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Abstract: Nitrophenols, hazardous environmental pollutants, react promptly with atmospheric
oxidants such as hydroxyl or nitrate radicals. This work aimed to estimate how fast nitrophenols
are removed from the atmosphere by the aqueous-phase reactions with sulfate radical-anions.
The reversed-rates method was applied to determine the relative rate constants for reactions of
2-nitrophenol, 3-nitrophenol, 4-nitrophenol, 2,4-dinitrophenol, and 2,4,6-trinitrophenol with sulfate
radical-anions generated by the autoxidation of sodium sulfite catalyzed by iron(III) cations at ~298 K.
The constants determined were: 9.08 × 108, 1.72 × 109, 6.60 × 108, 2.86 × 108, and 7.10 × 107 M−1 s−1,
respectively. These values correlated linearly with the sums of Brown substituent coefficients and
with the relative strength of the O–H bond of the respective nitrophenols. Rough estimation showed
that the gas-phase reactions of 2-nitrophenol with hydroxyl or nitrate radicals dominated over the
aqueous-phase reaction with sulfate radical-anions in deliquescent aerosol and haze water. In clouds,
rains, and haze water, the aqueous-phase reaction of 2-nitrophenol with sulfate radical-anions
dominated, provided the concentration of the radical-anions was not smaller than that of the hydroxyl
or nitrate radicals. The results presented may be also interesting for designers of advanced oxidation
processes for the removal of nitrophenol.

Keywords: atmospheric processes; secondary organic aerosol; rate constants; atmospheric pollutants;
advanced oxidation processes

1. Introduction

Nitrophenols are well known environmental trace compounds and pollutants [1,2], which have
been detected in various environmental matrices including air [3–6], rainwater [3,7–9], cloud water [10],
fog [10,11], snow [1], atmospheric aerosol [4–6,12–25], soils [26,27], and surface waters [10,28–32]. They
originate from many anthropogenic and natural sources including: the incineration of wastes [33],
industrial chemical processes [34], combustion of coal and biomass as well as vehicle and aviation
fuels [35–37], degradation of pesticides [34,38,39], release of wood preservatives [34], and atmospheric
chemical reactions. 4-nitrophenol (4-NP) and 2,4-dinitrophenol (2,4-DNP), along with sugar anhydrides
such as levoglucosan, serve as markers of biomass burning in ambient aerosol [40–43]. These compounds
and 2-nitrophenol are recognized components of atmospheric brown carbon, i.e., a collection of light
absorbing organic compounds in the atmosphere [22,44,45]

Atmospheric reactions that yield nitrophenols take place both in the gas phase and in the aqueous
phase. For instance, the gas-phase nitration of phenol involves hydroxyl radicals •OH and NO2

in the daytime or nitrate radical •NO3 and NO2 in the night to respectively produce 2-nitrophenol
(2-NP) or 2-NP and 4-NP. The chemical mechanisms of both processes were thoroughly reviewed [1].
Formation of nitrophenols in atmospheric waters of all kinds is at least equally important but less
understood. The possible pathways include oxidation of phenols with NO2 and OH or NO3 radicals [46],
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electrophilic nitration initiated by N2O5 and ClNO2 [1,47], photolytic and dark reactions involving
nitrate radicals, inorganic nitrates, nitrites and nitrous acid HONO [48,49], and photolytic reactions
with nitrogen dioxide in the presence of iron oxide and oxygen [49].

Atmospheric sinks for nitrophenols include photolysis [50] and the gas-phase reactions with
OH radicals and NO3 radicals [51,52] which are characterized by the estimated residence time of
several days. More efficient sinks may include partitioning to atmospheric aqueous phases followed by
reactions with various radicals and/or photolysis [1,46]. More recently, Barsotti, et al. [53] demonstrated
that the irradiation of aqueous solutions or viscous films containing several nitrophenols (2-NP, 4-NP,
2,4-DNP, and 2,6-DNP, i.e., 2,6-dinitrophenol) was an efficient source of HONO and NO2

− ions. Vione,
et al. [54] showed that OH radicals reacted faster than NO3 radicals with 2-NP and 4-NP in aqueous
solutions to lower the atmospheric levels of 2-NP below those of 4-NP. Hems and Abbatt [55] studied
the aqueous-phase photo-oxidation of 2,4-DNP by OH radicals, identified numerous intermediate
products thereof and showed the corresponding evolution of UV absorbance of the reacting solutions.
In addition, many laboratories studied the aqueous-phase reactions of other substituted phenols of
atmospheric interest like guaiacol, nitro-guaiacol, vanillin, or syringol [55–59].

