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Abstract: In this study, Multifractal Detrended Fluctuation Analysis (MF-DFA) is applied to daily
temperature time series (mean, maximum and minimum values) from 22 Greek meteorological
stations with the purpose of examining firstly their scaling behavior and then checking if there are
any differences in their multifractal characteristics. The results showed that the behavior is the
same at almost all stations, i.e., time series are positive long-term correlated and their multifractal
structure is insensitive to local fluctuations with large magnitude. Moreover, this study deals with the
spatial distribution of the main characteristics of multifractal (singularity) spectrum: the dominant
Hurst exponent, the width of the spectrum, the asymmetry and the truncation type of the spectrum.
The spatial distributions are discussed in terms of possible effects from various climatic features.
In general, local atmospheric circulation and weather conditions are found to affect the shape of
the spectrum and the corresponding spatial distributions. Furthermore, the intercorrelation of the
main multifractal spectrum parameters resulted in a well-defined group of stations sharing similar
multifractal characteristics. The results indicate the usefulness of the non-linear analysis in climate
research due to the complex interactions among the natural processes.

Keywords: nonlinear dynamics; Multifractal Detrended Fluctuation Analysis; climatology;
air temperature

1. Introduction

Complex systems consist of many components that interact with each other in very complicated
ways, which are determined by nonlinear laws. A characteristic example of a complex system is the
atmosphere and the natural processes that take place in it. The result of such complex interaction
among atmospheric processes is the fluctuation of the values of meteorological parameters in an almost
random way at many scales in time and space. These nonlinear processes are described by nonlinear
partial differential equations [1]. Nonlinearity results in linear data analysis being insufficient for a
complete analysis of meteorological time series. Besides atmospheric sciences, nonlinearity also occurs
in many other fields of science such as economics, biology, physiology, electronics etc. [2]. Nowadays,
the close cooperation of scientists from various disciplines has helped decisively in the development
of new effective methods for the analysis of nonlinear phenomena. Researchers can now analyze
processes that obey nonlinearity and they are able to reveal some properties, which could not be
detected by linear methods. One such nonlinear method is Detrended Fluctuation Analysis (DFA),
which was developed by [3]. It should be mentioned that the fluctuations of time series from complex
systems obey scaling laws for a broad range of time (and space) scales. By applying DFA, we can reveal
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the scaling properties and determine long-range correlations, even in nonstationary time series [4].
This could not be done by using ordinary methods, such as spectrum analysis. Therefore, researchers
from several fields of science applied DFA to their data, taking advantage of its benefits. Thus, DFA has
been used in economics [5], stock markets [6], biomedical signals [7], DNA analysis [8], social and
natural phenomena [9–11], etc. In the atmospheric sciences DFA has also been applied widely to
time series of air temperature [12–16], relative humidity [17,18], precipitation [19], drought and flood
index [20], ozone [21–24] and many others. In cases of highly non-linear time series with periodic
trends, [25] proposed a variation of DFA (i.e., detrended cross-correlation fluctuation analysis).

Very often, the scaling behavior of a time series cannot be described by only one scaling exponent
at all scales in time and space, but a variety of scaling exponents is needed to completely describe
the time series. In other words, the time series does not have the same fractal structure at all scales,
so we say that this time series is a multifractal signal. In that case, DFA is inadequate to analyze the
signal and a generalization of DFA is used, the Multifractal Detrended Fluctuation Analysis (MF-DFA),
which was introduced by [26]. This method is used in this study and it is described in the next section.
MF-DFA has also been applied to various scientific fields. In the field of atmospheric sciences, there
are numerous studies which used MF-DFA to analyze time series of meteorological and air quality
parameters. MF-DFA has been applied to time series of temperature [27], precipitation [28,29], wind
speed [30,31], multiple meteorological parameters [32,33], particulate matter concentrations [34] and
many others. Moreover, MF-DFA was used to study the sunspot number fluctuations [35], to investigate
the multifractality in the residuals of the connectivity time series of a wind speed monitoring network
and to determine how the multifractality degree is related to the correlation threshold [36] or how the
spatio-temporal aggregation of the data affects its multifractal properties [37,38].

