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Abstract: Detailed knowledge of the complex refractive indices (m) of fine- and coarse-mode aerosols
is important for enhancing understanding of the effect of atmospheric aerosol on climate. However,
studies on obtaining aerosol modal m values are particularly scarce. This study proposes a method
for inferring m values of fine- and coarse-mode aerosol using the inversion products from the
AERONET ground-based aerosol robotic network. By identifying the aerosol type, modal m values
are constrained and then inferred based on a maximum likelihood method. Numerical tests showed
that compared with the reference values, our method slightly overestimates the real parts of the
refractive indices (n), but underestimates the imaginary parts (k) by 2.11% ± 11.59% and 8.4% ±
26.42% for fine and coarse modes, respectively. We applied this method to 21 AERONET sites around
China, which yielded annual mean m values of (1.45 ± 0.04) + (0.0109 ± 0.0046)i and (1.53 ± 0.01) +
(0.0039 ± 0.0011)i for fine- and coarse-mode aerosols, respectively. It is observed that the fine mode n
decreased from 1.53 to 1.39 with increasing latitude, while fine mode k values were generally larger
than 0.008 over most of China. The coarse-mode n and k ranged from 1.52 to 1.56 and from 0.002 to
0.006, respectively.

Keywords: aerosol complex refractive indices; fine and coarse mode; AERONET; China

1. Introduction

Atmospheric aerosol plays an important role in the Earth-Ocean-Atmosphere system because it
changes the radiance balance of the system via both direct effects, such as absorption and scattering of
shortwave solar radiation and longwave earth radiation, and indirect effects, such as acting as cloud
condensation nuclei [1,2]. The complex refractive index is a fundamental parameter in determining the
absorption and scattering properties of atmospheric aerosols and is the basis for calculating the earth’s
radiative budget and assessing the aerosol climate effect [3–5]. The complex refractive index can be
mathematically described as m = n + ki, where the real part n represents the light scattering capacity of
aerosol particles, while the imaginary part k is related to the light absorption capacity [6–9]. The overall
m value depends on the chemical composition, it is directly related to the emission source, and can
be characterized by the typical particle modes, i.e., fine and coarse modes [8,10–12]. For example,
anthropogenic aerosols are mainly fine-mode particles composed of sulfate, organic carbon, or black
carbon and generally exhibit strong light absorption characteristics [13–16]. However, natural aerosols
on land are usually coarse-mode dust particles consisting of silicon dioxide and metal oxides and
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mainly exhibit strong light scattering but weak absorption characteristics [17,18]. Therefore, the m
values of fine- and coarse-mode aerosols are generally different [19,20].

Methods for the direct measurement of aerosol m values in the laboratory have been developed
since the 20th century [3,10,21,22]. Although direct measurement techniques can be applied to obtain m
values and improve our understanding of the differences between the values for fine- and coarse-mode
particles, they are not suitable for large-scale application owing to their high cost and low efficiency.
In addition, these methods change the state of the aerosol particles in the atmosphere and may lead to
biased results. In contrast, optical measurements are effective in-situ observation methods for quickly
obtaining the optical and microphysical properties of the aerosol [23–27]. For example, the widespread
ground-based aerosol robotic network (AERONET), as well as the sky radiometer network mainly
located in eastern Asia (SKYNET), realize real-time monitoring of atmospheric aerosols by measuring
the direct sun and diffuse sky radiance and provide related parameters including aerosol optical depth
(AOD), single scattering albedo (SSA), m, and volume size distribution (VSD) [28–30]. However, both
of the AERONET and SKYNET algorithms use the internal mixing hypothesis that assumes that fine-
and coarse-mode aerosol particles have the same m values [23,24], which is not correct as the different
particle modes have different compositions and thus different m values [3].

Considering this, Xu et al. [31] determined the m values for both fine- and coarse-mode particles
using AERONET’s new-generation photo-polarimetric sun photometer and applied their algorithm to
a suite of real cases over Beijing. Zhang et al. [3] proposed an estimation method for separating the m
values of the two modes from AERONET products and applied this method to data collected over one
year at the AERONET Beijing site. These previous findings enriched our understanding of fine- and
coarse-mode aerosol m values, but there still exist gaps in the knowledge; for example, it is difficult to
capture sufficient data as there are only a few photo-polarimetric sun photometers within AERONET,
and most of them are old systems without polarization observation. Previous estimations of modal m
values were only conducted at single observation points. Hence, further information is required in
order to clarify these values and further our knowledge of the Earth’s radiative budget and aerosol
climate effects.

In order to address this limitation, this study proposes an inferring method for simultaneously
obtaining modal m values from AERONET inversion products, which was validated using data from
21 AERONET sites scattered across China. The arrangement of this paper is as follows: Section 2
introduces the AERONET data and related methods; Section 3 presents the numerical tests; Section 4
discusses application of the estimation method over China; and Section 5 gives a brief conclusion of
this study.