Much of the nitrophenol chemistry has been studied for the sake of advanced oxidation processes
aimed at mitigation of nitrophenols in aquatic and industrial environments [60]. The technologies
considered include: Fenton and photo-Fenton reactions based on H2O2 [34,61], TiO2 based
photocatalysis [62–64], electrocatalysis [65], photo-electrocatalysis [66,67], and wet catalysis [68,69].
Among the latter, a promising process was proposed which utilized reactions of nitrophenols with sulfate
radical-anions generated by the cobalt-mediated decomposition of peroxymonosulfate anions [70].

For years, some nitrophenols (2-NP, 4-NP, 2,4-DNP) have been listed as priority or hazardous
pollutants [71–73]. Generally, mono- and di-nitrophenols are considered toxic in plants and
mammals [74], while 4-nitrophenol is highly toxic in humans [75]. Although EPA USA has not
considered 4-nitrophenol carcinogenic [38], a laboratory experiment showed the compound can destroy
DNA in vitro [76].

This work was aimed at elucidating how fast nitrophenols are removed from the atmospheric
waters by reaction with sulfate radical-anions, which are important atmospheric oxidants known to
react fast with numerous atmospheric pollutants [77–83].

2. Experiments

2.1. Chemicals

The following chemicals were used as purchased: 2-nitrophenol (R.G.), 3-nitrophenol
(REAGENTPLUS™, 99%), 4-nitrophenol and 2,4,6-trinitrophenol (1 wt % solution in water) from
Sigma Aldrich, 2,4-dinitrophenol (97% + 15% H2O) from Alfa Aesar, Fe(ClO4)3·9H2O (purum) from
Fluka, Na2S2O5 (EMSURE® ACS, Reag. Ph Eur. > 98%) and HClO4 (pro analysis) from Merck, argon
(99.999%) from Multax. For each experiment, aqueous solutions of reactants were prepared freshly
using Milli-Q water (18.2 MΩ cm, Milli-Q Advantage System from Merck Millipore). Buffer standards
used for the calibration of pH electrodes were from Thermo Fisher Scientific. To avoid the contact
with the atmospheric oxygen, Milli-Q water was deoxygenated by a stream of argon bubbled through
for 20 min. Solutions of sodium bisulfite were obtained by dissolving Na2S2O5 in deoxygenated
Milli-Q water

Na2S2O5 + H2O� 2Na+ + 2HSO−3 , (1)

The acidity of solutions was adjusted to pH = 3.1 with 0.1 M HClO4 so the species in solutions
were predominantly Na+ and HSO3

− ions.

2.2. Estimation of the Rate Constants

The relative rate constants for reactions of nitrophenols with sulfate radical-anions were estimated
using the reversed-rates method developed by Ziajka and Pasiuk-Bronikowska [84] and successfully
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applied to several organic compounds [83,85,86]. Briefly, the sulfate radical-anions are generated during
chain autoxidation of sulfite anions catalyzed by Fe(III) cations. The mechanism of the autoxidation was
presented in detail by Ziajka and Rudziński [83] and recalled in the SI. One runs several experiments
with the autoxidation of S(IV) inhibited by two different compounds, inh1 and inh2, used at several
different initial concentrations (e.g., Figure 1). Each experiment should attain a pseudo-stationary phase
during which the autoxidation proceeds at a constant rate (e.g., Figure 2). Then, one plots the reciprocal
stationary rates observed against the initial concentrations of the inhibitor used (Figure 3). If both plots
are linear, the ratio of rate constants for reactions of the inhibitors with sulfate radical-anions is equal
to the ratio of the slopes of the linear plots (Equation (2)). If one knows the rate constant for reaction of
one inhibitor with sulfate radical-anions, one can calculate the rate constant for the other inhibitor.

kinh1+SO−4
=

slopeinh1

slopeinh2
kinh2+SO−4

, (2)

In the present work, ethanol was used as a reference inhibitor against which the rate constants for
nitrophenols were calculated.
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2.3. Experimental Runs