Greece covers a relatively small geographical area, but with wide climatic variety. For instance,
the climate at Western Macedonia in northern Greece is quite different from the climate at Crete in the
southernmost area of Greece. Within this context it would be interesting to examine the distribution
of multifractality properties in the Greek region. A convenient way to examine multifractality is by
using the multifractal spectrum and, more specifically, its basic characteristics such as the spectrum
width and the value of the Hölder exponent for which the spectrum takes its maximum value and the
asymmetry along with the spectra truncation type. The meaning of these quantities is explained in
detail in the methodology section. The application of MF-DFA to temperature time series along with
the spatial distribution of the basic characteristics of the resulting spectrums is examined quantitatively
and qualitatively in terms of their association with climatic features. In the second section of this
paper, the MF-DFA method along with the available air temperature data are presented, while the
third section deals with the results and the relevant discussion of the main findings.

2. Material and Methods

2.1. Experimental Data

In this study, we used data from 22 meteorological stations of the Hellenic National Meteorological
Service (HNMS) network. These stations are listed in Table 1, while their spatial distribution is
illustrated in Figure 1. The main criteria for the selection of these stations are: a) the length of the time
series, b) the time series completeness (i.e., having very few missing values) and c) the spatial coverage
(effort was made to cover all climatic and topographic areas of Greece).



Atmosphere 2019, 10, 45 3 of 18

Table 1. Meteorological stations and observation period.

No. Station Lat (◦N) Lon (◦E) Elevation (m) Period Completeness (%)

1 Alexandroupoli 40◦51′27′ ′ 25◦56′49′ ′ 3.52 1973–2014 99.64
2 Andravida 37◦55′22′ ′ 21◦17′15′ ′ 10.10 1973–2014 98.75
3 Elefsina 38◦04′03′ ′ 23◦33′08′ ′ 26.54 1973–2014 99.14
4 Hellinikon 37◦53′23′ ′ 23◦44′31′ ′ 43.13 1973–2012 98.51
5 Herakleion 35◦20′07′ ′ 25◦10′55′ ′ 39.00 1973–2014 99.93
6 Kastoria 40◦26′56′ ′ 21◦16′25′ ′ 654.64 1981–2014 97.18
7 Kerkira 39◦36′29′ ′ 19◦54′50′ ′ 1.13 1973–2014 99.94
8 Kithira 36◦08′57′ ′ 22◦59′19′ ′ 166.10 1973–2014 97.02
9 Kos 36◦48′02′ ′ 27◦05′29′ ′ 126.00 1983–2014 99.21
10 Lamia 38◦52′35′ ′ 22◦26′10′ ′ 12.46 1973–2014 96.19
11 Larisa 39◦38′46′ ′ 22◦27′37′ ′ 72.72 1973–2014 98.70
12 Limnos 39◦55′22′ ′ 25◦13′58′ ′ 1.90 1977–2014 99.40
13 Methoni 36◦49′31′ ′ 21◦42′16′ ′ 51.84 1973–2014 97.97
14 Milos 36◦44′19′ ′ 24◦25′45′ ′ 166.85 1973–2010 97.93
15 Mitilini 39◦03′15′ ′ 26◦36′14′ ′ 4.22 1973–2014 99.52
16 Naxos 37◦06′05′ ′ 25◦22′24′ ′ 9.00 1973–2014 97.24
17 Preveza 38◦55′19′ ′ 20◦46′08′ ′ 2.10 1973–2014 98.47
18 Rodos 36◦24′08′ ′ 28◦05′18′ ′ 6.63 1973–2014 99.93
19 Skiros 38◦57′46′ ′ 24◦29′27′ ′ 22.00 1973–2014 98.10
20 Souda 35◦31′44′ ′ 24◦08′43′ ′ 147.64 1973–2014 98.74
21 Thessaloniki 40◦31′39′ ′ 22◦58′18′ ′ 1.68 1973–2014 99.89
22 Tripoli 37◦31′29′ ′ 22◦23′50′ ′ 650.57 1973–2014 97.95
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Figure 1. Meteorological station spatial distribution. The numbers denote the stations as listed in
Table 1.

The experimental data used in this study are the mean, maximum and minimum daily temperature
time series (Tmean, Tmax and Tmin, respectively) at 2m above the ground level for the stations and the
relevant periods listed in Table 1. The time series are extracted from the Global Summary Of the Day
(GSOD) NOAA database [39]. In this database, quality assurance checks are performed regularly.
In brief, a series of quality tests are applied to the dataset which can detect a variety of data problems,
such as inconsistent climatological values with the location of the station, existence of unreal values,
comparison with neighboring stations’ values and many others (more details can be found in [40]).
Furthermore, a manual quality assurance check is performed to increase the reliability of the dataset.
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It should be noted that data completeness of all stations is above 95%. The level of data completeness
is listed in Table 1. The few missing values are isolated and they are replaced using interpolation of
their non-missing neighboring values. This very high data completeness is well over the minimum
level of 50% at which the scaling exponent and therefore the scaling behavior of the time series are not
seriously affected [41,42]. Therefore, MF-DFA can be reliably applied to the time series.

