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Abstract: Z-grid finite volume models conserve all-scalar quantities as well as energy and potential
enstrophy and yield better dispersion relations for shallow water equations than other finite volume
models, such as C-grid and C-D grid models; however, they are more expensive to implement.
During each time integration, a Z-grid model must solve Poisson equations to convert its vorticity
and divergence to a stream function and velocity potential, respectively. To optimally utilize these
conversions, we propose a model in which the stability and possibly accuracy on the sphere are
improved by introducing more stencils, such that a generalized Z-grid model can utilize longer
time-integration steps and reduce computing time. Further, we analyzed the proposed model’s
dispersion relation and compared it to that of the original Z-grid model for a linearly rotating shallow
water equation, an important property for numerical models solving primitive equations. The analysis
results suggest a means of balancing stability and dispersion. Our numerical results also show that
the proposed Z-grid model for a shallow water equation is more stable and efficient than the original
Z-grid model, increasing the time steps by more than 1.4 times.

Keywords: finite volume; C-grid; Z-grid; stability; numerical efficiency; shallow water equations

1. Introduction

The societal demand for methods that facilitate future accurate weather prediction is pushing
resolvable scales of global weather forecasts down to the kilometer range. Compared to other schemes
of spectral and finite element methods, the use of finite volume methods has several advantages in
terms of grid nesting, handling non-hydrostatic phenomena, flexibility because of parallel computation,
etc. Many meteorological operation centers are developing their next generation numerical prediction
models and most of them are based on a finite volume scheme, for example, NOAA, Met Office, and
ECMWF (European Centre for Medium-Range Weather Forecasts). They choose different global grid
structures and forms of the finite element methods. These finite element methods can be classified into
several types of models according to the grid arrangements of the model state variables: A-grid, C-grid,
and C-D grid [1–5] as well as Z-grid (Heikes and Randall [6]). These models place mass fields at the
centers of grid cells, for example, Voronoi or centroid centers. With the exception of Z-grid, all other
methods use velocity vector equations in their prediction models. A-grid models place velocity vectors
at the cell centers along with their mass fields; C-grid models place normal velocity vectors at the
centers of cell edges; and C-D grid models place both tangential and normal velocity vectors at the
centers of cell edges. These models in the velocity vector form are relatively easy to implement and
run efficiently even though vectors are not easy to process on a sphere. For example, the six edges of
a hexagonal cell of an icosahedral grid on a sphere may not be on the same plane and the velocity
vectors at these edges may be on different planes. This issue affects some of the elegant theoretical
conclusions developed for these models. Ringler et al. [4] showed that their C-grid model conserves
kinetic energy for shallow water equations by properly interpolating the neighbors’ normal fluxes to
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obtain a tangential flux at an edge center. However, if these normal fluxes are not on the same plane as
the interpolated tangential flux, their analyses might require further improvement.

The Z-grid model is unique in predicting all the scalar states of vorticity and divergence. The model
can easily treat momentum on a sphere as scalars, provide the best dispersion relation among the finite
volume schemes [7], and is free of computational modes [8]. It resolves the stationary geostrophic
mode perfectly; this is difficult to achieve for all other grids, except the C-grid scheme, which can
acquire this property by carefully constructing tangential velocity at an edge center from the normal
velocities of neighbor edges [3]. Thuburn et al. [3] also assumed that these normal velocities are on the
same plane as the tangential velocities. However, despite its elegance and perfection, a Z-grid model is
relatively expensive to solve compared to other models in terms of the velocity vector. Its continuous
model equations include the vorticity, divergence, stream function, and velocity potential. This implies
that Poisson equations must be solved at each time-integration step to convert vorticity and divergence
into the stream function and velocity potential, respectively. Given that a multigrid technique [9],
which is vital in the implementation of the Z-grid model, is an iterative method, it can utilize the
solutions of the stream function and velocity potential from the previous time step and obtain stream
functions and velocity potentials in a few iterations. Further improvement of the Z-grid efficiency may
be critical to its future implementation for operational applications. In this study, we investigated the
possibility of modifying the Z-grid scheme to improve its stability such that a longer time step could
be used in model integration.

Heikes and Randall [6] and Eldred and Randall [10] proposed a Z-grid model and placed all state
variables at the Voronoi center of its cell. The normal derivative of a state variable at an edge’s center is
approximated according to the finite difference between two state values at the two adjacent Voronoi
centers of this edge, that is, a two-grid stencil is used. For tangential derivatives, the state values at
each end of an edge are first calculated, and then a finite difference is applied between the interpolated
values at these ends. Each end for a given edge of an icosahedral grid has three neighbors; hence, the
tangential derivative calculation involves four stencils. Heikes and Randall [6] demonstrated their
numerical results and showed the stability and conservation properties for numerous testing cases.
For simplicity, we refer to this Z-grid scheme as the Voronoi Z-grid. When it is applied on a rectangular
grid, six grid cells are used for calculating the tangential derivatives. To summarize, the Voronoi
Z-grid model uses a two-grid stencil for normal derivatives and stencils with four or more grids for
tangential derivatives.

To improve the efficiency and possible accuracy on spheres, we propose the generalization of
the Voronoi Z-grid model by using state variables at the centroidal centers and the same grid stencil
for calculating both the normal and tangential derivatives. The motivation of this generalization in
this study was to seek a more stable scheme so that it allowed us to apply longer time steps than
those applied in the Voronoi Z-grid. If such a scheme could be achieved, it would be more efficient
and save computing time. In this paper, we refer to this generalization as the centroidal Z-grid and
present this generalization scheme as a regional model for shallow water equations to demonstrate
the improvement. While this generalization can possess the same properties as the Voronoi Z-grid,
it is important to study how the dispersion relation is affected as it reflects how closely the discretized
schemes represent the continuous equations. We analyzed the dispersion relation of this centroidal
Z-grid by comparing it to the Voronoi Z-grid and developed some principles for balancing the stability
and dispersion relation in the construction of the centroidal Z-grid.