2. Data and Method

Figure 1 shows the general research framework for inferring the two modal aerosol m values
simultaneously from AERONET inversion products. The input parameter included the spectral AOD
and SSA at 0.44, 0.67, 0.87, and 1.020 µm and VSD of 22 logarithmically spaced aerosol size bins. Then,
the aerosol relative optical depth (AROD) was introduced to constrain the modal m values. In the
calculation process, initialized m values were used to calculate spectral AOD and SSA based on Mie
theory, where the objective function was then established based on the input and calculated AOD and
SSA. If the objective function fails to meet the terminal condition, the modal m values are updated and
the process follows this loop until the objective function reaches the threshold and the best estimates
of the modal m values are output. In this section, the data and methods involved in the calculation are
described in detail.
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Figure 1. Flow diagram of the general research framework for inferring fine- and coarse-mode complex
refractive indices; AOD, SSA, VSD, and AROD represent aerosol optical depth, single scattering albedo,
volume size distribution, and aerosol relative refractive index, respectively, modal m donates fine-mode
and coarse-mode aerosol refractive index.

2.1. AERONET Inversion Products

AERONET is a global aerosol monitoring network that uses ground-based CE-318 sun
photometers as the standard instrument [25,28]. The sun photometer measures both the direct solar
radiance and diffuse sky radiance at four wavelengths (0.44, 0.67, 0.87, and 1.02 µm) with a viewing
angle of about 1.2◦. The measurement intervals of direct sun and diffuse sky observations were 15 and
60 min, respectively [6]. AERONET uses the inversion algorithm proposed by Dubovik and King [23],
which provides improved aerosol retrievals of m values and VSD simultaneously by fitting the entire
measurement field of both direct sun and diffuse sky radiance using a radiative transfer code. Previous
numerical analyses showed that in the majority of cases, the deviation did not exceed 0.02 for AOD,
0.03 for SSA, 50% for k, 0.04 for n, and 35% for VSD in the presence of random noise [12]. In this
study, daily average AOD and SSA values, along with VSD data from AERONET level 2.0 inversion
products, were used to infer modal aerosol m values (https://aeronet.gsfc.nasa.gov/). Table 1 provides
a basic description of the AERONET sites used in the current study, including the latitude, longitude,
observation period, total observation number, and a brief site description.

Table 1. Summary of the AERONET sites used in this study.

Site Longitude Latitude Observation Period Daily Observations Site Description

North China Plain (NCP)
Beijing 116.4◦ E 40.0◦ N 2001.03–2018.06 1044 Urban
Xianghe 117.0◦ E 39.8◦ N 2001.03–2017.05 1341 Mixed
Xinglong 117.6◦ E 40.4◦ N 2006.02–2014.10 179 Background

Northeast China Plain (NECP)
Harbin 126.5◦ E 46.5◦ N 2016.05–2016.06 26 Urban

Liangning 121.7◦ E 41.5◦ N 2005.04–2005.06 20 Agricultural
Yangtze River Delta (YRD)

Hefei 117.2◦ E 31.9◦ N 2005.11–2008.11 28 Urban
Nanjing 118.7◦ E 32.2◦ N 2008.03–2008.08 41 Industrial

Hangzhou 120.2◦ E 30.3◦ N 2008.04–2009.02 59 Urban
Shouxian 116.8◦ E 32.6◦ N 2008.05–2008.12 65 Mixed

Taihu 120.2◦ E 31.4◦ N 2005.09–2016.07 495 Lake
Pearl River Delta (PRD)

Guangzhou 113.4◦ E 21.5◦ N 2009.11–2009.12 10 Urban
Kaiping 112.5◦ E 21.3◦ N 2008.10–2008.11 13 Suburban

Hong Kong 114.2◦ E 21.3◦ N 2005.11–2017.03 289 Urban
Northwest China (NWC)

Lanzhou 104.1◦ E 35.9◦ N 2006.08–2013.04 380 Mixed
Baotou 109.6◦ E 40.9◦ N 2013.10–2013.10 5 Dust
Jingtai 104.1◦ E 37.3◦ N 2008.03–2008.05 18 Dust
Minqin 103.0◦ E 38.6◦ N 2010.05–2010.06 3 Desert

Zhangye 100.3◦ E 39.1◦ N 2008.05–2008.06 13 Dust
Dunhuang 94.8◦ E 40.0◦ N 2012.04–2012.04 12 Desert

Chinese Taiwan (CTW)
Tainan 120.2◦ E 23.0◦ N 2002.03–2016.05 503 Urban
Chiayi 120.5◦ E 23.5◦ N 2013.09–2018.04 361 Mixed

Note: Mixed type refers to a site having more than two major aerosol sources, such as the mix of urban and
dust aerosol.

https://aeronet.gsfc.nasa.gov/
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2.2. Aerosol Mode Classification

In this study, particles with radius <1 µm were considered as fine-mode particles, while those with
particle radius≥1 µm were classified as coarse-mode particles. The m of fine-mode particles is generally
wavelength independent [12]. In the case coarse-mode aerosol, the n values of particles vary less than
0.01 over the wavelength range of 0.44–1.02 µm and thus are considered to be wavelength independent,
while the k values vary with increasing wavelength for different aerosol types [32]. In general,
coarse-mode aerosols from anthropogenic emissions show strong absorption over 0.44–1.02 µm,
leading to high k values, while natural dust particles show relatively high k values at 0.44 µm but low k
values between 0.67 and 1.02 µm [12]. Thus, it is necessary to classify the aerosol types before inferring
modal m values.

