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Abstract: The present study analyzed long-term observed visibility over Eastern Thailand, with a
focus on urbanized/highly industrialized coastal areas. The temporal coverage spans 9 to 35 years for
visibility data and 9 to 15 years for air quality data for the selected stations. Visibility shows strong
seasonality and its degradation intensifies in the dry season. It shows a negative correspondence
with PM10 and relative humidity, which is evident from different methods. Visibility has strong
dependence on wind direction, suggesting the influence of local pollution sources. Back-trajectory
results suggest important influences of long-range transport and humidity. Secondary aerosol
formation has the potential to aggravate visibility based on a precursor-ratio method. The trends
in average visibility at most stations in recent years show negative shift, decreasing direction,
or persistence of relatively low visibility, possibly due to increase in air pollution. Contrast was
found in the meteorologically adjusted trend (based on generalized linear models) in visibility and
PM10, which is partly attributed to the role of fine particles. The study suggests that visibility
degradation is a problem in Eastern Thailand and is affected by both air pollutants and meteorology.
The study hopes to get attention from policymakers regarding issue of visibility degradation in
the region.

Keywords: visibility; particulate matter; polar plot; back-trajectory clustering; secondary aerosol
precursors; meteorologically adjusted trend

1. Introduction

The horizontal distance over which a human can observe and distinguish a dark object (or an object
with sufficient visual contrast to the background) is termed as visibility or visual range [1,2]. It is a
fundamental parameter routinely observed at standard surface weather stations. Visibility is governed
by optical properties of airborne particles and gases (apart from light intensity), physical properties of
the target, and the threshold visual contrast of the observer. In a clean environment (in the absence
of fog), visibility can be reduced mainly by molecular (i.e., Rayleigh) scattering and gas absorption;
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however, in a polluted environment, scattering and absorption of light by both particles and gases
can reduce visibility [3,4]. Thus, visibility is linked to air pollution and indicates its extent, especially
for long-term studies when air quality data are unavailable [5–9]. Severe reduction of visibility can
interfere with or disrupt transportation (e.g., traffic slowdown, delayed flights, and on-road accidents)
and also discourage recreational activities and tourism [1]. Visibility is also dependent on several
meteorological factors [10–12]. Most atmospheric aerosols are hygroscopic [6] (especially sea salt,
and carbonaceous and inorganic aerosols), that is, they absorb water; this absorption in turn increases
aerosol size and thus increases the light scattering [1]. The transport of pollutants from remote sources
by winds and secondary aerosols through complex multi-phase atmospheric chemistry (especially
inorganic components such as sulfate, nitrate, and ammonia) can enhance the visibility reduction over
an area in addition to local pollutants emitted within the area [13].

Numerous studies have been done to understand visibility characterization and factors affecting
it at both local and global scales. Wang et al. (2009) [14] reported an increasing trend for visibility
since the mid-1980s in Europe and North America, while the trend was found to be decreasing over
South and East Asia, South America, Australia, and Africa. Another study by Wang et al. (2012) [15]
showed that, in spite of decreasing levels of PM10 (particulate matter with a size smaller than or equal
to 10 µm) across the world, optical extinction has either increased or shown less decrease. Hu et al.
(2017) [16] studied the visibility trend in selected cities in the USA, India, and China during 1973–2015,
and reported that visibility has improved in the USA and China (after an initial decrease until the
1990s) but was still a concern in India. Moreover, Singh et al. (2017) [6] reported an increasing trend in
visibility over the UK. Overall, it can be said that visibility has mostly improved in developed countries
over the last few decades but that it is still a concern over developing countries due to rapid economic
development [7,10,16,17]. The impact of meteorological factors on visibility has also been reported in
many studies [4,6–13].

Industrialization and urbanization in many areas across Thailand have resulted in a number of
environmental issues, one of which is air pollution problems in the eastern region [18–23]. Currently,
the region comprises seven provinces (Chon Buri, Rayong, Chanthaburi, Trat, Prachin Buri, Sa Kaeo,
and Chachoengsao) (Figure 1a,b), with the first two being the most industrialized provinces in the
country. Eastern Thailand is economically important, accounting for 18% of national gross domestic
product (GDP) (as of 2015), second only to the Bangkok Metropolitan Region (47%) [24]. In view of
gross provincial product (GPP) (which is the same as GDP but scaled to a provincial level) and fuel
consumption, Chon Buri and Rayong provinces both have an apparent growth, particularly after 1990
(although with a single drop in 2009 caused by the impact of the global financial crisis), and each has
shown an overall positive population growth since 1981 [25,26] (Figure 2). Eastern Thailand is also
well known for many tourist attractions (beaches, islands, national parks, eco-tourism, and historical
sites) and is home to a major international airport. Visibility quality is thus valued, and its degradation
can become a public concern [27]. Following the initialization of the Eastern Seaboard Development
Plan by the government in the 1980s, as many as 30 industrial estates (IEs), together with two deep
seaports, are currently present in the region [28], most of which are located near the coast. Road
networks and shipping activities have been expanded to support the development. Shipping activities
at the deep seaports can contribute to local air pollution [29]. The amount of industrial air pollutants
emitted in this region was high, and had been ranked second among all of Thailand’s administrative
regions [30]. Recently, a major governmental initiative, named the Eastern Economic Corridor (EEC),
has been implemented to expand the industrial, logistical, and transportation sectors of the country,
which is likely to increase air pollution in the region.
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Figure 1. (a) Thailand; (b) eastern region and its provinces, and (c) monitoring stations. In (b), built-up
areas are shaded grey, representing urban, residential, industrial, and commercial areas combined
based on Land Development Department (LDD) (2007) [34]. In (c), for some Thai Meteorological
Department (TMD) and Pollution Control Department (PCD) stations being very close to each other,
only one filled circle is given. CB (Chon Buri), LC (Laem Chabang), and RY (Rayong) (in boxes) denote
the most important TMD stations in the analysis, which are paired with nearby PCD stations for air
quality data (here, P1 (General Education Office), P2 and P3 (Sri Racha Juvenile Center and Kasetsart
University Sri Racha), and P4 and P5 (Rayong Field Crops Research Center and Map Ta Phut Health
Center), respectively).