To demonstrate the stability and efficiency of this scheme, we chose two typical test cases that
possess nonlinear instability: the Rossby–Haurwitz case [11] and the unstable jet over an isolated
terrain, the Galewsky case [12]. A rectangular domain is sufficient to evaluate the efficiency and
we used the well-known Poisson equation solver to implement Z-grid models to simplify our
discussions in this paper. Note we have modified these test cases from their spherical shallow
water equations to a rectangular domain for the numerical experiments performed in this study.
The Rossby–Haurwitz case is not an exact solution for shallow water equations. However, a perfect
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solution satisfying the continuous equations is more appropriate for comparison and analyzing the
accuracy and stability. In this study, we modified the Rossby–Haurwitz test case and derived the
forcing terms of these equations so that the it became an exact solution for the continuous and forced
shallow water equations. This methodology is also recommended by Browning et al. [13]. For the
Galewsky test case, we just modified the height derivation for a rectangular domain simulating a
global latitudinal/longitudinal grid.

The remainder of this paper is organized as follows. In Section 2, we introduce the new Z-grid for
shallow water equations and show its second-order accuracy. The analysis of the dispersion relation
of the centroidal Z-grid is presented in Section 3. In Section 4, we discuss an improvement of the
Rossby–Haurwitz test case for a more rigorous test of our model’s stability with respect to shallow
water equations on a latitudinal/longitudinal plane. We also describe the height field derivation for
the Galewsky test case. Section 5 presents the numerical experiments for the centroidal Z-grid and
Voronoi Z-grid models. Finally, we provide our conclusions and remarks in Section 6.

2. Generalization of the Z-Grid Model

Shallow water equations are used in this paper to illustrate the generalization of the Z-grid model,
analyze dispersion relation, and demonstrate numerical results. A Z-grid model solves the following
system of shallow water equations:

∂η

∂t
+∇·(η∇χ) − J(η,ψ) = 0, (1)

∂δ
∂t
−∇·(η∇ψ) − J(η,χ) +∇2[K + g(h + hs)] = 0, (2)

∂h
∂t

+∇·(h∇χ) − J(h,ψ) = 0, (3)

where η is the absolute vorticity, δ is the divergence, ψ is the stream function, and χ is the velocity
potential, which satisfies the following equations:

∇
2ψ = η− f and ∇2χ = δ, (4)

where f is the Coriolis parameter, and the kinetic energy is

K =
1
2

[
∇·(ψ∇ψ) −ψ∇2ψ+∇·(χ∇χ) − χ∇2χ

]
+ J(ψ,χ). (5)

In Equation (2), g is the gravitational constant, and h and hs are the fluid depth and height of the
underlying surface topography, respectively. Note that the energy- and enstrophy-conservation Z-grid
models solve a slightly different form of the abovementioned equations, as given by Eldred and
Randall [10]. To evaluate the stability, we still used the abovementioned equations in this study.

Z-grid-based models have three important properties. First, they deal with all-scalar variables,
which are relatively easy to solve (particularly on a sphere), thereby avoiding the complexity accrued
when considering velocity vectors. Second, they separate vorticity from divergence. The fast mode
waves are in the divergence equation given by Equation (2). For divergence-free modes, the vorticity
evolves on its own without any high-frequency waves. In the linearized system, the geostrophic mode
is perfectly stationary. Third, because all state variables are placed at the centers of cells, the number of
state variables match the number of equations. Such a system does not have computational modes [8],
with the only drawback being that Equations (4) must be solved at every time step because this system
requires stream function ψ and velocity potential χ.

A multigrid technique [9] is commonly used to efficiently solve Equations (4) and is an iterative
method. That is, the closer the initial value is to the true solution, the fewer are the required iterations.
In the temporal integration of a Z-grid model, the ψ and χ in the next time step are very close to their
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counterparts in the current time step. The multigrid iterative process can fully take advantage of this
fact by using the ψ and χ in the current time as the initial guesses for the solutions of ψ and χ in the
next time step. In this study, instead of determining ways to further improve the multigrid solver,
we investigated whether we could construct a more stable Z-grid model so that a longer time step
could be used to improve the efficiency.

A finite-volume Z-grid model constructs its scheme by integrating Equations (1)–(3) over each grid
cell c and using the following integral relations [6] of Jacobian, divergence, and Laplacian operators:∫

c
J(σ, β)da =

∮
∂c
α
∂β

∂τ
dl, (6)

∫
c
∇·(σ∇β)da =

∮
∂c
α
∂β

∂n
dl, (7)∫

C
∇

2αda =

∮
∂c

∂α
∂n

dl, (8)

where α and β are arbitrary scalar functions, c is any given horizontal grid cell, ∂c is the perimeter of c,
and n and τ are the unit outward normal and tangential vectors, respectively, following the right-hand
rule with the thumb pointing upward. In other words, Equations (1)–(3) can be solved by applying
these relations repeatedly. For any given grid cell c, regardless of its shape, a Voronoi Z-grid scheme
places all state variables at Voronoi center c, as illustrated in Figure 1.
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By considering the Laplacian operator of Equation (8) as an example, we have the
following approximation: ∮

∂c

∂α
∂n

dl �
∑

i

α2 − α1

d
li. (9)

The continuous curve integral along ∂c is approximated by a set of piece-wise line integrals
along {li} surrounding cell c, where i runs through all edges of ∂c. These line integrals in (9) are then
approximated by the directional derivatives multiplied by the edge lengths. For normal derivative ∂α

∂n , a
two-stencil scheme is applied: α2−α1

d . If all of the cells are regular (i.e., the Voronoi and centroid centers
are at the same location), then this approximation can achieve second-order accuracy. To simplify the
discussion, the Z-grid models are discussed for planes and the cells are assumed to be regular.

