritime Continent, mainly over land. The positive biases over SPCZ and south India Ocean
are also amplified. In order to better examine the boreal winter mean state, the winter-mean Sea Surface
Temperature (SST), u850 and integrated low-level (850–500 hPa) specific humidity in poor simulations,
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good simulations, observation and the differences between good and poor simulations are given in
Figure 10. Both the tropical SST and integrated specific humidity experience an overall increase in
good simulations compared with poor simulations, which is consistent with the finding in previous
researches that there will be more MJO events with a greater amplitude and farther propagation in
a warmer and wetter world [78,79]. It is worth noting that the rise of low-level integrated specific
humidity increases the meridional gradient of mean humidity. It has been proposed in Gonzalez and
Jiang [80] that a steeper meridional mean humidity gradient is favorable for MJO propagation. The
difference of u850 between good and poor simulations shows that the equatorial westerly over India
and west Pacific gets amplified. However, the easterly south of MC is also strengthened.
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Figure 10. Boreal winter (November–April) mean state of Sea Surface Temperature (SST, left column),
850 hPa zonal wind (u850, middle column) and integrated low-level (850–500 hPa) specific humidity
in (a) composite of poor simulations, (b) composite of good simulations, (c) observations and (d) the
differences between composites of good and poor composites. The differences reaching 90% confidence
level are dotted in (d).
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The occurrence frequency of background precipitation is also examined because researches find
out that contemporary climate models used in Phase 3 and Phase 5 of the Coupled Intercomparison
Project have biases in the frequency distribution of tropical rainfall inhibiting complete formation of
the tropical convective cloudiness [55,81]. The distribution of rainfall over the equatorial Indo-Pacific
region (10◦ S–10◦ N; 50◦ E–180◦) as a function of accumulated percentiles (divided by the lower
80th and upper 20th percentiles) is given in Figure 11. Light rainfall is defined with amplitude of
0.1–10 mm day−1. With no precipitation accounts for almost 0% in composite results of both good
and poor simulations, the percentile of light rainfall accounts for 80% in poor simulations, the same
as observation although the frequency distribution varies. Composite result of the poor simulations
shows large bias in the accumulated percentile distribution of rainfall less than 5 mm day−1 and more
than 20 mm day−1, which indicates an insufficient generation of extremely light precipitation (less
than 5 mm day−1) and excessive generation of intense precipitation in poor simulations. This bias is
largely corrected in good simulations with both ends of the distribution curve closer to observation,
especially for intense precipitation. Therefore, the frequency distribution of precipitation over the
equatorial Indo-Pacific region is much improved by changing the values of seven parameters.
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4.2. Environmental Moisture Sensitivity of Convection