To our knowledge, studies on visibility in Upper Southeast Asian countries are still limited,
and no dedicated effort has been found for long-term or climatological analysis over large
urbanized/industrialized areas. In Thailand, Ruangjun and Exell (2008) [31] applied multiple linear
regression models to forecast dry-season visibility at a major airport in Bangkok (the capital, located
in the central region) using surface meteorological variables as input. Pengchai et al. (2009) [11]
and Vajanapoom et al. (2001) [32] examined the linear relationship between visibility and PM10 in
Chiang Mai (a major province located in the northern region of Thailand) and Bangkok, respectively.
Janjai et al. (2003) [33] estimated atmospheric turbidity in the context of solar energy, with visibility
data used complementarily. Given the importance of the eastern region and its ongoing economic
development plan, visibility is an important issue that needs to be addressed and better understood.
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Based on these motivations, we present the first ever work on long-term observation analysis of
visibility and its relation with air pollutants and meteorological factors over Eastern Thailand. Here,
we performed an analysis of daytime visibility observed at selected stations using long-term data by
integrating several technical tools. Its seasonality and dependence on meteorological factors were
discussed, with emphasis on the region’s highly developed coastal areas and the dry season when
visibility degradation is of more concern. Of policy relevance, we assessed the potential roles of air
pollutants and secondary aerosol formation using a precursor-ratio method and estimated trends in
visibility and PM10. In the latter, meteorological adjustment was incorporated to exclude the effects of
meteorology, enabling us to more robustly evaluate the anthropogenic influence and the contrasting
nature between visibility and PM10 trends.
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Figure 2. (a) gross provincial product (GPP) (at current market price); (b) fuel consumption (ktoe,
1 ktoe = 41,868 × 109 J); and (c) registered population for Chon Buri and Rayong provinces, Thailand.

2. Materials and Methods

2.1. Study Area

The eastern region of Thailand has a total land area of 53,000 km2 and is adjacent to the
central region to the northwest, the Gulf of Thailand to the west (with a 100-km coastline) and
to the south (with a 240-km coastline), the northeastern region to the north, and Cambodia to the
west. Its topography is generally characterized by coastal plains and certain inland low mountains
(<700 m above mean sea level) aligned in a north–south direction. Chon Buri and Rayong are the
most developed provinces in the region, and are highly industrialized and fairly urbanized along
their coasts (18% and 12% as built-up areas, respectively) based on Land Development Department
(LDD) (2007) [34]. The two largest IEs in Thailand in terms of investment, Laem Chabang and
Map Ta Phut, are also located in these two provinces, and are administered by the Industrial Estate
Authority of Thailand (IEAT). The former IE is involved in manufacturing automobiles, electrical
and electronic parts, engine machinery and spare parts, and steel/metal products, while the latter IE
accommodates petrochemical, oil refinery, chemical and fertilizer, and steel/metal industries, as well
as electricity generation.

The general climate of the eastern region is tropical humid and influenced by the northeast
(November–February) and southwest (May–October) monsoons (as are most parts of the country,
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except for the peninsular southern region, which has a maritime-like climate) [35]. The northeast
monsoon brings cool dry air from a persistent high-pressure system over continental mid-latitudes.
The southwest monsoon causes the wet or rainy season since it carries moist air from the Indian
Ocean and the Gulf of Thailand [35]. The transitional monsoonal period of March–April corresponds
to the summer, with relatively high average temperature. Here, the winter and summer combined
(i.e., November–April) is referred to as the dry season. Surface and synoptic winds in the atmospheric
boundary layer generally follow the monsoons. Nevertheless, intense sea breezes can develop along
the coasts due to a relatively large thermal land–sea contrast in the dry-season months, especially in
January–March [36].

2.2. Data Collection and Treatment

In the initial step, meteorological data from all 15 available stations of the Thai Meteorological
Department (TMD) and air quality data from six stations (located nearby these TMD stations) of
the Pollution Control Department (PCD) located in the eastern region of Thailand were considered.
The TMD data were requested from the agency directly and additionally compiled from the National
Centers for Environmental Information (https://www.ncdc.noaa.gov/isd). Each of these stations has
limited missing data for visibility (<10%). Given that human-observed visibility is based on a set of
discrete targets (markers at different distances), inhomogeneity in visibility data can intrinsically arise
when targets are changed or modified over time. However, no information of targets used in the past
was available to us. Here, we proposed the use of a change point detection (CPD) technique [37,38] to
identify such potential inhomogeneity due to changed or modified targets at each TMD station, and,
if found, the station was removed. To conserve space, our CPD procedure is presented in Section S1 of
the Supplementary Materials. A field visit to several TMD and PCD (see Appendix A for all symbols
and acronyms) stations was conducted to evaluate monitoring conditions. Based on the CPD, visibility
data from eight stations were not found suitable for use. Accordingly, air quality stations close to any
removed TMD station were then removed at this stage. Finally, a total of seven TMD stations—CB
(Chon Buri), LC (Laem Chabang), ST (Sattahip), RY (Rayong), CT (Chanthaburi), SK (Sa Kaeo), and PB
(Prachin Buri)—and five PCD stations—P1 (General Education Office), P2 (Sri Racha Juvenile Center),
P3 (Kasetsart University Sri Racha), P4 (Rayong Field Crops Research Center), and P5 (Map Ta Phut
Health Center)—were finally selected (Table 1 and Figure 1c). The temporal coverage of visibility
data at the selected stations spans 1981–2015 (35 years) for four stations, 2001–2015 (15 years) for two
stations, and 2007–2015 (nine years) for one station (Table 1). We placed emphasis on the three stations
located in the developed coastal areas: CB (urban background), LC (industrial), and RY (industrial).
Each of these stations has one or two PCD stations located nearby, feasibly allowing visibility and air
quality data to be paired together for the analysis. Here, CB, LC, and RY were paired with P1, P2 and
P3, and P4 and P5, respectively. The TMD data have a three-hourly resolution, reported at 0100, 0400,
0700, . . . , 1900, and 2200 local time (LT), and include visibility (VIS), air temperature (TEMP), relative
humidity (RH), cloud cover (CC), rain (RN), and weather code (e.g., fog, haze, and smoke occurrence).
The PCD data have an hourly resolution and include measurements of PM10, sulfur dioxide (SO2),
nitrogen oxides (as the sum of nitrogen oxide and nitrogen dioxide, i.e., NOx = NO + NO2), carbon
monoxide (CO), non-methane hydrocarbons (NMHC), 10-m wind (WS: wind speed; and WD: wind
direction), and global radiation (GR). All data are from near-surface monitoring, except for winds at
about 10 m above ground level (AGL). It is noted that wind data at the selected TMD stations have the
potential to be strongly affected by nearby objects or infrastructure. Thus, PCD wind data were used.
Data completeness, unit consistency, and data ranges of the meteorological variables were examined
based on the WMO guidelines [39]. Any improbable or spurious values were converted to missing.
In addition to the conventional meteorological variables, recirculation factor (RC) and mixing height
(MH) were also derived. As noted in Section 2.1, sea breeze is very present in the dry season during
the daytime hours along the coasts in the region in question, potentially suppressing the ventilation of

https://www.ncdc.noaa.gov/isd
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air pollutants out of the coastal areas due to horizontal wind circulation. The RC aims to account for
this local effect during daytime hours (here, 1000–1800 LT), and is computed as follows [40]:

RC = 1−
√

X2 + Y2

WR
, (1)

where WR is the total wind run or summed distance by an air mass over a period of time, and X
and Y are the total distances travelled by the air mass in the east–west and north–south directions,

respectively. In other words, WR = T ∑N
i=1

√
u2

i + v2
i , X = T ∑N

i=1 ui, Y = T ∑N
i=1 vi, where ui

and vi are the x-axis and y-axis wind components, respectively, N is the total hours of air-mass
migration (here, 1000–1800 LT as the daytime hours), and T is the time interval (here, one hour).
Mixing height determines the degree of atmospheric dilution. Here, mixing height was computed
using AERMET (American Meteorological Society/Environmental Protection Agency Regulatory
Model Meteorological Processor), the meteorological preprocessor for the AERMOD (American
Meteorological Society/Environmental Protection Agency Regulatory Model) dispersion modelling
system developed by the US EPA (US Environmental Protection Agency) [41], which is based on a
one-dimensional heat balance in the atmospheric boundary layer. The required input to AERMET
includes both radiosonde sounding and surface variables. As no radiosonde sounding is routinely
conducted by the TMD in the eastern region of Thailand, reanalysis data were adopted for substitution,
as in Assareh et al. (2016) [18] and Chusai et al. (2012) [19]. Climate Forecast System Reanalysis (CFSR)
data [40] were chosen given their moderate grid resolution (0.5◦). Running AERMET additionally
requires long-term historical rainfall data for surface wetness characterization, and we here obtained
and used TMD daily rainfall data from the past 35 years (1981–2015). The details of the AERMET setup
and its input preparation are presented in the US EPA (2004) [41].

Daily daytime visibility (daily visibility) is of interest to us, and was here defined as the minimum
of the visibility values at 1300 and 1600 LT. The reasons for choosing the daytime visibility are that:
(1) using a single (or a few) observation(s) per day, rather than taking an average, automatically reduces
the change in targets’ light illumination with time; and (2) using only afternoon hours avoids the effects
of lower solar elevation and diurnal change of meteorological factors over the course of the day [6,42].
With these, diurnal characteristics are not our focal point; however, they are concisely described in the
Supplementary Materials (see Figure S1). To assign daily values to other variables, those corresponding
to the times at which daily visibility was chosen were used. As for data completeness, the amount of
missing data (in terms of available daily visibility) at every station was found to be small (<4% and
<1% in the dry and wet seasons, respectively) (Supplementary Materials, Table S1).

Certain meteorological conditions (humid air, rain, fog, and mist) have the potential to reduce
visibility and are thus not relevant when attention is given to visibility reduction by anthropogenic
activities. Accordingly, meteorological screening was applied, in which data are excluded when
rainfall, mist, fog, or very moist conditions (RH > 90%) are present, similar to other studies [5,10,43],
highlighting the anthropogenic influence on visibility. This exclusion will hereafter be referred to as
“met-screening”. In general, moderate-to-high relative humidity can effectively impact visibility since
most atmospheric aerosols can absorb humidity (i.e., are hygroscopic) and then grow in size, which
in turn increases light scattering efficiency and lowers mean refractive index, reducing visibility [1].
To adjust or correct original visibility to the non-humid (or dry) condition (corrected for hygroscopic
effect of aerosols), the following relationship was applied [44]:

VIS
VISd

= 0.26 + 0.4285 log10(100− RH), (2)

where VISd is the RH-corrected visibility. For RH <40%, the effect of humidity is only small and the
above adjustment is not required. After the met screening, the number of excluded days found in
the dry season ranged between 4 and 24% (of total days in the dry season) among the TMD stations,
with higher values seen at the coastal stations which tend to have humid or wet conditions more often
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than those inland. In the wet season, the exclusion is higher (21–60%) as expected (Supplementary
Materials, Table S1).

Table 1. Monitoring stations and associated variables.

Station a Agency Province Variables b Period Background c

CB TMD Chon Buri VIS, RN, TEMP, RH, CC 1981–2015 Urban (coastal)
LC TMD Chon Buri Same 2001–2015 Industrial (coastal)
ST TMD Chon Buri Same 1981–2015 Suburban (coastal)
RY TMD Rayong Same 2007–2015 Industrial (coastal)
CT TMD Chanthaburi Same 1981–2015 Urban (coastal)
SK TMD Sa Kaeo Same 2001–2015 Rural (inland)
PB TMD Prachin Buri Same 1981–2015 Urban (inland)

P1 PCD Chon Buri PM10, SO2, NOx CO, NMHC,
WS, WD 2001–2015 Urban (coastal)

P2 PCD Chon Buri PM10, NOx 2001–2015 Industrial (coastal)

P3 PCD Chon Buri PM10, SO2, NOx, CO, NMHC,
WS, WD, GR 2001–2015 Industrial (coastal)

P4 PCD Rayong PM10, SO2, NOx, CO, NMHC,
WS, WD, GR 2007–2015 Industrial (coastal)

P5 PCD Rayong PM10, SO2, NOx, CO, NMHC 2007–2015 Industrial (coastal)
a CB: Chon Buri (WMO484590), LC: Laem Chabang (WMO484630), ST: Sattahip (WMO484770), RY: Rayong
(WMO484790), CT: Chanthaburi (WMO484800), SK: Sa Kaeo (WMO484400), PB: Prachin Buri (WMO484300), P1
(General Education Office), P2 (Sri Racha Juvenile Center), P3 (Kasetsart University Sri Racha), P4 (Rayong Field
Crops Research Center), and P5 (Map Ta Phut Health Center). Note that LC has only daytime monitoring from
0700 to 1900 LT. It is noted that P2 has been slightly relocated to a nearby site (<100 m away) since September 2013;
however, it is still in the same background as its original site. b VIS: Visibility; RN: Rain; TEMP: Air temperature;
RH: Relative humidity; CC: Cloud Cover; PM10: Particulate matter with size smaller than or equal to 10 µm; SO2:
Sulphur dioxide; NOx: Nitrogen oxides; CO: Carbon monoxide; NMHC: Non-methane hydrocarbon; WS and WD:
10-m wind speed and direction, respectively; and GR: Global radiation. Thai Meteorological Department (TMD)
data are three-hourly while Pollution Control Department (PCD) data are hourly. c Background of each visibility
station: (a) CB has a dense urban background. It is located close to the coast (0.8 km to the west) and near highways
nos. 3 and 7 (0.25 km and 6 km to the east, respectively), with an Industrial Estate (IE) 15 km to the northeast. (b) LC
has an industrial background. It is next to the coast (to the west) and Laem Chabang Seaport (to the south) and
separated from the two highways by 5 km and 13 km to the east, respectively. It is also close to the Laem Chabang
IE (3 km to the east). (c) ST has a suburban background. It is close to highway no. 3 (0.5 km to the north) and the
U-Tapao International Airport (2 km to the west). RY has an industrial background. It is close to highway no. 3
and the Map Ta Phut industrial complex (0.1 km and 3 km to the south, respectively). (d) CT is in a non-dense
urban area near highway no. 3 (3 km to the east) and not far from the coast (16 km). (e) SK is in a rural area and
near highway no. 33 (5 km to the north). (f) PB is in a non-dense urban area, located next to a major river and near
highway no. 33 (8 km to the north).