A generalization of a Voronoi Z-grid model is achieved by using a grid stencil beyond the two
Voronoi centers for normal derivatives of edges in (9). On a grid of a two-dimensional plane, the
second-order accurate approximation of ∂α

∂n can be ensured using a six-grid or larger stencil based
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on Taylor expansions, regardless of whether a Voronoi or centroid center is used. As a finite volume
method defines the state variables at centroidal centers, we always choose a centroidal center in
this generalized scheme regardless of whether it is used on a plane or sphere where Voronoi and
centroid centers may differ. Thus, we call this scheme the centroidal Z-grid hereafter. To ensure
that the generalized scheme conserves scalar quantities, the line integrals are constructed using the
same stencils for two cells sharing common edges. Hence, the six-grid stencil must be symmetric
on both sides of the edge. Hexagons of an icosahedral grid cannot be symmetric; thus, we divided
these hexagons and pentagons into triangles. Figure 2 shows the symmetry for both triangular and
rectangular grids. A convenient feature of this triangular grid on a sphere is that each cell has three
edges, with each edge being associated with the six closest grid cells. Moreover, all the three edges of a
cell are in the same plane. This homogeneity of the triangular grid makes parallel computing much
easier, and in addition, the grid can be easily nested compared to a hexagonal/pentagonal grid.
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The Voronoi Z-grid model interpolates function values at both the ends of an edge and uses a
centered finite difference to approximate the tangential derivative at the edge center. For tangential
derivatives, the new proposed Z-grid model applies the same stencil as the Voronoi Z-grid model for
achieving second-order accuracy. For the sake of simplicity, in the current study, we used a rectangular
grid for the model formulation and numerical experiments; we will discuss an icosahedral grid on a
sphere in more detail in our future works.

Note that the subindex integers of 1,2, . . . ,6 in Figure 2 serve a symbolic purpose only. For each
edge, the indices are different. For a rectangular grid, the Voronoi Z-grid model approximates the line
integrals of the operators of Equations (6)–(8) as follows:∮

∂c
α
∂β

∂τ
dl �

∑
l

(α2 + α5)

2
β3 + β4 − β1 − β6

4
, (10)

∮
∂c
α
∂β

∂n
dl �

∑
l

(α2 + α5)

2
β5 − β2

d
l, (11)

∮
∂c

∂α
∂n

dl �
∑

l

α5 − α2

d
l. (12)

For the tangential derivative, the model actually uses(
β3 + β4 + β2 + β5

4
−
β2 + β5 + β1 + β6

4

)
/l (13)
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and the grid values of β2 and β5 in (13) cancel out in Equation (10) for the rectangular grid. Thus,
we showed that the model definitely uses a six-grid stencil. The proposed centroidal Z-grid uses the
same stencil as that of the Voronoi Z-grid. However, the Voronoi Z-grid model uses different stencils
for approximating tangential and normal derivatives. Our new generalization retains the tangential
approximation and uses a six-grid stencil to approximate all the normal derivatives in the following
approximations: ∮

∂c
α
∂β

∂n
dl �

∑
l

(α2 + α5)

2

(
wt
β4 − β3

d
+ wm

β5 − β2

d
+ wb

β6 − β1

d

)
l, (14)

∮
∂c

∂α
∂n

dl �
∑

l

(
wt
α4 − α3

d
+ wm

α5 − α2

d
+ wb

α6 − α1

d

)
l, (15)

where wt, wm, and wb are weights satisfying wt ≥ 0, wm ≥ 0, and wb ≥ 0, respectively, and

wt + wm + wb = 1 (16)

Parameters t, m, and b denote the top, middle, and bottom cells on the right column of Figure 2. When
wt = wb = 0 and wm = 1, the corresponding model reduces to the Voronoi Z-grid model shown
previously. Thus, this proposed model with choices of parameters wt, wm, and wb is a generalization of
the Z-grid model. By applying Taylor expansion, we can prove that this new model is second-order
accurate on a rectangular grid, possesses all conservation properties of the Voronoi Z-grid model,
and provides flexibility in testing other choices of the weights. Moreover, we demonstrate that some
selection of nonzero wt and wb provides more stability and can utilize longer time steps in the temporal
integration of the discretized shallow water equations. Our numerical experiments showed that if
wt = wb < wm satisfying (16) then the Z-grid model is stable, but a scheme of wt = wb = wm = 1

3 does
not show stability.

3. Dispersion Relation Analysis

Before demonstrating the stability of the centroidal Z-grid, determining how this generalization
affects the dispersion relation would be interesting, as it is an important feature approximating the
continuous equations. We analyzed the centroidal Z-grid dispersion relation and compared it to
the Voronoi Z-grid in order to have a better understanding of how the dispersion relation changes.
Furthermore, the relation may provide some guidance to choosing weights wt, wm, and wb.