Additionally, daily data of wind speed, relative humidity, pressure and precipitation amount
(for the same stations and periods) that are used later in this study have also been extracted from the
same database.

2.2. Methodology

This study consists of the following steps:

• The multifractal characteristics of Tmean, Tmax and Tmin are studied for each station in terms of
MF-DFA analysis.

• Assessment of the spatial distribution of the main multifractal spectrum characteristics
is performed.

• Intercorrelations between multifractal spectrum parameters are examined.

MF-DFA analysis is applied to the temperature time series in order to examine their scaling
properties. This method is described in detail by [26]. Herein, we give a brief description of the method.

1. First, the time series has to be deseasonalized. It is obvious that daily temperature time series
exhibit periodical trends, which are attributed to the annual seasonal cycle. In general, periodical
trends have an influence in the nonlinear properties of the time series [38] and therefore the time
series should be deseasonalized before applying the MF-DFA method. An efficient method to
deseasonalize a time series is the Seasonal and Trend decomposition using Loess (STL) method,
which was introduced by [43]. In the STL method, the time series is decomposed into seasonal,
trend and remainder components. From the decomposed time series, seasonality is removed and
MF-DFA analysis is performed on the deseasonalized time series. A successful utilization of the
STL method is presented by [44] with the aim to study the streamflow in the Yellow River basin,
using MF-DFA.

2. Then, we find the ‘profile’ Y(i) of the deseasonalized time series xk of length N:

Y(i) ≡
i

∑
k=1

[xk− < x >] (1)

where <x> is the mean of the time series and i = 1, . . . , N.
3. Y(i) is then divided into Ns ≡ int(N/s) boxes of equal length s, where s is the ‘time scale’. It should

be noted that N/s must be an integer, otherwise there will be a remaining number of profile points.
However, very often N/s is not an integer and this problem is overcome by repeating the same
procedure starting from the end. Thus, we get 2Ns boxes.

4. In each box of length s, a least squares line is fitted to the data, which represents the trend in that
box, i.e., the local trend. By subtracting the local trends, we detrend Y(i) and thus the variance
F2(ν,s) of each segment (box) ν (ν = 1, . . . , 2Ns) is calculated.

5. Taking the average over all segments, we find the qth order fluctuation function:

Fq(s) ≡
{

1
2Ns

2Ns

∑
v=1

[F2(v, s)]
q
2

} 1
q

(2)

6. This quantity is calculated repeatedly for all time scales to determine the relationship between
Fq(s) and s. Typically Fq(s) is an increasing function of s.
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7. Making the log-log plots Fq(s) versus s for each value of q, we can examine the scaling behavior of
Fq(s). If the series xk are long-range power-law correlated, Fq(s) increases following a power-law:

Fq(s)∼ sh(q) (3)

The exponent h(q) usually depends on q. If q = 2, then, for stationary time series, h(2) is the Hurst
exponent H. If the time series is monofractal, then h(q) is independent of q. In the case of different
scaling between small and large fluctuations, significant dependencies are observed.

From (3), it is clear that h(q) takes a variety of values (for each value of q) for multifractal signals
and it is called generalized Hurst exponent. Neglecting for a moment the dependency of Hurst
exponent on q and assuming that h(q) = H it is important to note that:

• If 0 < H < 0.5 then the time series is long-range anticorrelated, that is, an increase in the value is
more likely to be followed by a decrease (anti-persistent behavior) and vice versa.

• If H = 0.5 the time series is uncorrelated (white noise). In this case, the probability that an increase
will be followed by an increase or decrease is equal.

• If H > 0.5 the time series is long range positively correlated, that is, an increase is more likely to be
followed by an increase (persistent behavior) and vice versa.