AROD is defined as the ratio of AOD values measured at wavelengths of 0.44 and 1.02 µm [33,34]:

AROD =
AOD1.02

AOD0.44
. (1)

Both AROD and AOD0.44 values can be used to distinguish maritime (MA), continental (CO), desert
dust (DD), sub-continental (SC), urban industry (UI), and biomass burning (BB) aerosols [35], which
has been applied to the data from the AERONET MAPS-Seoul Campaign to investigate regional
variations in aerosol type [36]. Here, only AROD was used to identify pollution and dust aerosols on
land. Specifically, AROD values <0.4 indicate a predominance of pollution aerosols, where the k of the
coarse mode is set to be wavelength independent between 0.44 and 1.02 µm. On the other hand, AROD
>0.4 indicates abundant dust aerosols, where the k values of coarse-mode aerosol over 0.67–1.02 µm
are identical, while the coarse-mode k values at 0.44 µm are set to be double those between 0.67 and
1.02 µm [12]. Detailed discussion regarding the constraint of modal m values is shown in Section 5.1.

2.3. Mie Theory

Mie theory is traditionally used for solving Maxwell’s equations and gives an analytical solution
for the interaction between a spherical scattering body and an electromagnetic field, although Mie
theory assumes sphericity, which may not be the best descriptor to the real atmospheric aerosols,
it works generally well in describing aerosol’s scattering and absorbing properties in atmospheric
radiative transfer modellings [37]. According to Mie theory, the attenuation factor Qext and the
scattering factor Qsca of a single spherical particle with radius r is obtained using the following
equations [38]:

Qext =
2

χ2

∞

∑
n=1

[(2n + 1)Re(an + bn)] (2)

Qsca =
2

χ2

∞

∑
n=1

[
(2n + 1)

(
|an|2 + |bn|2

)]
(3)

where χ is the scale parameter defined as χ = 2πr
λ and λ is the wavelength of incident light, and an

and bn are Mie scattering coefficients. Then, AOD and SSA can be calculated as follows [33]:

AOD =
∫ Z2

Z1

∫ r2

r1

Qext(χ, m)πr2n(r, z)drdz (4)

SAOD =
∫ Z2

Z1

∫ r2

r1

Qsca(χ, m)πr2n(r, z)drdz (5)

SSA =
SAOD
AOD

(6)

where, Z1 and Z2 are the height above sea level at the bottom and top of the atmosphere respectively;
r1 and r2 are the minimum and maximum radius of the aerosol particles, respectively; n(r, z) is the
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distribution of aerosol particles; and SAOD is the scattering optical depth resulting from the scattering
effect of the aerosols.

2.4. Determination of the Objective Function

The objective function is designed to search for the best fit of all data using a theoretical model
that considers different magnitudes of data source errors [23]. The measured or input data can be
expressed as follows:

f∗ = f(x) + ∆f (7)

where x represents the unknown vector to be solved; f∗ is the measurement or input vector; f(x) is the
estimation vector of f∗ at x; and ∆f represents the uncertainties. In this study, x refers to the modal m
values to be inferred and f∗ represents the spectral AOD and SSA at the wavelengths of 0.44, 0.67, 0.87,
and 1.02 µm.

Several studies have shown that most random noise can be described by the normal distribution
function [23,39]. The normal probability density function for f∗ at x can be written as:

P(f(x)|f∗) = 1√
(2π)tdet(Ck)

∆exp
(
−1

2
(f(x)− f∗)T(Ck)

−1(f(x)− f∗)
)

(8)

where T is the transposition of the matrix; Ck represents the covariance matrix of vector f ; det(Ck)

denotes the determination of Ck; and t is the dimension of vector f and f∗. According to the maximum
likelihood method, the best estimation of vector x corresponds to the maximum of P(f(x)|f∗). Then,
the best estimation of x corresponds to the minimum of the following quadratic form:

Ψ(x) =
1
2

K

∑
k=1

γk

[
(f∗k − fk(x))

T(Wk)
−1(f∗k − fk(x))

]
(9)

where the Lagrange multiplier γk = ε2
1/ε2

k and ε2
k denotes the variance of the data set k; and the weight

matrix is defined as Wk =
1
ε2

k
Ck.