In this study, a linearized rotating shallow-water-equation system was used in the dispersion
relation analysis:

∂u
∂t
− f v + g

∂h
∂x

= 0, (17)

∂v
∂t

+ f u + g
∂h
∂y

= 0, (18)

∂h
∂t

+ H
(
∂u
∂x

+
∂v
∂y

)
= 0. (19)

To convert these equations into the Z-grid equations, we need to derive the vorticity and divergence
equations. First, we applied ∇· in Equations (17) and (18) and obtained

∂δ
∂t
− fζ+ g∇2h = 0, (20)

where ζ = −uy + vx and δ = ux + vy. Then, by applying ∇× on these Equations, we obtained

∂ζ
∂t

+ fδ = 0. (21)
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We applied ∂
∂t in Equation (20) to obtain

∂2δ

∂t2 − f
∂ζ
∂t

+ g
∂∇2h
∂t

= 0, (22)

and by using (21), we have
∂2δ

∂t2 + f 2δ+ g
∂∇2h
∂t

= 0. (23)

Then, Equation (19) can be rewritten as
∂h
∂t

= −Hδ, (24)

and used to replace the divergence in Equation (23) so that

−
∂3h
∂t3 − f 2 ∂h

∂t
+ gH

∂∇2h
∂t

= 0. (25)

Assume a wave solution of h to have the form h = h0ei(kx+ly−ωt). By substituting this solution into
Equation (25), we have

− iω3 + i f 2ω+ igHω
(
k2 + l2

)
= 0 (26)

or
ω
[
ω2
− f 2

− gH
(
k2 + l2

)]
= 0.

Let λ =

√
gH
f be the deformation radius of this shallow water Equation; then the dispersion

relation satisfies

ω

(ωf
)2

− 1− λ2
(
k2 + l2

) = 0. (27)

The three eigenvalues are represented as

ω1 = 0

and (
ω2,3

f

)2

= 1 + λ2
(
k2 + l2

)
= 1 +

(
λ
d

)2[
(kd)2 + (ld)2

]
, (28)

which is the continuous dispersion relation and where d is any constant. Any discrete numerical
scheme should approach this relation as much as possible. The closer a scheme is to the continuous
relation of Equation (28), the better is the scheme’s dispersion relation.

Now, we look into the discrete forms (10), (14), and (15) of a centroidal Z-grid model in solving
Equation (20). Equation (20) mainly involves calculating a Laplacian operator. For a uniform grid with
a grid spacing of d in both x and y directions, a Z-grid model places the model states at the center of a
square cell. The Z-grid model should approximate ∇2h over a cell by using the Laplacian relation

x

c
∇

2hda =

∮
∂c

∂h
∂n

dl =
4∑

l=1

∫
l

∂h
∂n

dl, (29)

where n is the outward normal direction. For a cell located at (m, j), the centroidal Z-grid model uses
six stencils to approximate the normal derivative. For the left edge, we have

∂h
∂n

∣∣∣∣∣
m− 1

2 , j
� wt

hm−1, j+1 − hm, j+1

d
+ wm

hm−1, j − hm, j

d
+ wb

hm−1, j−1 − hm, j−1

d
, (30)
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where wt, wm and wb satisfying (16). By assuming wt = wb for the right, bottom, and top edges, we also
have

∂h
∂n

∣∣∣∣∣
m+ 1

2 , j
� wt

hm+1, j+1 − hm, j+1

d
+ wm

hm+1, j − hm, j

d
+ wt

hm+1, j−1 − hm, j−1

d

∂h
∂n

∣∣∣∣∣
m, j− 1

2

� wt
hm−1, j−1 − hm−1, j

d
+ wm

hm, j−1 − hm, j

d
+ wt

hm+1, j−1 − hm+1, j

d

∂h
∂n

∣∣∣∣∣
m, j+ 1

2

� wt
hm−1, j+1 − hm−1, j

d
+ wm

hm, j+1 − hm, j

d
+ wt

hm+1, j+1 − hm+1, j

d
.

Let hm, j = h0ei(kmd+l jd−ωt), then

hm+1, j − hm, j = h0ei[k(m+ 1
2 )d+l jd−ωt]

(
ei kd

2 − e−i kd
2

)
= h0ei[k(m+ 1

2 )d+l jd−ωt]2i sin
(

kd
2

)
.

Thus, Equation of (30) and the three Equations next it become the following forms,

∂h
∂n

∣∣∣∣∣
m− 1

2 , j
� −2ih0ei[k(m− 1

2 )d+l jd−ωt][2wt cos(ld) + wm] sin
(

kd
2

)
/d

∂h
∂n

∣∣∣∣∣
m, j− 1

2

� −2ih0ei[kmd+l( j− 1
2 )d−ωt][2wt cos(kd) + wm] sin

(
ld
2

)
/d

∂h
∂n

∣∣∣∣∣
m+ 1

2 , j
� 2ih0ei[k(m+ 1

2 )d+l jd−ωt][2wt cos(ld) + wm] sin
(

kd
2

)
/d

∂h
∂n

∣∣∣∣∣
m, j+ 1

2

� 2ih0ei[kmd+l( j+ 1
2 )d−ωt][2wt cos(kd) + wm] sin

(
ld
2

)
/d.

Therefore, the finite volume scheme gives

1
d2

x

c
∇

2hda =
1
d2

 ∂h
∂n

∣∣∣∣∣
m− 1

2 , j
+
∂h
∂n

∣∣∣∣∣
m+ 1

2 , j
+
∂h
∂n

∣∣∣∣∣
m, j− 1

2

+
∂h
∂n

∣∣∣∣∣
m, j+ 1

2

d

= 2ih0ei[kmd+l jd−ωt][2wt cos(ld) + wm] sin2
(

kd
2

)
/d2+

2ih0ei[kmd+l jd−ωt][2wt cos(kd) + wm] sin2
(

ld
2

)
/d2.