If we use the relationship τ(q) = qh(q) − 1, then (via a Legendre transform) τ’(q) = α and

f (α) = qα − τ(q) = q [α − h(q)] + 1 (4)

The quantity α is called singularity strength (or Hölder exponent) and f (α) expresses the dimension
of the subset of the time series that is characterized by α. The plot of α versus f (α) is called singularity
spectrum, or multifractal spectrum. Usually, this plot has the shape of an upside-down parabola as in
Figure 2. From the multifractal spectrum we can draw significant conclusions about the multifractality
of a time series. The value of α where f (α) becomes maximum is when df (α)/dα = 0 and this happens
for q = 0. Then, from (4) we find that f(α)max = 1. This value of α corresponds to the most dominant
scaling behavior [45] and it is the dominant Hurst exponent. Hereafter, this quantity will be denoted
by α0.

The second important property of the spectrum is its width (αmax − αmin), where αmax and αmin

are the maximum and the minimum values of α, respectively, for which f (α) = 0 as it is depicted in
Figure 2 and it is a measure of the multifractality of the time series. A spectrum with a broad width is
indicative of a strong multifractality (i.e., it has a ‘fine’ structure). If the width becomes smaller, then
the time series tends to be a monofractal one. The spectrum width of a pure monofractal time series is
equal to zero. More details about the multifractal spectrum can be found in [46]. A measure of the
width of the multifractal spectrum can be obtained by fitting a second-order equation to the curve of
the spectrum around α0 as recommended by [47]:

G (α) = A(α − α0)2 + B(α − α0) + C (5)

Among the three constants A, B, C, the most important is B, which is an asymmetry parameter.
When B = 0, the shape of the spectrum is symmetrical, whereas for positive B values, the spectrum
is right-skewed and for negative left-skewed [48]. A right-skewed spectrum is related to relatively
strongly weighted high fractal exponents, while a left-skewed spectrum is indicative of low fractal
exponents (a more ‘regular’ time series). According to [46], a time series with a high value of α0, broad
width and right-skewed spectrum is considered to be more ‘complex’ than a time series with the
opposite characteristics.
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Figure 2. Schematic illustration of a multifractal spectrum and its main characteristics.

Furthermore, the shape of the multifractal spectra can be also characterized by its truncation
type. Considering the range of the q values, the shape of the spectra can be symmetrical, left or right
truncated. In our case, the truncation type is grouped into 4 categories, LL, L, S and R where:

• L: the spectrum is left-truncated.
• LL: there is a high degree of truncation on the left side. (i.e., when the left leg of a spectrum is

truncated more than its half-way point).
• R: the spectrum is right-truncated.
• S: the spectrum is symmetrical (there is no significant truncation).

To make this notation clearer, a representative plot for each case using experimental data is
depicted in Figure 3. The left end of the curve of the spectrum corresponds to the greatest value of q (in
our case q = 6) and the right end corresponds to the smallest q value (here q = −6), while the maximum
value of f (α) corresponds to q = 0. Therefore, the spectrum is left-truncated then the change of f (α) is
smaller for positive values of q than for negative ones, which means that the multifractal structure of
the time series shows an insensitivity to local fluctuations with large magnitudes. Working in a similar
way for the right-truncated spectrum, we find that there is insensitivity to local fluctuations with small
magnitudes. If the spectrum is symmetrical, then the multifractal structure of the time series exhibits
the same sensitivity regardless the magnitude of local fluctuations [45].
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for Mitilini (case LL); (b) Tmax for Alexandroupolis (case L); (c) Tmean for Kos (case S); (d) Tmin for
Herakleion (case R).

According to [27], multifractality is caused due to either a broad probability density function
for the time series values or to different long-range correlations for fluctuations of large and small
magnitudes. In order to examine which of the two cases causes multifractality in a time series, its
values are ordered randomly (shuffled) and MF-DFA is applied to the shuffled time series. In the case
where multifractal characteristics are preserved, then multifractality is caused by a broad probability
density function. In the other case (i.e., the multifractality of the shuffled time series appears to be
significantly weaker than that of the original time series), the multifractality is mainly due to different
long-range correlations for different magnitudes of the time series fluctuations. However, in nature,
multifractality can be driven by one of the sources or simultaneously by both of them [49,50].

Finally, the effects of seasonality and trends on the analyzed time series are subject to uncertainties
regarding the DFA and therefore, MF-DFA results [41,51].

3. Results and Discussion

3.1. Air Temperature Multifractal Characteristics

Prior to MF-DFA analysis, the STL decomposition method is applied to the temperature time
series. The resulting components along with the original time series are illustrated in Figure 4.