To examine the relationship between moisture and convection closely, composite vertical profiles
of the Relative Humidity (RH) as a function of daily averaged precipitation over the Indo-Pacific
region are given in Figure 12. In the observation (Figure 12a), the lower troposphere becomes more
humid as the precipitation rate increases. The entire column is almost saturated when the precipitation
rate is greater than 10 mm day−1, which means that the heavier precipitation is suppressed until the
atmosphere is almost saturated with relative humidity higher than 70%. It is similar to previous
findings that more convection occurs in a more humid atmosphere [54,55]. Composite result of poor
simulations in Figure 12b shows a dryer environmental atmosphere for light rainfall. Precipitation
greater than 30 mm day−1 in poor simulations occurs with a more humid environment at levels
around 350 hPa while the lower and upper troposphere are still dryer than observation. The dry bias
indicates that the excessive intense precipitation as in Figure 11b consumes too much moisture in
the environmental atmosphere. Therefore, most convections in poor simulations develop in a dryer
atmosphere. The difference between composite results of good and poor simulations are presented
in Figure 12d. The entire lower atmosphere (840–500 hPa) witnesses a moistening with a center at
600 hPa of all precipitation intensities while the humidifying center lies within light precipitation rates
(0.1–10 mm day−1). This is consistent with changes in rain rate frequency over the same region in
Figure 10, where more frequent extremely light rainfall and less heavy precipitation could be seen in
good simulations.
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Figure 12. Composite vertical profiles of relative humidity as a function of precipitation rate over
equatorial Indo-Pacific region (10◦ S–10◦ N; 50◦–180◦ E) in (a) observation, (b) composite of poor
simulations, (c) composite of good simulations and (d) the difference between composites of good and
poor simulations. The differences reaching 90% confidence level are dotted. Noted that the precipitation
rate on x axis is plotted on a log10 scale.
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Difference in the moisture-convection relationship between good and poor simulations is probably
due to large changes in values of three important parameters. Increasing the evaporation of deep
convective precipitation is favorable for the development of shallow convection [72]. While increasing
the value of RH threshold for low level stable cloud and decreasing the value of shallow convective
precipitation efficiency both tend to reduce shallow convection, this reduction is compensated with
the effect of humidifying low troposphere by intensifying deep convective rainfall evaporation. More
shallow convection in good simulations in Figure 11 transports moisture in the low troposphere
to middle level, humidifying middle troposphere and drying low troposphere. However, rigorous
conversion from cloud water to shallow convective precipitation and less low cloud both lower the
efficiency of low-level moisture consumption due to shallow convective precipitation, thus accumulating
more moisture in low troposphere. Superimposition of all above influences results in an overall
humidifying centering at middle troposphere of light precipitation.

5. Role of Moisture-Shallow Convection Feedback

5.1. Pre-Moistening Effect over the Lower-Layer Atmosphere

Profile of boreal winter regressed specific humidity at lag day 0 is diagnosed to investigate the
changes in the MJO-related moisture structure. Figure 13 shows profiles of equatorial (10◦ S–10◦ N)
specific humidity anomalies regressed against the 20–100 day filtered OLR time series in the reference
area (5◦ S–5◦ N; 75◦–85◦ E) in observation, good simulations, poor simulations and the difference
between good and poor simulations. Result in observation given in Figure 13a shows a west-tilted
structure of MJO convection system. The leading preconditioning moisture in lower troposphere and
boundary layer ahead of the main convection plays an essential role in the eastward propagation of
MJO (e.g., Kim et al. [77]; Hsu and Li [82]; Zhao et al. [83]; Hsu et al. [84]; Wang et al. [85]; Wei et al. [74]).
Such preconditioning moisture destabilizes lower troposphere, favorable for the development of
leading shallow convection. The shallow convection develops into the following deep convection of the
MJO main convection system, resulting the systematic eastward propagation. Figure 13b presents the
profile of regressed moisture in poor simulations. The west-titled structure in observation turns into a
straight one in poor simulation centering at middle troposphere with broken weak signals ahead, which
accounts for the non-propagating or even westward propagating intraseasonal convection systems as
Figure 8c,d indicate. As Figure 13d presents, the difference between profiles of regressed equatorial
moisture in good and poor simulations tends to compensate for the large bias in poor simulations
mainly by moistening the lower troposphere and boundary layer ahead of the main convection of MJO.
Therefore, the pre-moistening at low-layer troposphere is produced in good simulations, favorable for
the propagation of MJO.

In order to clarify the dominant source of the pre-moistening, we use the following equation [86]:

∂〈q′〉
∂t

= −〈Vh·∇hq〉′ − 〈ω
∂q
∂p
〉
′
− 〈

Q2

Lv
〉
′, (1)