By assuming δm, j = δ0ei(kmd+l jd−ωt), ζm, j = ζ0ei(kmd+l jd−ωt) and replacing ∇2h in Equation (20) with
this discrete form, Equation (20) is rewritten as

−ωδ0 − fζ0 + 4
gh0[wt cos(kd) + wt cos(ld) + wm]

[
sin2

(
kd
2

)
+ sin2

(
ld
2

)]
d2 = 0.

Further, Equation (21) gives
−ωζ0 + fδ0 = 0,

and Equation (19) gives
−ωh0 = −Hδ0.
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By replacing δ0 and ζ0 in the abovementioned spectral Equation, we have

−ω2 h0

H
+ f 2 h0

H
+ 4

gh0[wt cos(kd) + wt cos(ld) + wm]
[
sin2

(
kd
2

)
+ sin2

(
ld
2

)]
d2 = 0

or (
ω
f

)2

= 1 + 4
(
λ
d

)2
[wt cos(kd) + wt cos(ld) + wm]

[
sin2

(
kd
2

)
+ sin2

(
ld
2

)]
. (31)

For the given relation wm = 1− 2wt and assuming that λd = 2, we can find optimal weights that minimize
the difference between Equations (28) and (31) in l2 norm. Over the region (kd, ld) ∈ (0, π) × (0, π),
the optimal weights are close to wm = 2 and wt = −0.5, which possess an even better dispersion
relation than the Voronoi Z-grid. However, we found that these optimal weights could result in an
unstable model. Thus, we determined to seek weights that provided stability and the best possible
dispersion relation.

To determine the difference between the continuous and discrete dispersion relations, we calculated
the difference between the right hand sides of Equations (28) and (31) as functions of (kd, ld) over

three domains from the origin through 1)
√
(kd)2 + (ld)2

≤
π
2 ; 2)

√
(kd)2 + (ld)2

≤ π; and 3) 0 ≤ kd ≤ π
and 0 ≤ ld ≤ π. We compared three typical centroidal Z-grids with weights selected as (wm = 0.5,
wt = 0.25), (wm = 0.75, wt = 0.125), and (wm = 1.02, wt = −0.01) to the Voronoi Z-grid. The differences
between Equations (28) and (31) over these three domains are shown in Table 1.

Table 1. Dispersion relation difference between discrete and continuous dispersion relations.

Radius Voronoi Z-Grid Centroidal Z-Grid
(0.5, 0.25)

Centroidal Z-Grid
(0.75, 0.125)

Centroidal Z-Grid
(1.02, −0.01)

π/2 0.113 0.307 0.207 0.106
π 0.887 1.957 1.358 0.854

(π, π) 1.199 2.927 1.910 1.150

This table shows that there is a better choice of weights than those possessed by the Voronoi Z-grid
as they give a better dispersion relation (wm = 1.02, wt = −0.01). We also found in our numerical
experiments that, with this choice of weights, the centroidal Z-grid is as stable as the Voronoi Z-grid.
Thus, for the centroidal Z-grid models, we can choose weights such that their dispersion relation is as
good as possible and provides more stability.

4. Modification of the Test Cases

To show the stability of the centroidal Z-grid, we chose two typical test cases for shallow water
equations: the Rossby–Haurwitz [11] and Galewsky [12] test cases. We modified these cases to fit our
numerical experiments over a rectangular grid simulating a global latitudinal/longitudinal grid.

The Rossby–Haurwitz test case is used for testing various models, including spectral and gridded
models, because of its realism and nonlinear instability that closely reflect the real atmosphere.
The stream function in this case provides a realistic wave pattern around a globe, and we extended it
in this study to make the stream function move with time t as follows:

ψ = −a2ω sinθ+ a2κ cosR θ sinθ cos R(λ+ υt), (32)

where a is the radius of the Earth; θ ∈
(
−
π
2 , π

2

)
is the latitude; λ ∈ (0, 2π) is the longitude; ω, κ are

constants and R is an integer constant; and t is the time in seconds. This stream function moves from
west to east at an angular velocity given by the following Equation:

υ =
R(3 + R)ω− 2Ω
(1 + R)(2 + R)

, (33)
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where Ω is the rotational angular velocity of the Earth. This is a divergence-free test case, that is, δ = 0
and χ = 0. We adapted it to a latitudinal/longitudinal plane for testing the numerical accuracy and
stability of the centroidal Z-grid scheme. However, this test case (Williamson et al. [11]) does not
satisfy the continuous shallow water Equations (1)–(5). A common practice is to compare a given
model output to the numerical output produced through a spectral model that solves the dissipative
shallow water equations by using an appropriate initial condition (e.g., [4]). A ∇4 dissipation was used
in a spectral model to control noise from high-frequency waves. Such a comparison may not serve our
purpose, as we need to know the stability of our Z-grid models. A diffusive solution may not be able to
demonstrate the differences of these Z-grid models. Hence, we attempted to search for a non-diffusive
solution to check the stability of our model for the Rossby–Haurwitz case.

