

Supplementary Materials:

Nannan Wei ^{1,2}, Chulei Ma ¹, Junwen Liu ³, Guanghua Wang ², Wei Liu ², Deqing Zhuoga ⁴, Detao Xiao ^{1,*} and Jian Yao ^{2,*}

- ¹ School of Nuclear Science and Technology, University of South China, Hengyang 421001, China; weinannan0@163.com (N.W.); qianxiamcl@icloud.com (C.M.)
- ² Department of Nuclear Reactor Engineering, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; wangguanghua@sinap.ac.cn (G.W.); liuwei@sinap.ac.cn (W.L.)
- ³ Institute for Environmental and Climate Research, Jinan University, Guangzhou 510632, China; liu.junwen@jnu.edu.cn
- ⁴ Meteorological Service Center of Tibet Autonomous Region Meteorological Bureau, Lhasa 850000, China; deching123@aliyun.com
- * Corresponding authors: 13307478601@189.cn (D.X) ; yaojian@sinap.ac.cn (J.Y)

Season	month	Start time	Stop time	sampling time	
Monsoon	August	2014/08/10 12noon	2014/08/17 12noon	3 days	
		2014/08/17 12noon	2014/08/17 12noon 2014/08/24 12noon		
		2014/08/24 12noon	2014/08/31 12noon	3days	
	September	2014/08/31 12noon	2014/09/07 12noon	3 days	
		2014/09/07 12noon	2014/09/14 12noon	3 days	
		2014/09/14 12noon	2014/09/21 12noon	3 days	
		2014/09/21 12noon	2014/09/28 12noon	3 days	
Non-monsoon	November	2014/11/17 12noon	2014/11/23 12noon	6 days	
		2014/11/23 12noon	2014/11/30 12noon	7 days	
		2014/11/30 12noon	2014/12/07 12noon	7 days	
	December	2014/12/07 12noon	2014/12/14 12noon	7 days	
		2014/12/14 12noon	2014/12/20 12noon	6 days	
		2014/12/20 12noon	2014/12/27 12noon	7 days	
		2014/12/27 12noon	2015/01/03 12noon	7 days	

Table S1. Detailed description of the sampling time.

Table S2. Mass concentrations (μ g m⁻³) of size-segregated atmospheric particulate matter (PM) samples during the monsoon, non-monsoon, and whole sampling period.

Season	PM<0.49	PM0.49-0.95	PM0.95-1.5	PM1.5-3.0	PM3.0-7.2	PM >7.2
Monsoon	19.18 ± 6.65	2.18 ± 0.85	2.52 ± 0.97	2.78 ± 1.10	5.67 ± 2.08	7.03 ± 2.17
Non-monsoon	32.02 ± 11.48	2.57 ± 0.71	2.40 ± 0.60	6.98 ± 4.13	9.54 ± 6.13	14.02 ± 8.62
Average	25.60 ± 11.21	2.37 ± 0.78	2.46 ± 0.78	4.88 ± 3.63	7.60 ± 4.83	10.52 ± 7.04

	Season	PM<0.49	PM0.49-0.95	PM0.95-1.5	PM1.5-3.0	PM3.0-7.2	PM >7.2
OC	Monsoon	2.32 ± 0.67	0.91 ± 0.33	0.47 ± 0.16	0.66 ± 0.40	1.01 ± 0.42	1.14 ± 0.59
	Non-monsoon	3.20 ± 1.54	0.54 ± 0.26	0.34 ± 0.12	3.44 ± 2.43	1.32 ± 0.88	1.72 ± 1.00
EC	Monsoon	0.57 ± 0.21	0.09 ± 0.05	0.11 ± 0.06	0.07 ± 0.04	0.06 ± 0.05	0.04 ± 0.02
	Non-monsoon	1.11 ± 0.88	0.06 ± 0.04	0.04 ± 0.02	0.15 ± 0.10	0.10 ± 0.15	0.07 ± 0.04
WSOC	Monsoon	1.72 ± 0.67	0.52 ± 0.28	0.22 ± 0.07	0.29 ± 0.15	0.65 ± 0.32	0.85 ± 0.51
	Non-monsoon	1.01 ± 0.18	0.29 ± 0.18	0.19 ± 0.09	1.25 ± 0.91	0.90 ± 0.57	1.33 ± 0.97