2.3. Monthly Variation, Seasonality and Relation with PM10

In order to understand seasonality, we here simply defined the seasonality index (SI) for visibility
as the difference between the two seasonal averages, normalized by the dry-season average, i.e.,:

SI (%) =

(
VISwet −VISdry

VISdry

)
× 100. (3)

The seasonality index for visibility was calculated for both met-screened visibility data and
original visibility data. Additionally, we calculated the monthly average for visibility and other
meteorological variables based on daily data. The understanding of seasonality and monthly variation
helped us determine that visibility degradation is mainly a problem in the dry season (discussed in
Section 3.1) and hence was chosen for this study.

The relationship between visibility and PM10, was analyzed in three ways: (a) correlation
analysis; (b) mean PM10 under different visibility classes; and (c) weekday and weekend differences.
Visibility classes (e.g., poor and good) have often been used in visibility assessment [14,45], offering
convenience in public communication and also partially reducing the effect of changed visibility targets.
As suggested by the US EPA (1987) [43], visibility classes were selected based on yearly frequency,
with the lowest upper limit (of visibility target) found over a period of time used as the best visibility
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class and the remaining classes based qualitatively on their frequency and separation. This procedure
facilitates a set of common visibility classes for all stations, although with different thresholds. In this
study, three classes were defined: I (good), II (moderate), and III (poor). The thresholds separating
Classes I and II and Classes II and III were respectively assigned as follows: (a) Visibility of 14 km and
6 km for CB, RY, and ST; and (b) Visibility of 12 km and 6 km for the other stations. The prevalence of
good-, moderate-, and poor-visibility days are reasonably reflected before and after the met-screening at
every TMD station (Supplementary Materials, Figure S2). Accordingly, we considered these thresholds
acceptable for use. How visibility differs during the weekdays and the weekend has an implication
on anthropogenic influence and is addressed here. It is a general assumption that human activities
tend to intensify during the weekdays and reduce over the weekend. Here, Sunday, along with
national holidays, local holidays, and atypical days (e.g., those with political protest) were treated as
“weekend days” while the remaining days were treated as “weekdays”. The weekdays share 80% of
all dry-season days. Saturday was not included in the weekend as large urban and industrial areas in
Thailand are generally busy or operating like on Monday–Friday, which is likely to be the case in Chon
Buri and Rayong provinces where businesses and factories are run on Saturday, having relatively large
emissions of air pollutants. However, the industrial and power plant sectors in Thailand have reduced
total workloads and emissions on Sunday [30].

2.4. Equal Step-Size Method for Visibility and Relative Humidity Relationship

Not does RH affect the source and sink of the aerosol particles but also the size, structure and
composition of aerosol particles [1,46]. The effect of RH on visibility can be separated as two physical
processes [47–49]: (a) hygroscopic growth of aerosol particles and (b) change in the mass concentration
of aerosols and the size distribution of dry particles. Here, an equal step-size statistical method was
employed to understand the relation between visibility and RH [6,47]. The RH data was divided into
11 intervals: 0–40%, 40–45%, 45–50%, 50–55%, 55–60%, 60–65%, 65–70%, 70–75%, 75–80%, 80–85%, and
85–90%. The setting of the first interval (0–40%) was based on Equation (2) as the hygroscopic effect
being very low or negligible when RH < 40%. Average visibility, RH-corrected visibility, and PM10

were calculated for each interval. The difference between visibility and RH-corrected visibility with
varying RH partly relate to the relative dominance of the two physical processes.

2.5. Polar Plot for Visibility and Back Trajectory Modelling

Next, the effects of local wind and long-range transport on visibility degradation were investigated.
Wind advection carries air masses to a receptor area or site. They can absorb airborne constituents
emitted from or existing at places/areas during migration. Such constituents can be either clean or
polluting, and either dry or moist. The long-range transport of airborne constituents is known as a
physical mechanism at a regional scale, which can potentially impact local conditions. In view of
visibility, moisture and air pollutants can be absorbed and carried along in air masses moving through
areas before reaching a receptor. The effect of local wind on visibility degradation has been analyzed
using polar plots [50] looking at the climatological patterns of visibility as a function of local wind
speed and direction for the three main stations. For analyzing the effect of long-range transport,
we performed back-trajectory modeling, which is a useful tool to examine such impacts [51,52]. Here,
daily kinematic trajectories were generated using FLEXTRA (version 5) (http://flexpart.eu) [53] and
driven by the six-hourly 0.5◦-resolution wind fields of the CFSR data [54]. Each back trajectory
that represents a daily air mass was tracked backward in time for five days for the dry season.
The latitude, longitude, and height of the air mass were recorded along its migration. The arrival
time was 1300 LT when mixing height was generally well developed and well mixed throughout the
atmospheric boundary layer. The arrival height was set as 500 m AGL, approximately the middle of
the atmospheric boundary layer. A conventional K-means clustering method was used to divide all
finally obtained back-trajectories into clusters. The objective of the K-means method is to minimize the
sum of the square of Euclidean distance of within-cluster members from their center [55]. Here, the

http://flexpart.eu
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K-means clustering was carried out in the R computing environment [56], in which scree and silhouette
diagrams were employed to guide the optimal number of clusters. Since stations CB and LC are in the
same province and the distance between them is not far (33 km) compared to the CFSR grid spacing,
the back-trajectory modeling was performed only at CB and RY.