Upon removing the seasonal component, MF-DFA analysis is applied to the deseasonalized time
series. The plots of: i) Fluctuation function Fq(s) versus the time scale s (log-log plots), ii) Generalized
Hurst exponent h(q) versus q and iii) Multifractal spectrum f (α) versus α are obtained for each time
series for q ranging from −6 up to +6. Due to space limitations, only selected characteristic plots are
presented. In Figure 5, the plots of Fq(s) vs s, h(q) vs q and the multifractal spectrum f (α) vs α are
illustrated for Kerkira station (the same shape of the relevant plots was found for almost all stations
under study). The values of s used for the plotting of Fq(s) are approximately from 30 days (s ≈ 101.5)
to 8.5 years (s ≈ 103.5). It should be noted that the upper limit of the time scale is N/5, where N is the
time series length and for stations with different time series lengths (i.e., different observation periods),
the upper limit changes accordingly.
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Figure 5. Plots of (a) Log-log plot of Fq(s) vs s; (b) Generalized Hurst exponent h(q) vs q; (c) Multifractal
spectrum f(α) vs α. All the plots are for daily maximum temperature time series at Kerkira station.

From the Fq(s) vs s log-log plots for all temperature time series of all stations, it is observed that
they have the form of an almost straight line (i.e., constant slope). It is noteworthy that slope values
decrease when q has greater values, i.e., in Figure 5 the slope is 0.76 for q = −6, while for q = 6 the slope
is 0.67. Moreover, the coefficient of determination (Pearson correlation coefficient) for all q values is
higher than 0.98, which means that these scaling exponents are considered to be representative of the
underlying scaling phenomenon [52].

It should be mentioned that, in the small segments (s small), it is easier to distinguish local periods
with small fluctuations (q < 0) from periods with large fluctuations (q > 0). On the other hand, the large
segments include periods of small and large fluctuations and thus the differences in magnitude are
cancelled. Therefore, for large time scales, the behavior of Fq(s) is more similar to that of monofractal
time series [46]. This can be noted in Figure 5a, where for large time scales the lines of Fq(s) are coming
closer together. It can also be observed that the log-log fit of Fq(s) is not very good for small values
of s and especially for q = −6. This could be attributed to the fact that the root mean square value
is very sensitive to local fluctuations with small magnitudes (q < 0, the smaller the q, the higher the
sensitivity), especially for small segments (which correspond to small s values). This is reflected in
the existence of a long right tail at the multifractal spectrum, as it has previously been explained in
methodology section.

Calculating the slope of Fq(s) for a multitude of q values, the values of generalized Hurst exponent
h(q) are obtained. Here, h(q) is calculated for q values from −6 up to +6 in steps of 0.1 and therefore
h(q) is found for 120 values of q. The multifractality of the time series can be concluded from the
h(q) versus q plots. The dependency of the generalized Hurst exponent h(q) on q is evident from
Figure 5b and this is a characteristic of multifractal time series, whereas in monofractal time series,
the Hurst exponent is constant. Moreover, the fact that h(q) > 0.5 for all temperature time series leads
to the conclusion that these time series exhibit long-range positive correlations. This means that an
increase in temperature values is more likely to be followed by another increase. Furthermore, the
slope of h(q) is greater for negative q (i.e., for small fluctuations) than for positive values of q (large
fluctuations), which means that there is a higher degree of multifractality for the smaller fluctuations,
in agreement with the aforementioned relevant conclusion from Fq(s) plots. As it was previously
mentioned, the multifractal spectrum reveals significant properties about the multifractality of the time
series. Therefore, we focused on its main characteristics, the value of α0, the width αmax − αmin, the
asymmetry parameter B and the truncation type of the spectrum. The results are presented in Table 2.
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Table 2. Values of the main multifractal characteristics.