The experimental setup and procedure for carrying out the stationary autoxidation of S(VI)
inhibited by organic compounds was described in detail elsewhere [83]. Briefly, the experiments
were carried out in a well-mixed glass reactor of 60 cm3 volume, closed with a Teflon cover and
thermostatted at 298 K within a water jacket. For each run, the reactor was filled with aqueous solution
of sodium bisulfite and oxygen so that it contained no gas phase. The pH of solution was adjusted to
3.1 with HClO4. The pH of the solution was recorded using a SenTix Mic combination pH electrode
from WTW. Then, a small aliquot of aqueous solution of Fe(ClO4)3 catalyst was injected to start the
reaction. Table 1 shows the initial concentrations of reactants. The autoxidation of S(IV) was followed
by recording the concentration of oxygen using an Orion 97-08 from Thermo Fisher Scientific and
a home-designed pH/oxygen meter and software. Equation (3a) shows the overall stoichiometry of
uninhibited SIV autoxidation. Assuming the conversion of inhibitors was small, the stoichiometry of
the autoxidation inhibited by a nitrophenol was defined by the same equation so that the rate of the
autoxidation was defined by Equation (3b) [83].

2SO3
2−/2HSO3

− + O2 = SO4
2−/HSO4

−, (3a)

rautoxidation = −
d[S(IV)]

dt
=

d[S(VI)]
dt

= −2
d[O2]

dt
, (3b)

Table 1. Initial concentrations of reactants used in the experiments.

Compound Abbreviation Concentration Range, mM

2-nitrophenol 2-NP 0.032–0.347
3-nitrophenol 3-NP 0.019–0.089
4-nitrophenol 4-NP 0.073–0.711

2,4-dinitrophenol 2,4-DNP 0.169–1.325
2,4,6-trinitrophenol 2,4,6-TNP 0.197–0.788

HSO3
− 2

O2 ~0.25
Fe(ClO4)3 0.01
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2.4. Correction of the Diffusional Limitations of the Rate Constants

Since the reactions examined were very fast, we corrected the rate constants determined for
diffusional limitations using a simple resistance-in-series model [87–90]

k−1
observed = k−1

reaction + k−1
di f f usion, (4)

kdi f f usion = 4π(DA + DB)(rA + rB)N × 103, (5)

where all k are second order rate constants (M−1 s−1), D are diffusion coefficients of reactants A and B
(m2 s−1), r are reaction radii of reactant molecules A and B (m), and N is the Avogadro number (mol−1).
Details of the calculations are summarized in Section S3 of the SI.

3. Results

In this section, we present the experimental results obtained for 4-NP. The results for other
nitrophenols were similar so we present them in the SI. Figure 1 shows consumption of oxygen during
the autoxidation of S(IV) in the presence of 4-NP. The higher was the initial concentration of nitrophenol,
the slower was the consumption of O2.

In each experiment, the autoxidation attained a quasi-stationary rate, as shown in Figure 2 for the
run with [4-NP] = 0.28 mM.

Figure 3 shows the plots of reciprocal stationary rates for autoxidation of S(IV) in the presence of
4-NP or a reference compound ethanol versus initial concentrations of each inhibitor. The plots were
linear, so their slopes were used in Equation (2) to calculate the relative rate constant for the reaction of
4-NP with sulfate radical-anions

k4−NP+SO−4
= kEtOH+SO−4

slope4−NP

slopeEtOH
= 4.3× 107 2.665× 109

1.735× 108 = 6.636× 108 M−1s−1, (6)

Plots for other nitrophenols, all of them linear, were placed in the SI. The results of all experiments
are collected in Table 2 and include the slopes of linear plots and the rate constants for reactions
of nitrophenols with sulfate radical-anions, both observed and corrected for diffusional limitations.
The uncertainties of the observed rate constants were estimated using the total differential method
applied to Equation (6) with individual errors equal to the standard errors of the linear slopes and
kEtOH (Table 2). The uncertainties of the corrected rate constants were estimated in a similar way from
Equation (4), assuming arbitrarily the uncertainty of kdifffusion was 10%.

Table 2. Experimental slopes of linear plots (Figure 3 and Figure S2) and rate constants for reactions of
nitrophenols with sulfate radical-anions (observed and corrected for diffusional limitations).