In this study, the input spectral data was the spectral AOD and SSA extracted from AERONET
products, where the constraint equations can be expressed as follows:{

f∗AOD = fAOD(x) + ∆AOD
f∗SSA = fSSA(x) + ∆SSA

(10)

where f∗AOD and f∗SSA represent the input vectors of the spectral AOD and SSA, respectively; x
is the parameter vector to be solved, where x = (n f , k f , nC, kC,0.44), and n f , k f , nC, and kC,0.44
denote the wavelength-independent fine-mode n, fine-mode k, coarse-mode n, and coarse-mode
k at 0.44 µm; while fAOD(x) and fSSA(x) are the calculated AOD and SSA, respectively, assuming
x = (n f , k f , nC, kC,0.44). In addition, the objective function used in this study is as follows:

F(x) = γAOD

[
(f∗AOD − fAOD(x))

T(WAOD)
−1(f∗AOD − fAOD(x))

]
+ γSSA

[
(f∗SSA − fSSA(x))

T(WSSA)
−1(f∗SSA − fSSA(x))

] (11)

where γAOD and γSSA are the Lagrange multipliers for AOD and SSA, respectively; and WAOD and
WSSA represent the weight matrices of the spectral AOD and SSA, respectively.

Here, considering that the original parameters to be retrieved are m and VSD in the AERONET
inversion algorithm, the input spectral AOD and SSA values were calculated using the same m and
VSD and thus had the same level of accuracy (ε2

AOD = ε2
SSA), so we set γAOD = γSSA = 1. In addition,

we set WAOD = WSSA = 1 considering WAOD under normal scale, following Dubovik and King [23].
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When the objective function reaches a minimum, the corresponding x value was considered the best
estimation of the modal m values.

2.5. Minimization of the Objective Function

To minimize the objective function F(x), the L-BFGS-B algorithm was used here. L-BFGS-B
is a limited memory algorithm implemented in FORTRAN 77 and is designed to solve nonlinear
optimization problems with simple bounds on the variables [40]:

minF(x), l ≤ x ≤ u. (12)

Here, the vectors l and u represent the lower and upper bounds of x, respectively. During the
calculation, we did not need to provide complex Hansen matrices or structure functions for F(x) but
simply the F(x) value and its gradient at x = (n f , k f , nC, kC,0.44) for each iteration. The calculation of
L-BFGS-B terminates when one of the following conditions are met:

1. ( fk− fk+1)
max(| fk+1|,| fk |,1)

≤ f actor ∗ epsmch, where epsmch denotes the machine precision and is
automatically generated by the code; factor is a user defined parameter and is selected to terminate
the run when the change in F(x) is sufficiently small. We chose f actor = 107 for moderate accuracy.

2. proj g∞ ≤ pgtol, where pgtol was set to a default value of 10−4.
3. No further progress can be made during the line search. When the line search program fails to

find a point with an acceptably low objective value after twenty iterations of calculating F(x) or
along the steepest descent direction, the calculation terminates. Further details regarding the
algorithm and code can be found in the work of Zhu et al. [40].

2.6. Process for Inferring Modal m Values

Figure 2 shows a flow diagram of the process for estimating the modal m values, where each step
in this process is summarized as follows:

1. Setting the modal m boundaries: 1.33 ≤ n f ≤ 1.53, 0.0005 ≤ k f ≤ 0.1, 1.50 ≤ nC ≤ 1.60, and
0.0005 ≤ kC,0.44 ≤ 0.015 [12,32].

2. Initiating modal m values: n f = 1.35, k f = 0.01, nC = 1.55, and kC,0.44 = kC,0.67−1.02 = 0.001.

3. Calculating spectral AOD and SSA using Mie theory and AERONET VSD information. Consistent
with AERONET, AOD and SSA are calculated in 22 logarithmically spaced particle-size bins over
the range of 0.05–15 µm, where Equations (4)–(6) can be expressed in the following form:

AODλ(x) = ∑
f

3Qext, f ,i(x)
4ri

Vf (ri) + ∑
C

3Qext,C,i(x)
4ri

VC(ri) (13)

SAODλ(x) = ∑
f

3Qsca, f ,i(x)
4ri

Vf (ri) + ∑
C

3Qsca,C,i(x)
4ri

VC(ri) (14)

SSA =
AOD(x)

SAOD(x)
(15)

where AODλ and SAODλ are the estimated AOD and SAOD resulting from scattering effects at
wavelength λ; ri denotes the radius of the ith particle size bin; V(ri) is the volume within the ith
particle size bin; Qext,i(x) and Qsca,i(x) are the attenuation and scattering factors, respectively, from
Mie theory at ri; and x = (n f , k f , nc, kc,0.44) represents the modal refractive index vector to be
retrieved, where the subscripts f and c represent the fine- and coarse-mode aerosols, respectively.

4. Calculating the value of F(x) based on Equation (10).
5. Calculating the gradient of F(x) under the current iteration k with xk = (n f , k f , nC, kC,0.44)k.

6. Calling the L-BGRS-B code to search for probable solutions.
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7. Checking whether the output from step 6 meets the termination requirements. If so, the best
estimations of the modal m values are exported; if not, the modal m values are updated and the
loop is repeated.
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Figure 2. Flow diagram showing the process for estimating modal aerosol refractive indices m;
AOD, SSA, and VSD represent aerosol optical depth, single scattering albedo, and volume size
distribution, respectively; modal m donates fine-mode and coarse-mode aerosol refractive index;
F(x) is the target function.

