Supplementary information of Heterogeneous Uptake of N_{205} In Sand Dust and Urban Aerosols Observed During the Dry Season in Beijing Men Xia et al.

Correspondence to: Tao Wang (cetwang@polyu.edu.hk)

Text S1: Input and configuration of the E-AIM model.

E-AIM model was run online at http://www.aim.env.uea.ac.uk/aim/model3/model3a.php to obtain aqueous phase $[H_2O]$, $[Cl^-]$ and $[NO_3^-]$. The batch mode of Model III was used. Input data include RH, NH_4^+ , Na^+ , SO_4^{2-} , NO_3^- and Cl^- . Model configurations are shown below. Parameter e=1, meaning that water dissociation will be considered. Parameter p, q, r, s=3, which assumes that the evaporation of HNO₃ (g), HCl (g), NH_3 (g) and H_2SO_4 (g) did not occur. Parameter u=0, which means that the model allowed the formation of solids.

Species	k(298K) cm ³ molecule ⁻¹ s ⁻¹	Species	k(298K) cm ³ molecule ⁻¹ s ⁻¹
Alkanes		Aromatic hydrocarbons	
ethane	1×10 ⁻¹⁷	benzene	3×10 ⁻¹⁷
propane	7×10 ⁻¹⁷	toluene	7×10 ⁻¹⁷
n-butane	4.59×10 ⁻¹⁷	ethylbenzene	6×10 ⁻¹⁶
n-pentane	8.7×10 ⁻¹⁷	o-xylene	4.1×10 ⁻¹⁶
cyclopentane	1.4×10 ⁻¹⁶	m&p-xylene	3.8×10 ⁻¹⁶
n-hexane	1.1×10 ⁻¹⁶	1,2,3 - TMB	1.9×10 ⁻¹⁵
2-methylpentane	1.8×10^{-16}	1,2,4 - TMB	1.8×10 ⁻¹⁵
3-methylpentane	2.2×10 ⁻¹⁶	1,3,5-TMB	8.8×10 ⁻¹⁶
2,2-dimethylbutane	4.4×10 ⁻¹⁶	styrene	1.5×10 ⁻¹²
2,3-dimethylbutane	4.4×10 ⁻¹⁶	n-propylbenzene	1×10 ⁻¹⁵
cyclohexane	1.4×10 ⁻¹⁶		
n-heptane	1.5×10 ⁻¹⁶	Biogenic VOCs	
2-methylhexane	1.8×10 ⁻¹⁶	isoprene	7.0×10 ⁻¹³
3-methylhexane	1.8×10 ⁻¹⁶	α-pinene	6.16×10 ⁻¹²
2,4-			
dimethylpentane	1.5×10^{-16}	β-pinene	2.51×10 ⁻¹²
n-octane	1.9×10 ⁻¹⁶		
2,2,4-			
trimethylpentane	9×10 ⁻¹⁷		

Table S1: measured VOCs species and reaction rate constants with NO₃ radical at 298 K. TMB is the abbreviation of trimethylbenzene.

Alkenes

ethene	2.05×10 ⁻¹⁶
propene	9.49×10 ⁻¹⁵
1-butene	1.35×10 ⁻¹⁴
cis-2-butene	3.52×10 ⁻¹³
trans-2-butene	3.9×10 ⁻¹³
1-pentene	1.5×10^{-14}
1,3-butadiene	1.0×10 ⁻¹³
trans-2-pentene	3.9×10 ⁻¹³
cis-2-pentene	3.5×10 ⁻¹³

Figure S1: Backward trajectories of the air masses mentioned in the main text (Figure 4 and Table 1). The model was run online at https://ready.arl.noaa.gov/HYSPLIT.php. Dates colored in orange represent light dust or heavy sand storm events, while dates colored in blue denote urban air masses. The input information is shown below. Meteorology: GDAS (0.5 degree, global, 09/2007–present). Starting location: 40.04 N, 116.42 E. Starting time: local time 04:00. Total run time: 24 h. Height: 200 m (red line), 500 m (blue line), 1000 m (green line). Zoom factor: 70.

Figure S2: Dependence of N_2O_5 sensitivity on RH determined on site during the field campaign. The fitted curve (y=0.235+2.613x-2.872x²) was used to correct the humidity effect on ambient N_2O_5 data.

Figure S3: Average diurnal patterns of N_2O_5 , ClNO₂, and related species. (a) the early part of the campaign from Apr 24th to May 13th. (b) The latter part of the campaign from May 14th to May 31st.

Figure S4: Two examples of the selected cases for deriving $\gamma(N_2O_5)$: (a) the night of May 20th; (b) the night of May 27th.

Figure S5. Relationship of $\gamma(N_2O_5)$ with aerosol water content ([H₂O]). The orange dots were derived on May 5th 23:00~05:00 which represent N₂O₅ uptake on sand dust particles. The blue dots denote $\gamma(N_2O_5)$ in the category of "urban air masses" (see Table 1 in the main text).

Figure S6: The relationship between $PM_{2.5}$ and S_a during the non-dust period (a), i.e., data during the sand storm event (May 4th to May 5th) was excluded from the plot. Since the dependence of S_a on $PM_{2.5}$ was found RH-dependent, we selected data in non-dust periods with

the same RH range of the sand storm event (29 \sim 36 %) and displayed the PM_{2.5}-S_a relationship in (b). The regression function was used to estimate the S_a in the sand storm event.