Compound Slope, s M−2 kobserved, M−1s−1 kdiffusion
A, M−1s−1 kreaction, M−1s−1 (kr − ko)/ko, %

EtOH (reference) (1.735 ± 0.001) × 108 (4.30 ± 0.86) × 107

2-NP (3.662 ± 0.235) × 109 (9.08 ± 2.40) × 108 2.01 × 1010 (9.50 ± 4.58) × 108 4.74
3-NP (6.957 ± 0.277) × 109 (1.72 ± 0.41) × 109 2.01 × 1010 (1.89 ± 0,89) × 109 9.53
4-NP (2.665 ± 0.985) × 109 (6.60 ± 3.77) × 108 2.01 × 1010 (6.83 ± 5.42) × 108 3.41

2,4-DNP (1.154 ± 0.152) × 109 (2.86 ± 0.95) × 108 2.13 × 1010 (2.90 ± 1.58) × 108 1.51
2,4,6-TNP (2.865 ± 0.180) × 108 (7.10 ± 1.87) × 107 2.18 × 1010 (7.12 ± 3.31) × 107 0.33

A—assumed unceratinty 2 × 109 M−1 s−1(10%).

4. Discussion

4.1. Hammett’s Correlations

The reactions of nitrophenols with sulfate radical-anions appeared quite fast, with observed
second order rate constants of the order 109 s−1 M−1 (Table 2). However, the diffusional limitations
were not significant because the rate constants corrected for diffusional limitations were higher for a
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few percent only. The rate constants decreased with the number of NO2 groups in the molecule with the
exception of 3-NP. Figure 4a shows the uncorrected rate constants for reactions of sulfate radical-anions
with phenol and substituted phenols—chlorophenols [83] and nitrophenols (this work)—correlate
well with sums of Brown substituent coefficients for the compounds. The Brown coefficients for
chlorophenols were taken after [83], while those for nitrophenols were: σm

+ = 0.71, σp
+ = 0.79 [91,92]

and σo
+ = 0.66 σp

+ = 0.52 [93] for meta, para and orto substituents, respectively. The straight line in
Figure 4a was obtained by linear regression covering all data (Equation (7)).

log
(
kSO4

)
= (9.9006± 0.0785) − (1.1513± 0.0970)

∑
σ+, R2 = 0.9663, (7)
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Brown substituent coefficients and (b) the relative strength of the O–H bond.

Equation (7) can be used to estimate the second order rate constants for reactions of sulfate
radical-anions with substituted phenols that had not been determined experimentally.

The Brown substituent coefficients can estimate the relative strength of the O–H bonds in
substituted phenols with a linear correlation developed by Jonsson et al. [93] (Equation (8)).

∆DO–H = −2 + 29.9
(
σ+o2 + σ+m3 + σ+p4 + σ+m5 + σ+o6

)
, kJ mol−1, (8)

Therefore, the rate constants for reactions of sulfate radical-anions with phenol and substituted
phenols can also be correlated against ∆DO–H (Figure 4b). The corresponding linear regression is given
by Equation (9).

log
(
kSO4

)
= (9.9498± 0.0828) − (0.0508± 0.0043)∆DO–H, R2 = 0.9665, (9)

Equation (9) can estimate the second order rate constants for reactions of sulfate radical-anions
with substituted phenols in place of Equation (7).

4.2. Atmospheric Significance

The atmospheric significance of the aqueous-phase reactions of nitrophenols with sulfate
radical-anions was evaluated using the approach developed in [81]. The rate of the total conversion
of a nitrophenol NP by a reactant X (OH or NO3) in the gas phase (rX,g) and in the aqueous phase
(rX,aq × ω) was compared to the rate of conversion of this NP by sulfate radical-anions in the aqueous
phase within the gas phase (rSO4 ,aq ω) as the ratio RX,tot-aq defined by Equation (10). The concentrations
of the gas-phase and aqueous-phase reactants were assumed to follow the Henry’s Law.
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RX,tot−aq =
rX,g + rX,aqω

rSO4,aqω
=

kX,g[X]g[NP]g + kX,aq[X]aq[NP]aqω

kSO4,aq[X]aq

[
SO·−4

]
aq
ω

=

kX,g
Hd,XHd,NP

+ kX,aqω

kSO4,aqω
·

[X]aq[
SO·−4

]
aq

, (10)

where ω m3 m−3 is the atmospheric liquid water contents; kX,g and kX,aq dm3 mol−1 s−1 are the rate
constant for the reaction of X with NP in the gas phase and the aqueous phase, respectively; kSO4,aq
dm3 mol−1 s−1 is the rate constant for the reaction of SO4