3. Numerical Tests

3.1. Aerosol Models

The aerosol models used in the current study were based on the summary of aerosol properties
provided by Dubovik et al. [12] and those determined in our previous study [35]. We chose four
typical aerosol models, including biomass burning (BB), urban industry (UI), sub-continental (SC),
and desert dust (DD) aerosol models for performing numerical tests. The basic models of BB, UI, SC,
and DD were from long-term observations conducted at the AERONET sites named Mongu, GSFC,
INDOX, and Solar Village, respectively [12,32]. Considering the goal of inferring modal m values,
we modified the m values for fine- and coarse-mode particles. Specifically, the fine-mode m for BB
was set to 1.47 + 0.02i, while the coarse mode was replaced by dust aerosols [12,32]. Considering
that fine particles were dominant and coarse dust aerosols may be related to pollution, the k values
were assumed to be wavelength independent with a value of 1.55 + 0.003i. Similarly, the m values of
fine and coarse aerosols for UI were set to 1.41 + 0.003i and 1.55 + 0.003i, respectively [12,32]. In the
case of SC, the fine-mode m was set to 1.44 + 0.01i; due to the high dust particle volume indicated
by the absorption characteristics, the coarse-mode m values were set to 1.55 + 0.003i at 0.44 µm and
1.55 + 0.0015i for 0.67–1.02 µm [12,32]. Finally, in the case of DD, the m of the fine-mode aerosols
was 1.47 + 0.02i, where the m values of the coarse-mode aerosols were 1.55 + 0.004i at 0.44 µm and
1.55 + 0.002i for 0.67–1.02 µm [12,32].

Table 2 shows details of the inputs used in the aerosol models in this study, including modal m
values, VSD, and spectral variations of AOD and SSA [12,32]. All the aerosol models follow a bimodal
lognormal function for particle size distribution. C, R, and D donate the particle volume concentration,
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median radius, and standard deviation, respectively. It should be noted that the AOD values at 0.44
µm of the four aerosol models were all set to 0.5 in order to fully consider the effect of the random
error of VSD and spectral AOD and SSA on inferring modal m values.

Table 2. Inputs of the aerosol models used in this study.

VSD C1/C2 R1/µm R2/µm D1 D2

UI 2/1 0.25 2.8 0.6 0.6
BB 10/7 0.14 3.8 0.4 0.6

MIX 1/3 0.2 2.8 0.6 0.6
DD 1/20 0.12 2.3 0.4 0.7

m nf kf nc kc,0.44 kc,0.67–1.02

UI 1.41 0.003 1.55 0.003 0.003
BB 1.47 0.02 1.55 0.003 0.003

MIX 1.44 0.01 1.55 0.004 0.002
DD 1.47 0.02 1.55 0.004 0.002

AOD 0.44 µm 0.67 µm 0.87 µm 1.02 µm AROD

UI 0.500 0.305 0.207 0.160 0.319
BB 0.500 0.219 0.126 0.090 0.180

MIX 0.500 0.328 0.255 0.219 0.439
DD 0.500 0.452 0.450 0.446 0.892

SSA 0.44 µm 0.67 µm 0.87 µm 1.02 µm

UI 0.974 0.972 0.961 0.967
BB 0.889 0.853 0.820 0.797

MIX 0.908 0.922 0.924 0.927
DD 0.801 0.864 0.892 0.907

Note: C1/C2, R1/R2, and D1/D2 represent the particle volume concentration, median radius, and standard
deviation of fine-/coarse-mode aerosol in a bimodal lognormal particle size distribution; m, n, and k donate the
complex refractive index, its real part, and its imaginary part respectively; subscripts f and c represent fine- and
coarse-mode aerosol; 0.44, 0.67, 0.87, and 1.02 µm are the wavelengths.

3.2. Self-Consistency Analysis

In this section, we analyze the performance of the proposed modal m inversion scheme under
error free conditions. Specifically, the typical aerosol AOD, SSA, and VSD data shown in Table 2 were
set as inputs without introducing any random noise; then, the best estimation of modal m values
was obtained using the inferring process. Figure 3 shows the results of the self-consistency analysis.
In general, fine- and coarse-mode m values under different assumptions of the aerosol type were
successfully retrieved in the case where no errors were introduced in the input parameters. It can be
seen that the maximum deviations of estimated n and k from the inputs were both observed for the BB
aerosol model. The reference values of n and k were 1.55 and 0.003, respectively, while the estimated n
and k values were 1.54 and 0.0029, corresponding to maximum deviations of around 0.58% and 2.87%,
respectively. A similar result was observed in the study of Zhang et al. [3], where under BB aerosol
conditions, the relative deviation of the estimated n and k values reached a maximum of 3% and 35%,
respectively. This may be due to the optical contribution of coarse-mode aerosols in BB, the aerosol
model being too weak to obtain a reasonable estimation of coarse-mode m values.
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3.3. Simulation of Input Errors

The effect of AOD, SSA, VSD, and their synergetic errors on the estimation of modal m values
is discussed in this section. Here, we introduced random noise (with a normal distribution) on the
AOD, SSA, and VSD values. The maximum random noise values for AOD, SSA, and VSD were 0.02,
0.03, and 35% in 22 particle-size bins according to the uncertainty estimation for AERONET inversion
products described in Section 2.1 [12,23]. The estimated modal m values of each aerosol model were
the average of twenty calculations with random noise.