We selected a method suggested by Browning et al. [13]. This method adds forcing terms to
a given system of equations to force a Rossby–Haurwitz case to become the exact solution for the
non-diffusive shallow water Equations (1)–(5). For our test on the latitudinal/longitudinal plane,
we used the Rossby–Haurwitz stream function in Equation (32) and chose the fluid depth h such that
the divergence Equation (2) was satisfied perfectly. In other words, by substituting hs = 0, δ = 0, and
χ = 0 in Equations (2) and (5), we solved h, satisfying the following:

g∇2h = ∇·(η∇ψ) −
1
2
∇

2
(
∇·(ψ∇ψ) −ψ∇2ψ

)
. (34)

By choosing h in such a manner, Equation (2) is satisfied, and no forcing term is required for
Equation (2). We then applied the stream function given by Equation (32), its corresponding vorticity
η, and fluid depth h that satisfies Equation (34) into Equations (1) and (3) and obtained two forcing
functions, denoted as fη and fh. Then, the functions (ψ, χ, h), χ = 0, and solution h of Equation (34)
satisfy the following non-diffusive Equations:

∂η

∂t
+∇·(η∇χ) − J(η,ψ) = fη, (35)

∂δ
∂t
−∇·(η∇ψ) − J(η,χ) +∇2[K + g(h + hs)] = 0, (36)

∂h
∂t

+∇·(h∇χ) − J(h,ψ) = fh. (37)

Our numerical forecast results can be verified against this true solution at any given time t to
demonstrate the stability and efficiency of the centroidal and Voronoi Z-grid models.

This modification methodology for shallow-water-equation test cases can also be applied to the
Rossby–Haurwitz test case on a sphere. The only difference is that the differential operators will be
spherical and not Cartesian in the latitudinal and longitudinal directions. A similar process can also be
applied to other test cases of shallow water equations. However, the Rossby–Haurwitz case is a very
challenging case because of its nonlinearity. Hence, the comparison of the stability of both the models
is sufficient.

Note that Equation (34) may be too complicated to solve for an analytic solution of h. Instead, for
any given resolution and time t in our numerical experiments, we solved Equation (34) numerically.

To test a regional Z-grid model, we must specify the boundary conditions. In general, a global
or larger domain model provides Dirichlet boundary conditions to a regional Z-grid model. For the
Rossby–Haurwitz test case, we chose a latitudinal and longitudinal domain

(
−
π
2 , π

2

)
× (0, 2π) and

considered the east–west boundaries as periodic boundaries, thereby simulating a global latitudinal
and longitudinal grid and using the Dirichlet boundary conditions at the north and south boundaries
from the continuous solution of this test case.

Numerical noise usually appears near the Dirichlet boundaries because the boundary values
do not match the predicted values of the model due to truncation errors, even though these errors
are very small. A sponge boundary treatment [14] is usually used to minimize the spurious wave
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reflections. In our implementation of the Z-grid models, we used a simple sponge method to avoid
the spurious reflections at the north and south boundaries. We used the true boundary values and
forecast grid values at the second interior to interpolate the grid values at the first interior next to
the boundaries (hereafter referred to as the averaging boundary conditions). This method removes
boundary reflections without loss of model accuracy. Therefore, we applied this averaging boundary
condition throughout our numerical experiments.

The Galewsky test case was also modified to fit our numerical experiments over a rectangular
domain. We kept the zonal flow formulation obtained from [12],

u(φ) =


0 φ ≤ φ0
umax

en
exp

[
1

(φ−φ0)(φ−φ1)

]
φ0 ≤ φ ≤ φ1

0 φ ≥ φ1

(38)

and the perturbation field,

h′(λ, φ) = ĥ cosφe−(λ/α)2
e−[(φ2−φ)/β]

2
, (39)

where umax = 80 ms−1, φ0 = π/7, φ1 = π
2 − φ0, en = exp

[
−4/(φ1 −φ0)

2
]
, φ2 = π/4, α = 1/3,

β = 1/15, and ĥ = 120 m. Instead of using the height field in [12], we solved Equation (34) as well to
obtain a balanced height field for the background flow given by Galewsky et al. [12]. We modified the
derivative operators in (34) as a rectangular grid coordinate of (aλ, aφ) so that the Equation for the
height field has the following form:

g∇2h = −
2Ω

(
u cosφ+ uφ sinφ

)
a

. (40)

A mean constant height, h0 = 104 m, was added to the solution of (40) so that the mean average height
was around 10 km, as suggested by Galewsky et al. [12]. All the partial derivatives were treated as a
Cartesian coordinate of (λ, φ) instead of a spherical coordinate.

5. Numerical Experiments

As stated earlier, a multigrid technique is usually applied in Z-grid models for solving the Poisson
Equations in (4), converting vorticity and divergence to a stream function and velocity potential,
respectively. For an accurate comparison between the centroidal and Voronoi Z-grid models, we used
FISHPACK [15] in our regional Z-grid model experiments. This is not an iterative method but solves
Poisson equations numerically with second-order accuracy. However, this solver is not sufficiently
efficient to implement a Z-grid model in general. By using this solver, we avoid clarifying the
implementation of a multigrid method and its convergence solving the Poisson equations numerically.
Given that our goal is to show the improved stability and longer time step integration of the new
Z-grid model, FISHPACK is appropriate.

The FISHPACK solver enables us to specify the Dirichlet boundary conditions at the north and
south boundaries, and periodic boundary conditions at the east and west boundaries. Our domain
involves the latitudinal and longitudinal grids of the whole globe, and these boundary conditions
meet our needs. For all numerical experiments presented herein, the same solver was used for all
Z-grid-model comparisons.