where Vh = (u, v) denotes the horizontal velocity vector, ∇h =
(
∂
∂x , ∂

∂y

)
is the horizontal gradient

operator, Q2 is the atmospheric apparent moisture sink, 〈·〉 indicates the column integration from
surface to 100 hPa. The superscript prime denotes the anomaly regressed against the area-averaged
time series of 20–100 day filtered OLR in the reference area (5◦ S–5◦ N; 75◦–85◦ E). The first term
on the right-hand side of Equation (1) is the horizontal moisture advection. The second term is the
large-scale adiabatic vertical motion and the third term represents the subgrid-scale evaporation and
condensation. The sum of the second and third terms represents the net moistening associated with
the column process. Following Yanai et al. [86], the net moistening associated with the subgrid-scale
process can be approximated as the residual term between the moisture tendency and the adiabatic
advective processes.
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N; 75◦–85◦ E) in (a) observation, (b) composite of poor simulations, (c) composite of good simulations
and (d) difference between composites of good and poor simulations where the differences reaching
90% confidence level are dotted

According to Figure 13d, the enhancement of pre-moistening in good simulations is mainly over
equatorial MC area (10◦ S–10◦ N; 90◦–120◦ E) so that the column-integrated moisture budget terms
are averaged over this area. Figure 14 shows the result of such budget analysis in observation, good
simulations and poor simulations. Both the tendency terms in observation and composite of good
simulations are positive, indicating the accumulation of moisture over this area. But the tendency
term in the composite of poor simulations is negative, which accounts for the non-propagating MJO
convections. In observation, the positive tendency term over pre-moistening area is mainly contributed
by the meridional advection term and the column process while in good and poor simulations, the
tendency term is mainly determined by the column process, which is also the most contractive term
between good and poor simulations.Atmosphere 2019, 10, x FOR PEER REVIEW 18 of 26 
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Figure 14. Results of the regressed moisture budget analysis in observation, good and poor simulations.
Four terms presented are defined in Yanai et al. [86]. Each term is regressed against the time series of
area-averaged 20–100 day filtered OLR in the reference area (5◦ S–5◦ N; 75◦–85◦ E) and then vertically
integrated from surface to 100 hPa. The integrated four terms are averaged in the pre-moistening area
(10◦ S–10◦ N; 90◦–120◦ E) in observation, good and poor simulations.
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Therefore, to investigate the role of multi-cloud structure related with convections in
pre-moistening, the Q2 in Equation (1) is lag regressed from day −20 to 20 against the area-averaged
time series of 20–100 day filtered OLR in the reference area (5◦ S–5◦ N; 75◦–85◦ E). The four-dimensional
Q2 is then area-averaged over equatorial MC (10◦ S–10◦ N; 90◦–120◦ E) to get the time-height cross
section. Results in observation, composite of good simulations, composite of poor simulations are
given in Figure 15. In observation, the low-level heating indicating the formation of low-level clouds
starts since day −5, destabilizing the atmosphere column, favorable for the following development of
shallow convection. Such destabilization and convection development are significantly weakened in
poor simulations as the low-level heating starts since day −2 with the heating center higher than that in
observation. The heating profile center remains in the low-troposphere after day 0 in observation while
both shallow and deep heating sources are found in poor simulations. The difference of Q2 profiles
between good and poor simulations shows a low-level heating and middle-level cooling from day
−5 to day 5, which destabilizes the atmosphere ahead of the MJO major convection, favorable for the
development of leading shallow convection. The contrast between Q2 profiles indicates a probable
enhancement of leading shallow convection.Atmosphere 2019, 10, x FOR PEER REVIEW 19 of 26 
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5.2. Key Role of Shallow Convection Leading the Deep Convection