Figure 4a compares the estimated modal m values under different error conditions with the
reference m values. In general, the estimated modal m values were similar to the reference values. With
the introduction of a single error source (∆AOD, ∆SSA, or ∆VSD), the estimation error of the modal m
values was quite small for the UI aerosol model data, while ∆VSD resulted in a relatively small error
(about 0.006) in coarse-mode n values for the BB aerosol model. For the MIX aerosol model, ∆SSA noise
resulted in large errors of 0.016 in both the coarse-mode n and fine-mode k values, while for the DD
aerosol model, ∆VSD resulted in the largest biases in estimating fine-mode m values (3.4% for n and
25% for k). Considering synergetic errors where all error sources were added (ALL in Figure 4), obvious
deviations were observed when estimating fine-mode m values in DD aerosol models. This is because
the contribution to AOD from fine-mode particles is very small for DD-type aerosol; therefore, the
accuracy of fine-mode m values is sacrificed to compensate for the input errors. The mean deviations
were 0.32% ± 0.64% and 0.28% ± 0.56% for fine- and coarse-mode n values and 2.11% ± 11.59% and
8.4% ± 26.42% for fine- and coarse-mode k values for the averages of twenty calculations.

As the ultimate goal of inferring modal aerosol refractive indices retrieval is to generate reliable
values for atmospheric radiative transfer modelling, retrieving an incorrect modal refractive index
will more or less influence the modelling accuracy. To illustrate how far off the bias will reach, we
recovered the spectral AOD and SSA in the presence of synergetic errors, because AOD and SSA are
two key parameters to simulate the light extinction and scattering effects caused by aerosol particles in
modern atmospheric radiative transfer models. Figure 4b shows the recovery of spectral AOD and
SSA using the estimated modal m values and the comparison with the reference values listed in Table 2.
Generally, the spectral AOD and SSA are in good agreement with the reference values. The absolute
error of AOD at 870 nm in DD type (0.024) and SSA at 0.67 µm in UI type (0.014) are the largest but
still acceptable in many situations, for the uncertainty of widely used AERONET inversed AOD and
SSA are around 0.02 and 0.03, respectively.

In the presence of synergetic errors, our estimation method slightly overestimates modal n
values, while it underestimates k. However, our method was able to not only clearly distinguish
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fine- and coarse-mode m values but also rebuild the spectral AOD and SSA within the uncertainty of
AERONET products.
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Figure 4. Comparison of (a) estimated and model aerosol refractive indices under different error
conditions and (b) estimated and rebuilt AOD and SSA under synergetic errors in AOD, SSA, and
VSD data.

4. Modal Refractive Indices in Typical Regions of China

The modal refractive index inferring scheme was applied to the AERONET inversion products
from the sites listed in Table 1. Figure 5a shows the geographical information of six typical regions
over China, including North China Plain (NCP), Northeast China Plain (NECP), Northwest China
(NWC), Yangtze River Delta (YRD), Pearl River Delta (PRD), and Chinese Taiwan (CTW). The western
part of China is characterized by desert, sandy weather, and sparse population, while the eastern
part is mostly plains and hills with abundant rainfall, dense population, and advanced industry [41].
Such distinct geographical features result in specific aerosol characteristics; for example, western
China is dominated by continental and desert dust aerosol, while the eastern part generally has urban
industry aerosol [42,43].
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Figure 5. Estimation results of modal m values over China. (a) Geographical information, (b) annual 
mean AOD0.44 and AROD, (c) modal m values in NCP, NECP, and NWC, and (d) modal m values in 
PRD, YRD, and CTW; AOD0.44 and AROD represent aerosol optical depth at 0.44μm and aerosol 
relative optical depth. 

Figure 5b shows a histogram of the annual mean AOD0.44 and AROD values from the six typical 
regions in China. The AOD0.44 values in NCP, YRD, and PRD were larger than 1.0, indicating a high 
aerosol load over these industrialized regions, while the NECP and CTW regions showed annual 
mean AOD0.44 values of 0.7–0.8, with NWC showing the lowest value. Considering the regional 
differences in AROD values, we conclude that aerosols in the NWC region mainly originated from 
coarse-mode dust particles, while those in other regions were mainly anthropogenic aerosols (AROD 
< 0.4) [35].  
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Figure 5b shows a histogram of the annual mean AOD0.44 and AROD values from the six typical
regions in China. The AOD0.44 values in NCP, YRD, and PRD were larger than 1.0, indicating a high
aerosol load over these industrialized regions, while the NECP and CTW regions showed annual mean
AOD0.44 values of 0.7–0.8, with NWC showing the lowest value. Considering the regional differences
in AROD values, we conclude that aerosols in the NWC region mainly originated from coarse-mode
dust particles, while those in other regions were mainly anthropogenic aerosols (AROD < 0.4) [35].