We implemented three Z-grid models to demonstrate the improvement of the new Z-grid model.
For the Voronoi Z-grid model, we used the finite volume scheme defined by Equations (10), (14), and
(15) by setting wt = wb = 0 and wm = 1, denoted as VORO (Voronoi scheme) hereafter. For the new
centroidal Z-grid model, we used wt = wb = 1/8 and wm = 3/4; this scheme is denoted as CENT.
We also chose the centroidal Z-grid with the “best” dispersion relation, with wt = wb = −0.01 and
wm = 1.02, and denoted it as BEST.
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In our experiments, we chose parametersκ = ω = 7.848× 10−6 and R = 4 for the Rossby–Haurwitz
test case. Other physical parameters used in the experiments of both cases were as follows: g = 9.8,
a = 6.37122× 106, and Ω = 7.2722× 10−5.

Figure 3 shows the stream function given by Equation (32), along with its absolute vorticity and
fluid depth of the continuous Rossby–Haurwitz test case on the latitudinal/longitudinal plane in a
one-degree resolution. For the Galewsky case, the background flow is given in Equations (38) and the
solution of (40) and the perturbation (39) is shown in [12].
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For the time integration of our numerical experiments, we used a Runge–Kutta fourth-order 
scheme, even though it is relatively expensive compared to the third-order Adams–Bashforth scheme 
[16]. Both Runge–Kutta and Adams–Bashforth schemes are classified as Eulerian-based time-
integration (EBIT) schemes [17]. They are sufficient to support the numerical experiments in this study. 
The Runge–Kutta fourth-order scheme is free of a computational mode and is less diffusive. It serves 

Figure 3. Continuous stream function (top), vorticity (middle), and fluid depth (bottom) at a one-degree
resolution. Stream function is in the range of (−3 × 108, 3 × 108), vorticity in (−6 × 10−5, 6 × 10−5), and
depth in (600, 3000).
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For the time integration of our numerical experiments, we used a Runge–Kutta fourth-order scheme,
even though it is relatively expensive compared to the third-order Adams–Bashforth scheme [16]. Both
Runge–Kutta and Adams–Bashforth schemes are classified as Eulerian-based time-integration (EBIT)
schemes [17]. They are sufficient to support the numerical experiments in this study. The Runge–Kutta
fourth-order scheme is free of a computational mode and is less diffusive. It serves the purpose of
comparing the model stability well. An Adams–Bashforth scheme or some path-based time-integration
(PBTI) schemes [17] will be implemented in practical applications.

All numerical experiments in this Rossby–Haurwitz case are free of any numerical dissipation.
Even though Galewsky et al. [12] suggested a second-order dissipative for all equations, we applied a
second-order dissipation to the vorticity and divergence Equations (1) and (2) only and no numerical
diffusion for (3) for the Galewsky case. The dissipation in vorticity equation is sufficiently small to
remove unresolvable noise. For each model, we tried several time step lengths until the longest one
was found for stability. For the Rossby–Haurwitz case, the numerical forecast ran for 14 days and for
the Galewsky case, it ran for 6 days, the same as in [12]. The time step used by the CENT scheme can
be as much as 1.4 times that of the VORO and BEST schemes for the Rossby–Haurwitz case and 1.6
times for the Galewsky case. For example, at a one-degree resolution, the CENT scheme can take a time
step of 840 s but VORO took just 600 s for the Rossby–Haurwitz case; CENT can take one of 480 s but
VORO took just 300 s for the Galewsky case. These longer time-integration steps of CENT are indeed
significant. The computer runtime confirms the efficiency improvement. For the Rossby–Haurwitz
case, the runtime is shown in Figure 4 with three different resolutions. Computing time is saved
significantly as the resolutions increase.
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Figure 4. Computer runtime in seconds for the Rossby–Haurwitz case: 1. two-degree resolution; 2.
one-degree resolution; and 3. half-degree resolution. CENT, centroidal; VORO, Voronoi; BEST, best.

As we know the exact solution of the forced shallow-water Equations for the Rossby–Haurwitz
case, we calculated the errors against the true solution of (ψ, χ, h) at the end of the 14th day in two
error norms: l2 and l∞. In the error table (Table 2), the l2-norm error is a relative error and is defined as

E2 =

√∑
i( f orecast− truth)2∑

i truth2 ,

and E∞ norm error is the maximum error over the domain and is given as

E∞ = max
i

∣∣∣ f orecast− truth
∣∣∣,

where i is an index for all grid cells over a given domain. We reported the results in E∞ to show that
error reduction is everywhere over the domain as expected for a second-order scheme, indicating
that our implementation of these schemes was correct. Table 2 lists the 14th-day forecast errors of the
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Rossby–Haurwitz case at two-, one-, and half-degree resolutions against the true solution of the forced
shallow water Equations (35)–(37).

Table 2. Forecast errors on the 14th day of the two Z-grid models of CENT, VORO and BEST.

Errors η (E2/E∞) δ (E2/E∞) h (E2/E∞)