2.6. Potential Role of Secondary Aerosols

A precursor-ratio method used by Quan et al. (2014) [13] and Zhang and Cao (2015) [57] was
adopted to ascertain the potential influence of secondary aerosol formation on visibility, using the
precursors of secondary aerosols as a proxy for secondary aerosol formation. SO2, NOx, and volatile
organic compounds (VOCs) are among the major precursors of secondary aerosols formed in the
troposphere. CO is generally emitted from incomplete combustion by various primary sources. It has
a relatively long chemical lifetime compared to other typical air pollutants, and can therefore be used
as tracer for primary emissions. By computing the ratios of PM10, SO2, NOx, and NMHC (for VOCs) to
CO under different visibility classes, one may expect more secondary aerosols produced to be coupled
with larger PM10/CO but lower SO2/CO, NOx/CO, and NMHC/CO. That is, SO2, NOx, and NMHC
loss is assumed to be converted to sulfate, nitrate, and secondary organic aerosols, respectively. Daily
average concentrations for different pollutants were used for analysis here, and were decided based
on the diurnal variation of these pollutants.

2.7. Long-Term Trends and Meteorological Adjustment

In the following, trends in dry-season average visibility at all seven TMD stations (CB, LC, RY,
ST, CT, SK, and PB) were estimated using linear regression. A non-parametric Mann–Kendall test
was employed in conjunction with block bootstrapping (to account for serial correlation in a time
series) to test the significance of trend (against the null hypothesis of no trend) [58]. At CB, ST, CT, and
PB, long-term data (since 1981) are available; it was then possible to perform trend estimation over
two consecutive periods: P1: pre-2000 (1981–2000); and P2: post-2001 (2001–2015). For LC, SK, and
RY, the trend analysis was limited to the recent period (starting with the years 2001, 2001, and 2007,
respectively) only.

In order to account for the effect of meteorology on trends in visibility, a generalized linear model
(GLM) framework, used by Camalier et al. (2007) [59], was adopted. GLM is an advanced statistical
model capable of accounting for relationship between response (i.e., predictand) and explanatory
(i.e., predictor) variables via a link function [60,61]. Visibility at each of the CB, LC, and RY stations
is the interested response variable, while meteorological variables are the predictors, whose GLM
formulation is given by:

g(µi) ∼ f1(xi,1) + f2(xi,2) + . . . f j
(
xi,j
)
+ . . . + fp

(
xi,p
)
+ Yk, (4)

where subscript i denotes the ith observation and subscript j (1, 2, 3, . . . , p) denotes the jth predictor
variable, f j

(
xi,j
)

is the smoothing function (here cubic spline) of the jth predictor at the ith observation,
µi is the ith value of the response variable, Yk is the effect of the kth calendar year, and g(µi) is the link
function relating the mean of the response variable to the predictors. Here, GLM was implemented in
the R software [56]. Several options of error distribution and link function were tried, and Gaussian
distribution and identity link were finally chosen since they tend to give an optimal fit. The adjusted
coefficient of determination (shortly, adjusted R2), representing variance of data explained (%) by
the model, was used as the goodness-of-fit measure for each GLM model. Residual diagnostics
(here, independent error, normality of error, homoscedasticity of error, and outlier leverage) were
inspected and found to be fairly acceptable [55]. A parsimonious approach was adopted to achieve
the final model. Eight predictors were initially chosen for the GLM, namely temperature, relative
humidity, cloud cover, mixing height, wind speed, recirculation factor, back-trajectory cluster, and
persistence (Supplementary Materials, Table S2). Persistence was here assigned as the daily value from
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the previous day and included to represent inter-day impact or imprint generally due to atmospheric
stagnation or lack of atmospheric ventilation. It is noted that certain variables were not included in
this initial list due to their correlation with one of the initial variables, e.g., global radiation and cloud
cover. Similarly, the entire GLM procedure was applied to PM10 but with log transformation. Given
Equation (2), relative humidity with and without log transformation was tried but gave comparable
results in both visibility and PM10 cases. Thus, no log transformation was used here. In the GLM
processing, stepwise backward elimination was carried out to obtain a parsimonious fit. Given the
final GLM fit achieved, a meteorologically adjusted trend (adjusted trend) was computed from the
partial response with respect to the effect of the calendar year (Yk).

3. Results and Discussion

3.1. Monthly Variation and Seasonality

Before the met screening, every station had an SI close to 10% or larger, except for CT (−1.2%)
(Supplementary Materials, Table S3). After the met screening, these improved to 19% for CT and the
SI range among all stations was 16–55%. Visibility varies over the months of the year at every TMD
station, as do the other variables at CB, LC, and RY (Figure 3). They demonstrate a contrast between
the dry and wet seasons (i.e., seasonality). Visibility tends to be high in the wet season but lowers in
the dry season at most stations (five out of seven) due to effective wet scavenging by monsoonal rain
(Figure 3a,d), as seen from the monthly PM10 values in Figure 3c. At CT and SK, seasonality is not
initially apparent, but is much clearer after the met-screening (Figure 3b). In relative terms, rain and
humidity are high in the wet season due to the southwest monsoon, and vice versa in the dry season.
Temperature is straightforward, being low, high, and mild in the winter, summer, and wet season,
respectively. Winds are strong in the wet season given their location facing the southwest monsoonal
winds. In October, wind speed becomes the lowest as the southwest monsoon weakens and comes to
an end, however it increases once the northeast monsoon starts to prevail. The northeast monsoon is
continental and can absorb and transport polluted air from distant areas before reaching the stations
(as opposed to the southwest monsoon, which is generally maritime and clean). Mixing height is low
during December–January due to cool weather and frequent atmospheric subsidence induced by the
high-pressure system responsible for the northeast monsoon during those two months, however it
increases during March–May due to warm conditions and a lack of strong subsidence. March and
April are the warmest months and also mark the time at which the northeast monsoon is weak and
then comes to an end. Solar radiation is strong over most of the dry season but decreases in the wet
season, generally due to cloud and rains. The recirculation factor is large in the dry season, due partly
to frequent sea breeze occurrences [36]. The combination of many of these factors (such as low wet
scavenging, low mixing height, large recirculation factor, and long-range transport) can contribute to
visibility reduction in the dry season.
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much (only by 1–2% in magnitude for all cases). Such negative association between visibility and 
PM10 is also manifested in mean levels of PM10 under different visibility classes (Figure 4a). That is, 
Class III has an average PM10 concentration of 42–60 µg m−3, which is about 1.6–1.7 times higher than 
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7.1 km and 8.2 km for CB, LC and RY, respectively) than on weekdays (8.6 km, 6.8 km, 7.6 km) which 
can be explained with significant lower mean level of PM10 during weekend at the three stations 
(Figure 4b–d). A non-parametric Wilcoxon rank sum test (at a significance level of 0.05) was 
employed here to inspect the statistical significance of the mean (i.e., average) difference between two 
samples. It is noticed that the patterns of weekday–weekend difference are similar for both visibility 
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between the two periods (not shown). The above results provide evidence of anthropogenic influence 
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Figure 3. Monthly variation of (a) visibility (before met-screening); (b) visibility; (c) PM10; (d) rain;
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and (j) recirculation factor.