Figure 5c,d show variations in the m products from AERONET and estimated modal m values as
a function of wavelength. Generally, coarse-mode n values were higher (and fine-mode values were
lower) than the AERONET products. This was attributed to the coarse-mode dust particles strongly
scattering light, resulting in higher k values [4]. The fine-mode k values were higher than those of the
AERONET products while those of the coarse mode were lower; fine particles are mainly emitted from
human activities and consist of many light-absorbing components, resulting in higher k values [14,44].
The minerals forming the dust particles generally have moderate absorption characteristics at 0.44 µm
and weak absorption between 0.67 µm and 1.02 µm; thus, the coarse-mode k was much lower than the
fine-mode values [12,25].

The annual mean m values across China were (1.45± 0.04) + (0.0109± 0.0046)i for fine mode and
(1.53± 0.01)+ (0.0039± 0.0011)i (0.0034i± 0.0013i at 0.44 µm) for coarse mode aerosols. In the regions
with low AROD values (e.g., PRD and CTW), the fine-mode m values were closer to the AERONET
products, suggesting that these areas mainly contained fine-mode particles. However, in high-AROD
(AROD > 0.6) regions such as NWC, AERONET m products were closer to the coarse-mode m values,
indicating coarse-mode aerosols dominated this region. These results indicate that our estimation
results are generally reliable, and the assumptions within our modal m inferring method are consistent
with the characteristics of the actual aerosols.

The modal m values showed distinct regional differences. The coarse-mode n values of the
six regions were all in the range of 1.52 to 1.56. The fine-mode n values in the NWC, NCP, NECP,
YRD, PRD, and CTW regions were 1.51 ± 0.03, 1.47 ± 0.01, 1.47 ± 0.02, 1.45 ± 0.02, 1.41 ± 0.01, and
1.39 ± 0.01, respectively, showing a decrease from the northwest to the southeast. The annual mean
kf,0.44 values in the NWC, NCP, NECP, and YRD regions were >0.01, while those of PRD and CTW
were <0.01 and <0.005, respectively. This was mainly due to the CTW region being influenced by
maritime aerosol, where the proportion of water-soluble components in CTW was higher than in other
areas, resulting in a low k of the dominant fine-mode aerosols as k values of water-soluble particles
are typically 1.40 + 0.003i [12,42]. In contrast to CTW, NECP, NCP, and YRD were characterized by UI
aerosols, where the suspended anthropogenic aerosols resulted in high fine-mode k values [43,45].
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In addition, it was observed that the differences between fine- and coarse-mode n values were
small in the northern part of China (NWC, NCP, and NECP), but large in the southern part of China
(YRD, PRD, and CTW). On the contrary, the differences between modal k values were large in the north,
but small in the south. This indicates that northern China suffers more dust events than the south, and
the aerosol compositions in the north are labile, while they are much more stable in the south.

5. Discussion

5.1. Constraint of Aerosol Complex Refractive Indices

To calculate the modal m values from AERONET LV2.0 inversion products, the following four
parameters were solved: the wavelength-independent nf, kf, and nc values, along with kC,0.44. The kc

values at 0.67, 0.87, and 1.02 µm were equal. When AROD > 0.4, kC,0.44 = 2kC,0.67−1.02, while when
AROD < 0.4, we set kC,0.44 = kC,0.67−1.02. Here are two reasons to make such constraint.

Using wavelength-independent modal m values is considered reliable as they compared well with
worldwide AERONET observations. Dubovik et al. [12] observed that m values at sites dominated
by fine-mode particles were generally wavelength independent, while n values at sites dominated by
coarse dust particles varies little between 0.44 and 1.02 µm [46–48]. However, k values measured at
0.44 µm for areas dominated by coarse particles were double those at 0.67, 0.87, and 1.02 µm. To further
validate the constraint of wavelength-independent modal m values, we analyzed the annual mean
m variations with increasing wavelengths under different volume ratios of fine and coarse particles
from the 21 AERONET sites over China. Figure 6 shows that the n values varied little (<1.5%) between
0.44 and 1.02 µm for both fine-dominant (VF/VT > 75%) and coarse-dominant (VC/VT > 75%)
cases, which supports the assumption of wavelength-independent n values for both fine and coarse
particles. The k values under fine-dominant cases were generally wavelength independent, while
the coarse-dominant cases showed distinct variations in different regions (maximum at 0.44 µm,
then decreased by more than half between 0.67 and 1.02 µm). Such results suggest that the use of
wavelength-independent modal m value settings is reasonable.
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The use of wavelength-independent modal m values reduces the number of parameters
to be inferred, which results in more accurate estimations when input errors exist. There are
only eight constraints (spectral AOD and SSA at 0.44, 0.67, 0.87, and 1.02 µm) used to infer
modal m values, which all contain finite errors in most cases [3,23]. In general, it is quite
difficult to ensure accurate results when errors are present in limited constraints. Hence, we
considered different parameters, i.e., x =