•− with NP in the aqueous phase; Hd is the
dimensionless Henry’s constant (Hd = H × gas constant × absolute temperature) for X or for NP; [X]aq

and [SO4
•−]aq are the aqueous-phase concentrations of X and SO4

•−.
Figure 5 compares the total conversion of 2-NP due to the gas-phase and the aqueous-phase

reactions with OH radicals to the aqueous-phase reaction with SO4
•− radical-anions (a) as well as

the conversion of 2-NP due to the gas-phase and aqueous-phase reactions with NO3 radicals to the
aqueous-phase reaction with SO4

•− radical-anions (b). Data required for the calculations behind the
plots are given in Tables 2 and 3 while more details are available in the SI. The ranges of radical
concentrations considered in Figure 5 fit well within the realistic ranges estimated by modeling for the
atmospheric systems (Table 4) [94].
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Figure 5. Total rate of 2-NP conversion in the atmosphere due the gas-phase and aqueous-phase
reactions with OH radicals (a) or NO3 radicals (b) compared to the rate of the aqueous-phase reaction of
2-NP with sulfate radical-anions for various ratios of radicals in the aqueous phases ([OH]aq/[SO4

•−]aq)
and various liquid water contentsω (based on Equation (10)).

In most cases, the total OH radical sink for 2-NP dominates over the SO4
•− aqueous sink in all

atmospheric aqueous phases. Sulfate radical-anions take the lead only if they are in significant excess
in clouds, rains, and storms (red line in Figure 5a, [OH]aq/[SO4

•−]aq < 0.16). The total NO3 radical sink
for 2-NP dominates over the SO4

•− aqueous sink in aerosol and haze waters and in clouds and rains if
in significant excess (red line in Figure 5b, [NO3]aq/[ SO4

•−]aq > 36). In other cases, the SO4
•− aqueous

sink prevails. The above rationale is based on the assumption that the hydroxyl and nitrate radicals
as well as 2-NP are at Henry’s equilibria in the gas phase and in the aqueous phase while the sulfate
radical-anions exist only in the aqueous phase.

Table 3. Rate and Henry’s constants for selected atmospheric reactants at 296–298 K.

Reaction X + NP
kX,g kX,aq HdX HdNP

cm3 molecule−1 s−1 dm3 mol−1 s−1 dm3 mol−1 s−1

OH + 2-NP 9.00 × 10−13 (a) 5.42 × 108 5.90 × 109 (b) 6.11 × 102 (d)
5.17 × 103 (e)

NO3 + 2-NP 2.00 × 10−14 (a) 1.20 × 107 2.30 × 107 (c) 1.47 × 101 (d)

(a) [52,95]; (b) [54]; (c) [96]; (d) [81]; (e) [97].
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Table 4. Ranges of radical concentrations in gas phase, clouds and deliquescent particles [94].

Gas Phase (a) Aqueous Phase

OH NO3 OH NO3 SO4•− [OH]/[SO4•−] [NO3]/[SO4•−]

molecule cm−3 mol dm−3

Minimal 1.4 × 102 7.9 × 106 1.4 × 10−16 1.6 × 10−16 5 × 10−17 1.6 × 10−4 1.8 × 10−3

Maximal 6.6 × 103 1.2 × 107 8.0 × 10−12 3.0 × 10−13 9 × 10−13 1.6 × 105 6.0 × 103

(a) calculated using Henry’s constants from Table 3.