3.2. Visibility in Relation to PM10

The association between visibility and PM10 is generally acknowledged. Here, visibility was also
found to be negatively correlated with PM10, with correlation coefficients of −0.29 (on the daily data)
and−0.22 (on the monthly data) at CB,−0.32 (daily) and−0.23 (monthly) at LC, and−0.51 (daily) and
−0.64 (monthly) at RY. The correlation coefficient values using RH-corrected visibility do not differ
much (only by 1–2% in magnitude for all cases). Such negative association between visibility and PM10

is also manifested in mean levels of PM10 under different visibility classes (Figure 4a). That is, Class III
has an average PM10 concentration of 42–60 µg m−3, which is about 1.6–1.7 times higher than that in
Class I. It was found that average visibility is significantly higher over the weekend (9.1 km, 7.1 km
and 8.2 km for CB, LC and RY, respectively) than on weekdays (8.6 km, 6.8 km, 7.6 km) which can be
explained with significant lower mean level of PM10 during weekend at the three stations (Figure 4b–d).
A non-parametric Wilcoxon rank sum test (at a significance level of 0.05) was employed here to inspect
the statistical significance of the mean (i.e., average) difference between two samples. It is noticed that
the patterns of weekday–weekend difference are similar for both visibility and RH-corrected visibility
due to the lack of significant difference in relative humidity (on average) between the two periods
(not shown). The above results provide evidence of anthropogenic influence (here, in view of PM10)
on visibility.
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Figure 4. (a) average PM10 by visibility class and by station, and (b–d) average visibility, relative
humidity (RH)-corrected visibility, and PM10, respectively, at stations CB, LC, and RY during the
weekdays (Monday–Saturday) and the weekend (Sunday plus holidays). The difference in any pair of
mean values in the above results is statistically significant at the 0.05 level.

3.3. Visibility in Relation to Relative Humidity

All the three stations show similar patterns with regards to change in visibility with RH. Visibility
initially increases with RH but begins to decrease once a threshold RH interval is reached, which is
approximately 50–55% at CB, 65–70% at LC, and 55–60% at RY respectively (Figure 5). The results
shows negative effect of RH on visibility. Over low RH intervals, visibility and RH-corrected visibility
(corrected for hygroscopic growth) do not show much difference, suggesting no or limited hygroscopic
effect as compared to change in size distribution of dry particles. As RH increases, the hygroscopic effect
becomes the dominating process as seen with the increasing difference in visibility and RH-corrected
visibility. Change in mean level of PM10 under different RH intervals shows the contrasting results
(Figure 5). PM10 does not show any change with RH over CB while it decreases over LC and RY.
This decrease in visibility with increase in RH in spite of either no change or decrease in PM10 clearly
indicates the effect of hygroscopic growth of aerosols on visibility. However, it should also be noted that
the effect of RH on aerosols is sensitive to aerosols size distribution and chemical constituents [1,47].
Mass concentration and chemical constituents of aerosols of difference size ranges under different RH
intervals will give better understanding of effect of aerosol characteristics on visibility relation with
RH, which is not available for this study.
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3.4. Effect of Local Wind and Long Range Transport

The dependency of visibility on local wind direction can be seen in both stations CB and LC.
At CB (Figure 6a), relatively low visibility and high levels of PM10 are seen in the northeastern, eastern,
and southern directions, which is attributable to the advection of pollutants from the nearby industrial
sources and highways (Table 1, and Figure S3 in Supplementary Materials). By contrast, relatively good
visibility is mostly seen in the north given the fewer emission sources present upstream of the station.
However, in the southwest and the west, visibility appears to be moderated by moisture from the sea,
as seen from the VIS/VISd ratio being smaller than unity (here, 0.95). At LC (Figure 6b), visibility
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tends to be lower than CB, in general agreement with the higher level of PM10. Poor visibility (5–6 km
or less) is noticeable in the southeast direction due mainly to the presence of industries and highways.
However, poor visibility is even more pronounced in the northwest due potentially to the combination
of moisture and air pollutants generated from intense shipping activities in and around this coastal
area. At RY (Figure 6c), both visibility and PM10 levels appear to have lesser directional dependence,
possibly because of the station having industrial facilities and highways nearby in various directions
(Table 1, and Figure S3 in Supplementary Materials). The visibility reduction is most intensified from
the east to the south given that moisture and emission sources tend to align in those directions.
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Figure 6. Polar plots of visibility (VIS), visibility/RH-corrected visibility (VIS/VISd), and PM10 at
(a) Chon Buri (CB); (b) Laem Chabang (LC); and (c) Rayong (RY).

Back-trajectory modelling shows a total of five similar clusters at both stations: (1) northeasterly
and high level (“NE_H”) (with occurrences of 11.3% of total days at CB and 7.9% at RY);
(2) northeasterly but low level (“NE_L”) (33% at CB and 36.2% at RY); (3) southeasterly (“SE”) (26.7%
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at CB and 18.7% at RY); (4) undefined and high level (“U_H”) (11.5% at CB and 5.3% at RY); and
(5) undefined and low level (“U_L”) (17.5% at CB and 31.9% at RY) (Figure 7). Table 2 summarizes
cluster-average visibility, RH, RH-corrected visibility, and PM10. Using the Wilcoxon rank sum test
(at a 0.05 level), most of the cluster pairs (>50%) were found to have significant difference in average
visibility and average PM10. In relative terms, low visibility generally occurs in the northeasterly
clusters, as seen in NE_H at CB (8.5 km) and NE_H and NE_L at both LC (6.1 and 6.3 km) and RY
(7.3 and 7.4 km). A similar pattern was also seen for RH-corrected visibility. The northeasterly clusters
represent continental air masses and tend to be more polluted and less moist. Thus, it is possible to
say that such low visibility is mainly influenced by pollution, causing relatively high PM10 in these
two clusters. In the dry season, biomass burning (forest and agricultural fires) is typically intensified
over certain areas of the Indochinese Peninsula (e.g., Northern Thailand, Northern Laos, and Eastern
Myanmar) and part of Southern China during March–April. Based on satellite fire hotspot data [62],
many trajectories of these two clusters pass such fire-prone areas that could contribute smoke and
other pollutants to the migrating air masses (not shown). The SE cluster tends to have high humidity
since it is semi-maritime with many trajectories originating from and/or passing the sea (not shown),
with its associated visibility, RH-corrected visibility, and PM10 rank between the best and the third
across the stations. For U_H and U_L, their migrations are relatively short and then have a long
residential time to stay within or around the region. As a result, the effects of pollution and humidity
may be confounded and not readily discerned. Nevertheless, at RY, U_H is regarded as maritime and
clean with the highest visibility and the lowest PM10 across the clusters.
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Table 2. Average visibility, RH, RH-corrected visibility, and PM10 by back-trajectory cluster at stations
CB, LC, and RY.