(
n f , k f , nc, kc,0.44

)
, x =

(
n f , k f , nc, kc,0.44, kc,0.67−1.02

)
, and

x =
(

n f , k f ,0.44, k f ,0.67−1.02, nc, kc,0.44, kc,0.67−1.02

)
. Figure 7 compares the retrieval results for these

conditions with the reference value obtained under random error conditions. The aerosol model used
to produce the data shown in Figure 7 is described in Section 3.1, where the estimated modal m values
are the average of twenty estimation results with normal distribution errors of AOD, SSA, and VSD
applied simultaneously. It is clear that the use of fewer parameters produced more accurate results,
whereby the results of the setting with four parameters (4-para) were closest to the reference value,
while the 6-para setting resulted in the largest deviations, especially for the coarse-mode m values. As
a result, the wavelength-independent setting of modal m values was adopted here to ensure both the
rationality of modal m properties and the accuracy of the inferring results.
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5.2. Rationality of the Use of VSD

As initial products, AERONET m and VSD are inherently linked. The use of VSD in our inferring
process will make the estimated modal m a function of AERONET m. Such an inherent linkage or
functional relationship may cause the estimated modal m to be an artefact of the presented method.
Thus, it is necessary to discuss whether or not the use of VSD is rational.

Seeing the non-linear nature of the forward model and amount of a priori constraints
(e.g., constraining the solution by a priori estimates and smoothness constraints of the solution)
used in AERONET inversion strategies, the influence of m on retrieving VSD may be not as strong as
we expected. On the one hand, Dubovik and King [23] found that the retrieval of VSD can be more
stable when both VSD and m were retrieved than when m is fixed to assumed values and only VSD
was retrieved. They explained that when m is fixed, only the VSD can be changed and compensated
for all the observation noise, while if both VSD and m are retrieved simultaneously, the noise will
only be partially tied in VSD. According to their numerical test results, it is obvious that whether m is
fixed or not, will not make much difference to the retrieval of VSD, and the retrieval of VSD fits well
with the reference values in different cases. Thus, the retrieval of VSD is less influenced by the setting
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of m. On the other hand, Xu et al. [31] developed a new method to retrieve aerosol microphysical
properties using photo-polarimetric measurements, which follows the same AERONET inversion
strategies but a different assumption of mode-dependent refractive index. In their case studies, VSD
and m were retrieved simultaneously from their new inversions and AERONET inversions, and in
general, their retrievals of VSD agree quite well with the AERONET inversions. It can be inferred from
the agreement that the retrieval of VSD depends less on refractive index assumptions, and at the same
time, it has proven to be a good description of the real aerosol state from previous studies [49–52].
Therefore, the linkage between the setting of RI and VSD is generally weak, and the use of VSD in our
inferring scheme is reasonable.

To think of it another way, the AERONET inversion algorithm couples the modal aerosol refractive
indices into one parameter, and our inferring method decouples the modal aerosol refractive indices
from the AERONET m values. The AERONET inversion algorithm gives us the combination of m
and VSD to best fit the observed direct sun and diffuse sky radiance. As the retrieval of VSD saves
the information of the actual aerosol size distribution, the m must have preserved the information of
modal aerosol refractive indices. Thus, the functional relationship between the estimated modal m
and AERONET m is in fact a functional relationship between the real aerosol refractive index and the
estimated modal m. Therefore, our estimation of modal aerosol refractive indices is not an artefact but
a reasonable inference.

In addition, the results of the numerical tests also support the use of VSD. As described in
Section 3.3, original AOD, SSA, and VSD are modified by their expected errors and assumed to be
the “AERONET inversion products”, then these “AERONET inversion products” were introduced
into the inferring process to obtain an estimation of modal m values. According to the comparisons
between estimated and reference modal m value, the use of assumed “AERONET inversion products”
VSD in our inferring scheme works generally well in regaining the reference modal m values and
in recovering the original AOD and SSA. In addition, the modal m values estimated from different
AERONET observations in Section 4 are in good agreement with our current knowledge. Thus, the use
of VSD is reasonably satisfactory, and at least for now, the presented method is as good as it gets.

6. Conclusions

The goal of the presented study was to infer complex refractive indices of fine- and coarse-mode
aerosols from AERONET inversion products. The finite constraints of spectral AOD and SSA with
noise required pretreatment of the modal m values, where the use of typical aerosol models allowed us
to test and evaluate our modal m inferring method. Numerical tests showed that in the presence of
synergetic noise in AOD, SSA, and VSD data, the proposed inferring scheme slightly overestimated
fine- and coarse-mode n values but underestimated k values by 2.11% ± 11.59% for fine-mode aerosols
and by 8.4% ± 26.42% for coarse-mode aerosols. Furthermore, our method was applied to the 21
AERONET dataset to investigate the regional properties of fine- and coarse-mode m values over China.
We found that annual mean coarse-mode n and k values ranged from 1.52 to 1.56 and from 0.002 to
0.006, respectively. The fine-mode n values decreased from the northwest (1.51 ± 0.03) to the southeast
(1.39 ± 0.01), while the fine-mode k values were generally larger than 0.008 across China.

We hope this study helps compensate for the lack of modal aerosol refractive index estimations,
which cannot be obtained from AERONET products, and improves our understanding of the different
roles of fine- and coarse-mode aerosols in the Earth-Ocean-Atmosphere system.
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