Station
Singularity Spectrum Width

αmax − αmin

Value of α for
f(α) = max Asymmetry Parameter B Truncation Type

Tmean Tmax Tmin Tmean Tmax Tmin Tmean Tmax Tmin Tmean Tmax Tmin

1 0.545 0.473 0.539 0.685 0.678 0.692 0.180 0.213 0.048 L L L
2 0.664 0.591 0.639 0.720 0.728 0.742 0.496 0.227 0.349 L R LL
3 0.629 0.628 0.614 0.708 0.700 0.704 0.416 0.504 0.250 LL LL LL
4 0.659 0.715 0.644 0.719 0.703 0.717 0.399 0.315 −0.018 LL LL LL
5 0.458 0.471 0.286 0.712 0.683 0.689 0.375 0.466 −0.322 L LL R
6 0.479 0.481 0.432 0.713 0.662 0.737 0.038 0.091 −0.484 L L R
7 0.447 0.342 0.515 0.712 0.711 0.717 0.224 0.286 0.153 L L L
8 0.388 0.431 0.364 0.688 0.679 0.697 0.497 0.374 0.627 LL L L
9 0.511 0.438 0.602 0.747 0.723 0.761 0.037 0.144 0.039 S L S

10 0.500 0.547 0.476 0.718 0.670 0.716 0.478 0.423 0.490 L L LL
11 0.659 0.717 0.666 0.684 0.699 0.734 0.685 0.569 0.420 LL LL LL
12 0.566 0.527 0.475 0.725 0.695 0.692 0.255 0.257 0.158 L L L
13 0.548 0.589 0.508 0.734 0.713 0.680 0.396 0.525 0.357 L LL L
14 0.470 0.439 0.492 0.696 0.682 0.709 0.214 0.215 0.226 L L L
15 0.532 0.446 0.537 0.715 0.678 0.715 0.269 0.074 0.301 L S LL
16 0.677 0.734 0.672 0.775 0.711 0.748 0.305 0.183 0.402 LL LL LL
17 0.727 0.759 0.716 0.720 0.700 0.728 0.577 0.493 0.522 LL LL LL
18 0.437 0.435 0.395 0.730 0.706 0.760 0.097 0.183 0.669 S L L
19 0.544 0.489 0.402 0.703 0.679 0.699 0.409 0.369 0.409 L L L
20 0.688 0.720 0.693 0.691 0.686 0.705 0.287 0.194 0.236 LL LL LL
21 0.463 0.431 0.496 0.717 0.693 0.721 0.299 0.345 −0.109 L L R
22 0.380 0.349 0.436 0.734 0.689 0.713 0.317 0.162 −0.068 L R R

Regarding the α0 results, it is observed that the values are within a narrow zone ranging from
0.662 up to 0.775 for all time series. Thus, the dominant Hurst exponent of the examined temperature
time series is of the order of 0.7, which means that the temperature time series are long range positively
correlated. It should also be noted that for Tmax the majority of α0 values is between 0.65 and 0.70, while
for Tmean and Tmin the more α0 values are in the range 0.70–0.75. Regarding the multifractal (singularity)
spectrum width values, (Table 2) it is observed that there is a significant variation, ranging from 0.342
to 0.759 for Tmax, from 0.380 to 0.727 for Tmean and from 0.286 to 0.716 for Tmin and their distributions
are illustrated in the histograms of Figure 6. It is observed that for all temperature time series (Tmean,
Tmax and Tmin), the majority of the spectrum width values are within 0.4 and 0.7. The asymmetry
parameter B values are in the range from −0.484 up to 0.685. It is easily noticeable that the majority
of the B values are positive and that negative values are observed only for Tmin. Thus, most of the
spectra are right-skewed, which indicates that, in most cases, there are relatively strongly weighted
high fractal exponents. Focusing on the truncation type, it is clear that the majority of the spectra are
left-truncated, leading to the conclusion that, in general, the multifractal structure of temperature time
series is robust to local fluctuations with large magnitudes.

Concerning the type of multifractality, MF-DFA application to the shuffled time series reveals that
in all cases the multifractality is very weak and it is mainly due to different long-range correlations
for small and large fluctuations. A characteristic case is presented in Figure 7, where the multifractal
spectrum for Kerkira daily maximum temperature is depicted for both the original and the shuffled
time series. It was found that in all temperature time series, the spectra for the original and shuffled
time series are similar to those of Figure 7. In shuffled time series we observe that the width of the
spectrum for the shuffled time series is much smaller than the original time series and the value of
α0 is very close to 0.5 and, therefore, diminished multifractality (compared to the unshuffled series)
shows that long-range correlations play the main role in the multifractality of the data [26].