Station % of Days VIS (km) RH (%) VISd (km) PM10 (µg m−3)

CB
NE_H 11.3 8.5 45.5 8.6 29.0
NE_L 33.0 8.8 47.8 8.9 25.9

SE 26.7 8.6 56.7 9.0 23.8
U_H 11.5 8.5 46.9 8.6 25.4
U_L 17.5 8.9 57.8 9.4 26.2

LC
NE_H 11.3 6.1 48.8 6.2 57.6
NE_L 33.0 6.3 53.1 6.5 53.7

SE 26.7 8.1 66.9 8.9 50.9
U_H 11.5 6.4 52.3 6.6 57.3
U_L 17.5 7.5 65.8 8.2 49.5

RY
NE_H 7.9 7.3 53.4 7.6 45.0
NE_L 36.2 7.4 53.2 7.6 46.7

SE 18.7 7.7 58.1 8.1 42.5
U_H 5.3 9.4 59.3 9.8 29.4
U_L 31.9 7.9 55.4 8.2 44.1

3.5. Effect of Secondary Aerosols on Visibility

Based on the diurnal variation of PM10, NOx, SO2, NMHC, and CO levels, their average
concentration over 0600–1600 LT were computed to convert to daily data. These selected daytime
hours include the early morning, when pollutants can reasonably be assumed to represent fresh
anthropogenic emissions (e.g., from rush-hour activities), and the later hours when complex
photochemical reactions evolve. This is generally the time when most of the pollutants tend to
concentrate with relatively low mixing height (Supplementary Materials, Figures S1 and S4). It is
noted that the peak in SO2 level occurs in the afternoon at LC and RY but in the early morning and
evening at CB. Xu et al. (2014) [63] also reported such afternoon peaks of SO2 in the North China Plain
and suggested several possible causes: down-mixing of pollutant layers aloft, plume transport, local
winds, and high humidity.

As seen in Figure 8, the PM10/CO ratios generally increase from Class I (good visibility) to Class III
(poor visibility), although for LC its value in Class II is slightly larger than that in Class III. This suggests
that more secondary PM is formed in poor visibility conditions. On the other hand, CO normalized
gaseous pollutants showed the opposite pattern, with decreasing levels with decreasing visibility.
This can be explained with more gas-phase to particle-phase conversion in lower visibility conditions.
Gaseous SO2 is oxidized to sulfate by hydroxyl radical or by dissolution into cloud, fog, or rain water,
and subsequent aqueous phase oxidation. Nitrate is formed by the oxidation of NO and NO2 by the
hydroxyl radical during the day and by reacting with O3 and water molecule at night. Most of the
secondary organic aerosols are formed by aromatic VOCs [1]. It should be noted that the ratio SO2/CO
decreases rapidly from visibility Class I (good) to visibility Class III (poor) particularly at CB and RY,
as compared to NOx/CO and NMHC/CO. This suggests the relative importance of SO2 gas-to-particle
conversion to the low visibility condition. Given that PM10 is positively correlated with every precursor
(not shown), SO2 is likely the gaseous pollutant that influences visibility most. Based on the gridded
MIX emission inventory [64], industry and power plants are the major SO2 emission sources in Eastern
Thailand. SO2 is also expected from diesel-powered heavy and light duty trucks dominantly used
in land and marine transportation. Controlling emissions from these sources can benefit visibility
improvement. Secondary aerosols can contribute several chemical species to the composition of fine
PM, varying the light-extinction capability of fine particulate matter [2]. These results suggest the
important role of secondary aerosols in visibility reduction, and hence necessary attention should be
given to secondary aerosols as well as their precursors for visibility management.
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3.6. Trends and Meteorological Adjustment for Visibility and PM10

Station CB has a significant positive (increasing) trend in visibility in the P1 period (0.8 km dec−1,
where “dec” denotes decade); however, its magnitude becomes smaller and also insignificant in the P2
period (0.3 km dec−1). Visibility at LC declines significantly in the P2 period (−1.7 km dec−1) while the
trends at ST significantly decline in the P1 period (−2.1 km dec−1); however, it becomes persistently
low in the P2 period. Although the trends at RY and SK are positive, they are not significant. At both
CT and PB, the trends are once significantly positive (0.6 km dec−1); however, they become negative
over recent years (significantly in the case of PB, −1.0 km dec−1) (Figure 9). All of the four stations
with the long-term visibility data display either a negative shift of trend (from the P1 to P2 periods) or
persistent low visibility due to their proximity to urban and/or industrial areas. Station LC has the
fastest decline of visibility over the recent period. The insignificant trend in visibility over SK could be
due to a rural background and not much change in anthropogenic activities. Since the time span for
trend calculation is limited (nine years) at RY, not much can be established from it.

The results of trend and meteorological adjustment for CB, LC, and RY are shown in Figure 10.
The final fitted GLM explained 41.2%, 59.7% and 51.9% of total variance in visibility for CB, LC and
RY, respectively. For PM10, the final GLM fit explained 62.7%, 53.9% and 49.7% of total variance.
All the fitted models were found to be acceptable in terms of residual diagnostics. Notice that the
adjusted trends tend to fluctuate less year-to-year than the original trends, which is due to the fact
that substantial inter-annual variability resulting from meteorology was already removed. Here,
our discussion focuses specifically on the adjusted trends (as better reflecting the anthropogenic
signature or influence than the original ones, and more policy-relevant). At CB, PM10 level decreases
significantly at the rate of−12 µg m−3 dec−1, suggestive of local primary emissions being reduced over
time. However, the visibility trend is insignificant (0.2 km dec−1). At LC, adjusted visibility and PM10