Table S3. organic carbon (OC), elemental carbon (EC), and water-soluble organic carbon (WSOC) concentrations of size-segregated aerosols (The unit is in $\mu g/m^3$).

Table S4. The OC/EC ratios of size-segregated particles during the monsoon, non-monsoon, and whole sampling period.

		PM <0.49	PM0.49-0.95	PM0.95-1.5	PM1.5-3.0	PM3.0-7.2	PM >7.2	PM ₃	PM ₁₀
OC	Monsoon	2.32 ± 0.67	0.91 ± 0.33	0.47 ± 0.16	0.66 ± 0.40	1.01 ± 0.42	1.14 ± 0.59	4.36 ± 1.11	6.50 ± 2.00
	Non-monsoon	3.20 ± 1.54	0.54 ± 0.26	0.34 ± 0.12	3.44 ± 2.43	1.32 ± 0.88	1.72 ± 1.00	7.53 ± 3.27	10.56 ± 5.08
EC	Monsoon	0.57 ± 0.21	0.09 ± 0.05	0.11 ± 0.06	0.07 ± 0.04	0.06 ± 0.05	0.04 ± 0.02	0.83 ± 0.27	0.94 ± 0.33
	Non-monsoon	1.11 ± 0.88	0.06 ± 0.04	0.04 ± 0.02	0.15 ± 0.10	0.10 ± 0.15	0.07 ± 0.04	1.35 ± 0.84	1.49 ± 0.83
WSOC	Monsoon	1.72 ± 0.67	0.52 ± 0.28	0.22 ± 0.07	0.29 ± 0.15	0.65 ± 0.32	0.85 ± 0.51	2.76 ± 0.77	4.26 ± 1.46
	Non-monsoon	1.01 ± 0.18	0.29 ± 0.18	0.19 ± 0.09	1.25 ± 0.91	0.90 ± 0.57	1.33 ± 0.97	3.39 ± 1.13	5.62 ± 2.86

Figure S1. Wind speed in Lhasa during the monsoon and non-monsoon seasons.

Figure S2. Behavior of temperature, relative humidity, precipitation and cloud cover in Lhasa during the sampling period.

Figure S3. Behavior of CO, O₃, NO₂, and SO₂ in Lhasa during the sampling period.

monsoon

Figure S4. All backward trajectories of different heights during the monsoon and non-monsoon seasons, 4 tracks per day, starting from 00:00, 06:00, 12:00, 18:00.

Figure S5. The correlation between the OC and EC in different size particles.

Figure S6. Correlation between the OC and WSOC mass concentration with all size particles during the monsoon and non-monsoon seasons.

Figure S7. Correlation between the OC and K⁺ mass concentration in different size particles.

Figure S8. Correlation between the OC and SO₄²⁻ (NO₃⁻) mass concentration at <0.49 μ m.

Figure S9. Correlation of the NH_{4^+} and $SO_{4^{2-}}$ mass concentration in fine mode particles.

Figure S10. (a) Correlation of the NH₄⁺ and WSOC mass concentration at 1.5–3.0 μ m; (b) Correlation of the SO₄²⁻ and WSOC mass concentration at 1.5–3.0 μ m; (c) Correlation of the NH₄⁺ and OC mass concentration at 1.5–3.0 μ m; (d) Correlation of the SO₄²⁻ and OC mass concentration at 1.5–3.0 μ m.

Figure S11. Correlation between the Ca²⁺ and K⁺ mass concentration in the coarse mode.