It should be noted that in order to avoid statistical errors, data shuffling of each time series
was repeated 100 times, where the initial data from the time series were randomly shuffled at each
repetition, and the mean values of multifractal parameters were calculated [49]. The corresponding
mean value of the spectrum width for all stations and temperature time series is of the order of 0.2,
i.e., in our case a time series with spectrum width less than 0.2 can be considered as monofractal [53].
Considering the values of spectrum width (Table 2), it is concluded that all temperature time series
exhibit a multifractal behavior.
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3.2. Spatial Distributions

The spatial distributions of spectral width, a0 and asymetry parameter for the Tmean, Tmax and
Tmin over Greece are illustrated in Figures 8–10, respectively. For a better interpretation of those figures,
isolines are also shown.
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Regarding the spatial distribution of spectral width, two distinct regions are observed. A region
of relatively higher multifractal spectrum width values, which includes a great part of continental
Greece and Aegean Sea and a part of Ionian islands, and a region with lower spectrum values, which
includes southeastern areas, a part of south mainland and parts of northwestern Greece. The first
region has a richer multifractal spectrum, which means that weather conditions—and consequently
the temperature—in this region are affected in a more ‘complex’ way than the rest of Greece. Possible
causes of local day-to-day temperature variations are the depression tracks over Greece from western
directions [54]. The first region includes the coastal areas of eastern mainland and some parts of the
western Greece. Taking also into account the topography of Greece, temperature at these areas could be
affected by other factors, such as cold outbreaks in the winter mainly in eastern Greece [55], the onset
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of Etesians winds in the summer mainly over Aegean Sea [56], katabatic winds causing Föhn effect,
thermal instability in summer at continental areas, or probably other local circulations. On the other
hand, the more ‘stable’ climatic conditions at the marine and coastal parts of the second region and the
less irregular topography contribute towards a relatively simpler temperature variability.

The spatial distribution of α0 values (Figure 9) exhibits a rather smooth field of the order of 0.7
(α0 values are in the range 0.66–0.77 in the Greek area). Therefore, the prevailing behavior of all
temperature time series is persistent, which means that an increase in temperature is more likely to
be followed by another increase, in agreement with the values of h(q), as in Figure 5b. In more detail,
relatively larger values are noticed at two geographical areas: i) At southeastern Greece and ii) At some
parts of coastal western Greece. Considering that α0 is the dominant Hurst exponent, it is deduced
that temperature time series for these areas appear to have relatively more persistent behavior than
the other areas of Greece. A possible explanation could be that these areas have more ‘stable’ climatic
conditions throughout the year, which agrees with [14] results for Turkey. Additionally, the absence of
rainfall in the summer period is more pronounced at coastal and marine areas, whereas in continental
Greece, the precipitation amount exhibits a more uniform interannual distribution, due to atmospheric
instability especially in the warm period [57,58]. Furthermore, it is also interesting that continental
areas in Greece appear to have greater temperature variability than the marine and coastal areas [59]
which is in partial agreement with the α0 spatial distribution findings. It is noteworthy that higher
α0 values for the Tmin time series—compared to the corresponding values for Tmax and Tmean—are
observed for a significant part of continental Greece. This could be attributed to the fact that summer
thermal instability is observed at noon and in the afternoon whereas the minimum temperature is
observed in the early morning.

Regarding the spectral asymmetry spatial distribution, it is observed that the lower values of
parameter B are found, in general, mainly in southeastern Greece. Spectra with higher B values contain
a greater number of high fractal components and therefore, according to [47,48] are related to more
‘complex’ time series and it could be assumed that the pre-mentioned greater climate stability at the
southeastern area leads to less ‘complex’ time series.

Finally, it is noteworthy to mention that in order to achieve a coverage of the entire Greek area
for the spatial distribution of the main multifractal characteristics, we used the relevant temperature
data from 13 neighboring stations. These stations together with their main multifractal spectrum
characteristics (which were found using the same analysis as for the Greek stations) are listed in Table 3.
A brief remark about the stations of Table 3 is that the values of the singularity spectrum width are in
the same ranges as the Greek stations.

Table 3. Values of the main multifractal characteristics for neighboring stations.