In order to check the enhancement of shallowing convection leading the deep convection of MJO,
diagnostics of boundary layer moisture convergence (shown in Figure 16) are conducted. In observation
(Figure 16a), strong moisture convergence occurs over the MC when the convective center is over
the Indian ocean, indicating the existence of shallow convection leading the updrafts. This leading
boundary layer moisture convergence is greatly weakened in the composite of poor simulations, while
strong moisture convergence still exists in good simulations. The difference of boundary layer moisture
convergence proves that the shallow convection leading MJO major convection in good simulations is
indeed enhanced. The enhancement of leading boundary layer moisture convergence also indicates
that the BL frictional moisture feedback [87,88] contributes to the improvement of MJO simulation.
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To better understand the role of leading shallow convection in better simulation of MJO, regressed
structure of apparent heating source (Q1) as defined in Yanai et al. [86] is given in Figure 17, along
with the regressed profile of equivalent potential temperature (EPT). The regressed structure of Q1 in
observation shows that the shallow convection heating is triggered a few days before the development
of the following deep convection. However, the heating of leading shallow convection vanishes in
poor simulations, and the following high-level heating of deep convection is also weakened. The
difference of diabatic heating between good and poor simulations shows an enhanced low-level heating
caused by shallow convection from day −15. The enhanced leading shallow convection destabilizes
the atmosphere column and then develops into deep convection of MJO from lag day 5 to lag day 10.
The difference of regressed EPT profile at day 0 between good and poor simulations shows an increase
beneath 500 hPa, producing instability for convection to develop. However, the magnitude of such
increase is small compared with that of its profile in poor simulations.

Therefore, the improvement of the pre-moistening effect of MJO is probably due to the enhancement
of its leading shallow convection. The deep convective precipitation in poor simulations consumes too
much environmental moisture, the light precipitation thus develops in a dryer atmosphere as Figure 12a
shows. As a result, the shallow convection precipitation, is insufficient in poor simulations. The
shallow convection leading the major convection of MJO is also weakened in poor simulations, which
is against its eastward propagation. This is remedied by enhancing the evaporation of deep convective
precipitation in good simulations. Meanwhile, the weakened moisture consumption efficiency of
shallow convection retains more low-level moisture in good simulations. The improvement of moisture
profile in good simulations benefits from both aforementioned effects. The middle-level cooling caused
by enhancing the evaporation of deep convection precipitation and the low-level heating caused by
strengthening shallow convection destabilize the atmosphere column, favorable for the development
of MJO convection and its further propagation.
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6. Summary and Discussion

This study analyzed the outputs of 85 model runs produced by perturbing seven chosen parameters
in the cloud and convection parameterization schemes of BCC_CSM1.2. Three canonical metrics were
used individually to examine each run’s ability of simulating realistic MJO. However, the scoring
results of the three metrics do not corroborate each other in our study. Therefore, a new strategy
combining the scores of both Lag-correlation and E/W ratio has been used to identify six good and
eight poor simulations out of 85 runs. Among the seven chosen parameters as adjustment time scale
for shallow convection, relative humidity threshold for high stable clouds, relative humidity threshold
for convective trigger, precipitation efficiency for deep convection, precipitation efficiency for shallow
convection, relative humidity threshold for low stable clouds and evaporation efficiency for deep
convective precipitation, the values of last three parameters showed large differences between good
and poor simulations while the rest were almost the same.

MJO exhibits a greater amplitude with an improved eastward propagation in good simulations.
Other CCEWs like Kelvin waves are also improved in amplitude and space time structure as Figure 11
shows, consistent with the results of previous research [76]. MJO in poor simulations propagates with
a westward speed over India Ocean. Meanwhile, its propagation range over Pacific Ocean shrinks
significantly compared with that in observation. After changing values of the abovementioned seven
parameters, MJO shows a systematic eastward propagation over India and Pacific Ocean.

The mean state changes along with MJO after parameter perturbation. In poor simulations,
excessive precipitation exists in southwest Pacific while insufficient precipitation is produced over MC.
The winter mean precipitation gets improved over MC in good simulations by amplifying land rainfalls
accompanied with the improvement of MJO propagation. This is consistent to the finding in Peatman
et al. [89] that land rainfall is favorable for MJO to cross MC. However, controversy still exists about
this conclusion as Zhang and Ling [71] concluded that MJO crosses MC mainly through rainfall over
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sea. The enhancement of land rainfall over MC, which is dominant by shallow convective precipitation,
also indicates changes in the frequency distribution of rain rate. The tropical precipitation consists
of too much heavy rainfall in poor simulations as Figure 11a shows. As a result, the environmental
atmosphere experiences an overall dry bias in poor simulations since heavy precipitation consumes
too much moisture. The dry environmental atmosphere suppresses the frequency of light rainfall. This
bias gets improved in good simulations where the frequency distribution of tropical precipitation in
Indo-Pacific region is closer to observation by weakening heavy precipitation and increasing the ratio
of extremely light rainfall, indicating an enhancement of shallow convection.