The rate of aqueous-phase reaction of a nitrophenol NP with sulfate radical-anions can also be
compared to the rates of gas-phase reactions with OH or NO3 sinks alone, assuming the gas-phase and
aqueous-phase reactants follow the Henry’s Law

RX,g−aq =
rX,g

rSO4,aqω
=

kX,g[X]g[NP]g

kSO4,aq[NP]aq

[
SO·−4

]
aq
ω

=
kX,g

kSO4,aqHd,XHd,NPω
·

[X]aq[
SO·−4

]
aq

, (11)

The results obtained for 2-NP (Figure 6) show that the gas-phase sinks dominate in the aerosol and
haze waters and in clouds and rains provided hydroxyl or nitrate radicals are in excess. Surprisingly,
there is little difference observed between the hydroxyl radicals and nitrate radicals in spite of significant
difference between the rate constants for their gas-phase reactions with 2-NP (Table 2). This is explained
by lower solubility of NO3 in water. When the aqueous-phase concentrations of both radicals are
equal, the gas-phase concentration of NO3 is higher than the concentration of OH and compensates
for its lower rate constant. For reference, one can compare the gas-phase and the aqueous phase
conversions of 2-NP by hydroxyl radicals or nitrite radicals alone (Figure S3). Conversion by OH in the
gas phase dominates in over conversion in aerosol and haze water but not over that in clouds and rain.
Conversion of 2-NP by NO3 in the gas phase always dominates over conversion in atmospheric waters.
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Figure 6. Rate of 2-NP conversion in the atmosphere due to the gas-phase reaction with OH radicals
(a) or with NO3 radicals (b) compared to the rate of the aqueous-phase reaction of 2-NP with sulfate
radical-anions for various proportions of radicals in the aqueous phase [OH]aq/[SO4

•−]aq and varying
liquid water contents (ω) (based on Equation (11)).

Rate of conversions of a NP by X (OH or NO3) and by SO4
•− in the aqueous phases alone were

compared using Equation (12).
rX,aq

rSO4,aq
=

kX,aq

kSO4,aq
·

[X]aq[
SO·−4

]
aq

, (12)
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Figure 7 shows that the aqueous-phase conversion of 2-NP by OH radicals dominates over that
by SO4

•− radical-anions when the ratio of the radicals concentrations is higher than ~0.15. A similar
domination of NO3 radicals over SO4

•− radical-anions requires the corresponding concentration ratio
is greater than ~40.
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radicals and OH radicals (blue line) or NO3 radicals (red line).

We expect the comparison of gas-phase and aqueous-phase conversions for other nitrophenols
studied would provide similar results when the gas-phase rate constants for these nitrophenols
are available.

5. Conclusions

Nitrophenols (2-NP, 3-NP, 4-NP, and 2,4-NP) react fast with SO4
•− radical-anions in aqueous

solutions. Rate constants for these reactions, along with rate constants of several chlorophenols and
phenol, correlate linearly with Brown substituent coefficients and with the relative strength of the
O–H bonds in the molecules. The correlation allows estimation of rate constants for reactions of other
substituted phenols with sulfate radical-anions.

The aqueous-phase reaction of 2-NP with sulfate radical-anions dominates over the aqueous-phase
conversion of 2-NP by OH radicals only when SO4

•− radicals are at least 10 times more abundant than
the OH radicals. Similar domination over NO3 radical requires the concentration of sulfate radicals is
at least a quarter of the concentration of nitrate radicals.

The comparison of gas-phase conversion of 2-NP by OH or NO3 radicals against the aqueous-phase
conversion by sulfate radical-anions depends on the liquid water contents of a particular atmospheric
system considered. In deliquescent aerosol and haze water (ω < 10−10 m3 m−3), gas-phase reactions
always prevail over the aqueous-phase reactions. In cloud, rain and fog water (10−8 <ω< 10−6 m3 m−3),
the aqueous-phase reaction of 2-NP dominates over the gas-phase conversion of 2-NP by hydroxyl or
nitrate radicals provided the aqueous-phase concentration of sulfate radical-anions is not smaller than
the aqueous-phase concentration of hydroxyl or nitrate radicals. These conclusions are based on the
assumption that the gas-phase and aqueous-phase concentrations of OH, NO3, and 2-NP are bound by
Henry’s equilibria.

The gas-phase and aqueous-phase conversions of other nitrophenols are expected to follow
similar patterns. However, this expectation should be confirmed by calculations when constants of the
gas-phase reactions of the nitrophenols with hydroxyl and nitrate radicals are available.

Last not least, we hope that the rate constants determined in the present work for atmospheric
purposes may appear useful for designers of advanced oxidation processes aimed at removal of
nitrophenols from various waste effluents utilizing sulfate radical-anions.
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