Station
Singularity Spectrum Width

αmax − αmin

Value of α for
f(α) = max Asymmetry Parameter B Truncation Type

Tmean Tmax Tmin Tmean Tmax Tmin Tmean Tmax Tmin Tmean Tmax Tmin

23 0.491 0.584 0.387 0.791 0.728 0.731 0.339 0.320 0.565 L L LL
24 0.577 0.542 0.517 0.697 0.668 0.713 0.294 0.306 0.298 L LL L
25 0.494 0.449 0.516 0.693 0.670 0.694 0.255 0.325 −0.082 L L S
26 0.488 0.487 0.511 0.683 0.694 0.676 0.068 0.043 −0.106 L L S
27 0.426 0.499 0.311 0.751 0.749 0.733 0.720 0.450 0.704 L L L
28 0.409 0.334 0.195 0.742 0.722 0.750 −0.022 0.455 −0.328 R L L
29 0.458 0.405 0.459 0.743 0.752 0.731 0.121 0.410 0.312 L L L
30 0.367 0.541 0.312 0.776 0.753 0.765 0.165 0.600 1.046 L L S
31 0.408 0.452 0.373 0.759 0.751 0.721 −0.098 −0.233 0.114 S R L
32 0.392 0.397 0.445 0.700 0.653 0.751 0.139 0.125 0.180 L L L
33 0.506 0.431 0.463 0.716 0.689 0.743 0.337 0.341 0.294 L L L
34 0.459 0.448 0.385 0.703 0.677 0.684 0.262 0.099 0.270 L S L
35 0.489 0.418 0.487 0.707 0.688 0.710 −0.058 −0.052 −0.275 S S R

Stations: 23: Alexandria, 24: Benghazi, 25: Sofia, 26: Plovdiv, 27: Pafos, 28: Brindisi, 29: S.M. Leuca, 30: R. Calabria,
31: Malta, 32: Antalya, 33: Istanbul, 34: Izmir, 35: Skopje.
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3.3. Multifractal Spectrum Parameters Intercorrelations

Regarding the multifractal spectrum parameter intercorrelations, we examined initially the
relationship of a0 and width with B and subsequently their relationship with the truncation type.
Although no clear relationship was found between α0 and spectral width, the analysis revealed a
well-defined group of stations with LL truncation type, for α0 > 0.68 and spectral width >0.6 for all
temperature time series (Tmean, Tmax and Tmin) as illustrated in Figure 11. These cases, considering that
a left truncated spectrum has mainly high fractal exponents (i.e., ‘fine’ structure), can be considered
more complex than the remaining time series. It should also be noted that no significant geographical
correlations were revealed; a similar finding was found in another Mediterranean region [48].Atmosphere 2019, 10, x FOR PEER REVIEW 15 of 18 
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Finally, we examined the correlation between the multifractal parameters of temperature time
series and the main descriptive statistical parameters (i.e., mean, standard deviation, skewness and
kurtosis) of the main climatic parameters (i.e., relative humidity, wind speed and precipitation amount).
The results did not exhibit a clear association, verifying the complexity of the factors that affect
temperature fluctuations.

4. Conclusions

The analysis reveals that air temperature over the study area exhibits long-range temporal
correlations that cannot be fully described by a single scaling exponent. According to the Fq(s) vs.
s plots, the multifractal character of the examined temperature time series is verified for all sites.
The generalized Hurst exponent h(q) is dependent on q in all cases, thus confirming the multifractal
nature of the examined time series. It is also found that h(q) is greater than 0.5, which reveals that
the time series are long-term positive correlated, meaning that an increase in temperature is more
likely to be followed by another increase. Emphasizing the multifractal spectrum (i.e., f (α) vs. α plots),
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significant multifractal features were deduced from examining the dominant Hurst exponent (α0),
the spectrum width, the asymmetry parameter B and the truncation type. The spatial distribution of the
above parameters indicates that larger multifractal spectrum widths could be associated with regions
where weather conditions and consequently the temperature are affected in a more ‘complex’ way than
in other areas. Furthermore, relatively higher α0 values as well as higher values of the parameter B
may be associated with regions of more stable climatic conditions. The dominant truncation type is left
truncation, and thus for the vast majority of the time series, their multifractal structure is insensitive to
larger local variations of temperature. In general, atmospheric circulation and weather conditions affect
the shape of the spectrum, and the corresponding spatial distributions results highlight the complexity
with which the natural processes interact and the importance of finding associations among the
multifractal characteristics and different atmospheric processes. Moreover, the intercorrelation results
among α0 and spectrum width with the truncation type revealed a well-defined group of stations
that exhibit similar multifractal characteristics. In particular, left truncation spectra are, in general,
associated with higher spectrum width values. In addition, the analysis presented in this study
could be useful for assessing the performance of climate models in terms of their ability to simulate
reasonably well the observed air temperature non-linear dynamics. More specifically, as future work,
the proposed methodology will be performed at larger or even global spatial scales for experimental
temperature datasets and climate model simulations.
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