The shallow convection leading the deep convection in MJO was enhanced by changing values of
three crucial parameters as precipitation efficiency for shallow convection (C0_shal), relative humidity
threshold for low stable clouds (RH_low) and evaporation efficiency for deep convective precipitation
(Ke_deep). RH_low shows greater value while values of C0_shal and Ke_deep are smaller in good
simulations. The remaining four parameter values are almost the same as those in poor simulations
(Figure 6). Increasing the value of Ke_deep weakens the deep convection precipitation and humidifies
the environmental atmosphere. As a result, shallow convection leading the MJO major convection
is enhanced, which is reflected by the strengthened low-level moisture convergence ahead of the
MJO major convection (as in Figure 16). The enhanced shallow convection is supposed to pump
low level moisture to middle troposphere, thus humidifying middle troposphere and drying the low
troposphere. However, decreasing value of C0_shal and increasing value of RH_low both lower the
low-level moisture consumption efficiency of shallow convection. The whole column of atmosphere
is thus humidified with a humidification center at low troposphere. Therefore, the pre-moistening
effect over lower-layer atmosphere is also strengthened along with the enhancement of leading shallow
convection. Such enhancement of leading shallow convection in good simulations is the key for
better simulated MJO. The low-level heating and moistening caused by enhanced shallow convection
a few days before the initiation of MJO major convection destabilize the atmosphere column. The
leading shallow convection therefore develops to the MJO major deep convection as Figure 17 shows,
amplifying the simulated MJO convection. The leading shallow convection also improves the vertical
structure of MJO moisture as indicated by Figures 13 and 14, favorable for MJO’s systematic eastward
propagation. Boyle et. al. [90] conducted a similar parameter perturbation experiment with CAM5, but
they perturbed more parameters in not only cloud and convection parameterization schemes, but also
in radiation, boundary layer and turbulence parameterizations. They showed that the MJO simulation
also displayed a strong sensitivity to the parameter associated with the deep convection. They
also demonstrated that by changing deep convection parameter values to suppress deep convective
precipitation, MJO simulation is improved. This is consistent with the conclusion of this study. Other
mechanisms such as the atmosphere-ocean interaction may also contribute to the improvement of
the MJO simulation as Figure 7 shows that SST in good simulations shows an overall warming over
Indian ocean which could excite more MJO events. Besides, the rise of SST in east Pacific exhibits an El
Niño-like pattern, which is favorable for MJO’s eastward propagation.

This work is an attempt to reveal the important parameter-related physical processes for simulating
realistic MJO in BCC_CSM1.2, hoping to provide inspirations for the simulation and prediction of
MJO. Three parameters were found different largely in good and poor simulations. By changing the
values of these three parameters, the moisture sensitivity of convection becomes different, leading to an
enhanced leading shallow convection, accounting for the improvement of MJO. However, some aspects
of this research still need further study. Even integrations with relatively high-skill MJO simulations
show deficiencies of simulating realistic MJO as most MJO related figures in good simulations also
show considerable differences compared with observation. This is likely because we only perturbed
the parameter values without changing any other components in the model, so the model’s systematic
deficiencies in simulating MJO [91] may not be totally compensated. However, composite results
of good simulations all exhibit changes for a better simulated MJO, proving the validity of such
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certain parameter perturbation. But detailed physical processes in cloud dynamics and convections
determining the improvement of MJO still remains unrevealed, which needs further related studies.
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