level show contrasting trends. Visibility has decreased sharply at −0.7 km dec−1, while PM10 shows
an insignificant decreasing trend (−8.6 µg m−3 dec−1). The potential cause and linkage that may help
explain such contrast, at least in part, is the formation of secondary aerosols. In the previous section
(Section 3.5), we found secondary aerosols to be associated with visibility. Such secondary aerosols
are in fact fine particles to which visibility or optical extinction is sensitive, and they are not readily
represented by PM10. Contrasting trends in visibility and PM10 have also been reported in some other
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studies [10,15]. At RY, the time coverage is relatively short (nine years, generally not very adequate
for trend estimation). We found that both visibility and PM10 level do not have any significant trends.
Based on the adjusted trend results discussed, none of the visibility trends are significantly positive,
while some are in contrast with those of PM10. These results indicate that meteorology affects trends
in both visibility and PM10. The results also suggest that the trend in fine particulate matter (PM2.5)
could correlate better with the trend in visibility.
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Figure 9. Trends in visibility at (a) Chon Buri (CB); (b) Laem Chabang (LC); (c) Sattahip (ST); (d) Rayong
(RY); (e) Chanthaburi (CT); (f) Sa Kaeo (SK); (g) Prachin Buri (PB). For CB, ST, CT, and PB, the red and
blue lines are the linear fits over the periods of 1981–2000 and 2001–2015, respectively. For the other
stations, the linear fits are limited to recent years (here, 2001 or after). The underlined values are of
statistical significance at a 0.05 level against the null hypothesis of no trend.
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Figure 10. Meteorologically adjusted (red) and original or non-adjusted (blue) trends in visibility
and PM10 at (a) Chon Buri (CB); (b) Laem Chabang (LC); (c) Rayong (RY). The underlined values
are of statistical significance at a 0.05 level against the null hypothesis of no trend. At each station,
the trend period was determined by the time coverage of the visibility and air quality data available
and considered.

4. Conclusions

Observed long-term visibility in the eastern region of Thailand was studied, with the focus on its
urbanized/highly industrialized coastal areas, using weather data from seven stations with a temporal
coverage of 35 years (1981–2015) for four stations, 15 years (2001–2015) for two stations, and nine years
(2007–2015) for one station. The relationship between visibility and air pollutants was also investigated
using air quality data from five stations (15 years for three stations and seven years for two stations).
Visibility shows strong seasonality and its degradation intensifies in the dry season due to increased
air pollution as well as due to certain favorable meteorological conditions such as low wet scavenging,
reduced mixing height, and increased recirculation factor. Visibility showed negative correlation
with PM10 which is evident with correlation analysis, class-wise comparison and weekday-weekend
differences. Visibility showed negative correlation coefficient of −0.29 (−0.22), −0.32 (−0.23) and
−0.51 (−0.64) with PM10 on daily (monthly scale) for CB, LC and RY, respectively. Mean level of
PM10 under poor visibility condition (Class III) was around 1.6–1.7 times higher than in good visibility
condition (Class I). Average visibility was 9.1 km, 7.1 km and 8.2 km during the weekend and 8.6 km,
6.8 km and 7.6 km during the weekdays for CB, LC and RY due to a higher mean level of PM10



Atmosphere 2019, 10, 122 20 of 24

during the weekdays. The results from the equal step-size method showed a negative relation between
visibility and RH with the effect of hygroscopic growth of aerosol being a more dominating process
as compared to a change in size distribution of dry particles. The strong dependency of visibility on
wind direction with relatively lower visibility with wind prevailing from sources of local pollution
is indicative of the influence of local pollution sources. The back-trajectory results showed relatively
lower visibility with the northeasterly clusters, which represent continental air masses and brings
polluted air from inland areas. The effect of air pollution and humidity is not readily discerned for
undefined clusters. These evidently suggest the important influences of the long-range transport of
pollutants and humidity on visibility. The precursor ratio method showed an increase in the formation
of sulfate, nitrate and secondary organic aerosol under low visibility conditions, suggesting their
potential role in visibility degradation. Among these precursors, the formation of sulfate from SO2

seems to play the most important role in visibility degradation. This highlights the importance of
controlling the gaseous precursors of secondary aerosols for visibility improvement in the region.
Trend analysis of average visibility shows a negative shift in trend, decreasing trend, or persistence of
relatively low visibility over most of the stations, raising an environmental concern and suggesting a
need for more attention from policymakers and air quality workers. The contrasting trends in visibility
and PM10 level after the GLM-based meteorological adjustment are partly attributed to the role of fine
particles, to which visibility is more sensitive. This study provides empirical evidence that visibility is
impacted by secondary aerosols, which would be warranted concretely by taking into account fine
particulate matter (e.g., PM2.5) data and their chemical components, which were not available in this
study. Continued investigation on visibility in the eastern region of Thailand or extension to other
areas can broaden the understanding of visibility quality at a regional scale. Linking visibility to
synoptic circulation patterns can enhance the current observational analysis framework. Advanced
air quality modeling and source apportionment for visibility can be utilized to specifically determine
emission sources contributing to visibility degradation. Given that human-based visibility observation
has its own limitation in terms of uncertainty and reliability, automated visibility measurement may
offer an alternative source of data for future comparison and application, as the TMD has recently
installed automated visibility sensors at its standard weather stations although only at a small number
of stations. Based on the results in this study, we recommend: (a) Apart from particulate pollution,
emissions of precursor gases for secondary aerosols should also be paid attention to improve visibility.
(b) Regional transport of air pollutants also play important role in visibility degradation posing a
challenge to its improvement with the measures of reducing local emission. (c) The negative trends
and persistently low tendency in visibility over the past years provide a clear evidence to policy
makers regarding the impact of industrialization and urbanization. Given that there is a larger-scale
regional developers (i.e., Eastern Economic Corridor), the awareness of visibility degradation should
be integrated into policy making. (d) Policy makers should also think about amenity effects of higher
air pollution apart from the health effects while deciding the framework for managing air quality.
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Appendix A

Table A1. Nomenclature used in the paper.

Symbol/Acronyms Description

AERMET American Meteorological Society/Environmental Protection Agency Regulatory Model
Meteorological Processor

AERMOD American Meteorological Society/Environmental Protection Agency Regulatory Model
AGL Above Ground Level
CB Chon Buri Station/Province
CC Cloud Cover

CFSR Climate Forecast System Reanalysis
CPD Change Point Detection
CT Chanthaburi Station/Province

EEC Eastern Economic Corridor
GDP Gross Domestic Product
GLM Generalized Linear Model
GPP Gross Provincial Product
GR Global Radiation
IE Industrial Estate

IEAT Industrial Estate Authority of Thailand
LC Laem Chabang Station

LDD Land Development Department
LT Local Time

MH Mixing Height
NMHC Non Methane Hydro Carbon

PB Prachin Buri Station/Province
RC Recirculation Factor
RH Relative Humidity
RN Rain
RY Rayong Station/Province
SI Seasonality Index
SK Sa Kaeo Station/Province
ST Sattahip Station

TEMP Air Temperature
TMD Thai Meteorological Department

US EPA US Environmental Protection Agency
VIS Visibility

VOC Volatile Organic Compound
WD Wind Direction

WMO World Meteorological Organization
WR Wind Run
WS Wind Speed
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