CENT (2o) 0.1884 × 10−1/ 0.1233 × 106/ 0.2518 × 10−2/

0.1661 × 10−5 0.4392 × 10−6 0.1067 × 102

VORO (2o) 0.1818 × 10−1/ 0.7939 × 10−7/ 0.2373 × 10−2/

0.1628 × 10−5 0.4392 × 10−6 0.1051 × 102

BEST (2o) 0.1814 × 101/ 0.7664 × 10−7/ 0.2364 × 10−2/

0.1628 × 10−5 0.4362 × 10−6 0.1050 × 102

CENT (1o) 0.4786 × 10−2/ 0.3480 × 10−7/ 0.6335 × 10−3/

0.4576 × 10−6 0.1274 × 10−6 0.2721 × 101

VORO (1o) 0.4516 × 10−2/ 0.2169 × 10−7/ 0.5979 × 10−3/

0.4302 × 10−6 0.9216 × 10−7 0.2667 × 101

BEST (1o) 0.4494 × 10−2/ 0.2118 × 10−7/ 0.5957 × 10−3/

0.4278 × 10−6 0.8718 × 10−7 0.2668 × 101

CENT (0.5o) 0.1185 × 10−2/ 0.9465 × 10−8/ 0.1588 × 10−3/

0.1164 × 10−6 0.4072 × 10−7 0.6603 × 100

VORO (0.5o) 0.1120 × 10−2/ 0.5632 × 10−8/ 0.1500 × 10−3/

0.1051 × 10−6 0.2003 × 10−7 0.6625 × 100

BEST (0.5o) 0.1116 × 10−2/ 0.5464 × 10−8/ 0.1495 × 10−3/

0.1042 × 10−6 0.1971 × 10−7 0.6631 × 100

The error reduction from coarse to one-level-finer resolutions is close to a factor of four, which
matches the second-order accuracy expectation of these models over the rectangular latitudinal and
longitudinal grids. Notably, the maximum errors in E∞ are also reduced by a factor of four. This study
numerically showed that the schemes are second-order accurate anywhere in the domain and the
numerical results reflect the correctness of the implementation. At a resolution of one degree, these
models have relative errors less than 5% and 0.6% in terms of vorticity and fluid depth, respectively.
Thus, the forecast fields are visually identical to those in Figure 3 and do not need to be plotted
(the forecast error of vorticity is plotted in Figure 5).
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By applying the averaged boundary conditions introduced in the previous section, we found
that the spurious reflection was removed completely. Figure 6 shows a north–south cross-section
of the 14th-day vorticity forecast at a longitude of 40◦ when using the CENT scheme. No noise
was observed near the south and north boundary grids, which are labeled near grid indices of −90
(south) and 90 degree (north). The maximum error reductions given in Table 2 indicate that these
averaging boundary conditions properly maintain the model accuracy for both the CENT and VORO
Z-grid schemes.
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Figure 6. North–south cross-section of the vorticity errors at 40◦ longitude.

For the Galewsky test case, Figures 7 and 8 show the numerical forecasts of the vorticity and
absolute vorticity at 96 h, 120 h, and 144 h. Compared to Figure 4 in [12], these figures closely resemble
the features at all these hours. Thus, these Z-grid models performed appropriately and reasonably
reflected the unstable jet over an isolated mountain. These models produced almost identical plots,
and we thus obtained the numerical results from the CENT model’s half-degree resolution outputs.

In summary, we found that the centroidal Z-grid model could utilize time steps that are at least
1.4 times or longer in all of the resolutions for both test cases in this study. Of course, these longer time
steps reduce the computing time by 30% or more at half-degree runs.

Note that our numerical experiments are based on the sequential codes of these Z-grid models.
The runtime is a single-processor forecast time. As the models are almost identical, this computing-time
reduction will certainly hold in a massively parallel computing environment. That is, a more than 30%
efficiency improvement of the new model can also be achieved in parallel computing environments.
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Figure 7. Vorticity forecasts at 96 h (top), 120 h (middle), and 144 h (bottom). Figure 7. Vorticity forecasts at 96 h (top), 120 h (middle), and 144 h (bottom).

The new centroidal Z-grid model comprises more grid values used for the normal derivatives,
and these may affect efficiency. It is indeed a minor addition as this happens only for calculation of the
normal derivatives. Furthermore, the Poisson solver uses the majority of the computing time, even
though a multigrid technique is used. For massive parallel computing, the computing involving a
large number of grid values is of less concern. Model stability is beneficial in that it is significantly
more viable for longer time-integration steps.
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6. Conclusions and Remarks

A generalized Z-grid model was proposed and tested in comparison to the Voronoi Z-grid
model. The proposed model has improved stability and efficiency. The comparison showed that
the new centroidal model reduces the computation time by more than 30% compared to the Voronoi
Z-grid model, while retaining the good features of a Voronoi Z-grid model, thus being more efficient.
In addition, the small forecast errors at the end of the 14th day show that the centroidal model did not
result in much energy loss while conserving all of the scalar variables, such as momentum, divergence,
and vorticity, as well as mass fields.
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For the weights of the centroidal Z-grid models, we tested different options. Specifically, we found
that weights wt = wb = 1/8 and wm = 3/4 were more stable than others on rectangular grids,
maintaining relatively good dispersion relations. The numerical experiments were performed on
a rectangular domain; however, we expect that a similar conclusion would be obtained for global
icosahedral triangular Z-grid models. The regional domains of a plane and sphere differ with respect
to the continuous spherical derivative operators; this will result in different coefficients of the shallow
water equations. In our future study, we will focus on the centroidal Z-grid models with respect to
a sphere.

The modification of the Rossby–Haurwitz test case and the methodology of this modification
can be applied on a sphere and other test cases of shallow water equations. The advantage of this
methodology is that it does not rely on the numerical solutions of a spectral model, and thus enables
users to perform a clean comparison to the true solution. However, the realism of adding forcing
functions to the governing equations may be of concern. To address this issue, it must be noted that in
reality, forecast models or their equations are affected by the radiation of the Sun, for example, along
with other physical forces. Hence, having test cases that satisfy the forced shallow water equations
is reasonable.

Regarding time-integration schemes, the use of the Runge–Kutta fourth-order scheme in this
study was mainly considered for stability comparison. In Z-grid model applications, a third-order
Adams–Bashforth or other PBTI methods are more practical for saving computing time.
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