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Abstract: Non-methane hydrocarbons (NMHCs) from four sampling sites in Lanzhou, a petrochemical
industrialized city in northwest China, was sampled by stainless steel canisters and measured by
gas chromatography–mass selective detection/flame ionization detection (GC–MSD/FID) in May and
June of 2017. Based on these results, the contributions of NMHCs to the ozone (O3) and secondary
organic aerosols (SOA), differences in tracer ratios, and source apportionment by principal component
analysis (PCA) were analyzed. The results showed that the total NMHCs concentration in Lanzhou
was 48.4 ± 48.3 ppbv (parts per billion by volume) during the observation and it was higher in May
(78.6 ppbv) than in June (37.8 ppbv); the highest NMHCs concentration was observed in industrial
areas. Alkanes were the dominant group at all sites in Lanzhou and account for more than 60% of the
NMHCs, while isopentane, n-butane n-pentane, propane and ethane were the major compounds.
Additionally, the NMHCs in Lanzhou have made great contributions to O3 and SOA generation and
the S1 site of the industrial area contributed the most to both of them. Propene, toluene, ethylbenzene
and n-pentane were found to be more reactive with relatively high contributions to ozone formation.
Aromatics and high carbon alkanes were major contributors to SOA formation potential (SOAp)
(i.e., toluene, m,p-xylene, dodecane, undecane, n-tanane, benzene and ethylbenzene) in Lanzhou.
Based on the specific volatile organic compounds (VOCs) ratio method and the PCA modem, the
observation sites in Lanzhou were greatly affected by the surrounding industrial areas. The sources
consisted of petrochemical industry, vehicle emissions, solvent usage and combustion sources, which
contributed to 33.9%, 31.6%, 19.2% and 7.9% of the total monitored NMHCs, respectively. From
different sites, though the influence of regional transport was not very significant on the whole,
it also affected the NMHCs of nonindustrial areas based on the ratio of xylene to ethyl-benzene (X/E),
especially the S4 site; vehicle emission was less important compared to sources from petrochemical
industries in S1, as characterized by relatively higher toluene to benzene (T/B) ratios. However,
vehicle emission has significant influence on NMHCs in S4. Overall, local emissions are the main
source of NMHCs in Lanzhou and the petrochemical industry has a great influence on the distribution
of NMHCs in the whole region.
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1. Introduction

Tropospheric photochemical pollution and haze pollution are principal environmental issues
which pose great challenges to the development of many cities and regions in China. Volatile organic
compounds (VOCs) play a vital role in formation of ground level ozone (O3) and secondary organic
aerosols (SOA) associated with urban air quality [1–3]. Non-methane hydrocarbons (NMHCs) are an
important part of VOCs. As significant air pollutants in the urban atmosphere, NMHCs have become
severe environmental problems in China, causing negative impacts on human health, air quality,
climate change, as well as natural ecosystems [4,5]. NMHCs are important precursors for secondary
pollutants, such as O3 and SOA [6]. The reaction of NMHCs with OH, O3, and nitrogen oxides (NOx)
generates SOA and also aggravates ground level O3 pollution in the presence of sunlight, linked to
severe photochemical pollution and haze pollution events in China [3,7,8]. Some NMHCs species, such
as benzene and toluene, could cause direct and potential hazardous effects on human health and the
ecosystem because of their toxicity [9,10]. Some of them are carcinogenic. The emissions of NMHCs
into the atmosphere are anthropogenic sources (solvent usage, biomass burning, vehicle combustion,
etc.) [11] and natural sources (soil, ocean, vegetation, etc.) [12]. The spatiotemporal distribution of
NMHCs in the atmosphere is closely related to the emission characteristics of sources, meteorological
conditions and characteristics of atmospheric chemical reactions [6]. Therefore, estimation of the O3

and SOA formation potential of anthropogenic NMHC emissions, and implementation of effective
VOC control strategies based on the estimation are essential.

In recent years extensive studies have been conducted to clarify the spatial and temporal differences
of concentration and possible sources of NMHCs, including areas like Beijing [13], Tianjin [14] and
Shanghai [15,16]. However, most studies of NMHC chemistry in China have focused on either remote
sites or megacities, mostly in the Pearl River Delta (PRD) region, Beijing–Tianjin–Hebei (BTH) region,
or Yangtze River Delta (YRD) region. There have been very few studies of the ambient NMHCs in the
northwest of China, such as Lanzhou, where there are growing industrial cities.

Lanzhou, located in the northwest of Gansu Province, China, is an industrial center in the interior
of western China. It is situated in a narrow valley basin in a mountainous region with a high altitude
(1520 m above sea level). This typical valley-mountain topography yields calm winds with annual
frequency of 55%, weak dispersion, and strong inversion throughout the year [17]. The unique
topography, together with its petrochemical industry and vehicle emissions (1.017 million cars in 2017),
makes it a typical “basin” of O3 pollution in summer [18], trapping air pollutants more easily. In the
late 1970s, the first field evidence of photochemical smog in China was reported in Lanzhou, which has
drawn great attention to ozone contamination nationwide [17,19]. In recent years, the deterioration of
air quality in Lanzhou has gradually become more serious due to petrochemical industries in western
suburb of the city and heavy traffic, which makes Lanzhou one of the cities most contaminated by air
pollutants in China, such as photochemical smog. As one of the important preconditions of ozone and
SOA, NMHCs also have aroused wider concern there. Recently, studies of NMHCs in Lanzhou have
increased, but mostly from the perspective of photochemical pollution mechanisms [19] and climatic
factors [20]. Moreover, research was basically limited to a specific point, and there are few studies that
engaged in simultaneous monitoring of multiple points at the same scale [21]. Little is known of the
spatial distribution of NMHC concentration and their contributions to O3 and SOA formation within
each area of Lanzhou, where complex sources from petrochemical industries exist.

The rapid increase in motor vehicle population in the past decade might alter the emission patterns
and sources, although the photochemical smog resulted from large-scale petrochemical industries
in western suburb of Lanzhou in 1970s. In this study, field measurements of NMHCs were carried
out to survey concentration, ozone and SOA formation potential, and source analysis of NMHCs in
Lanzhou city. The samples of NMHCs were collected by SUMMA canister and analyzed by Entech
7100 pre-concentration, Agilent 7890 Gas Chromatography and 5975 Mass Spectrometry. Overall, this
study reveals the concentrations and variation of VOCs in May and June, the secondary pollutants (O3

and SOA) formation potential of NMHCs, and the sources of NMHCs in Lanzhou.
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2. Experiment and Methods

2.1. Sampling Sites Description

Lanzhou is a large city of over 3 million people and an industrial center in the interior western
China. It is situated in an arrow valley basin in a mountainous region with a mean altitude of 1520 m
above sea level. In this study, we conducted measurement campaigns at four sites (shown in Figure 1).
The first site (S1) is located in Lanyuan hotel in Xigu, the west suburb of the city with quantities of
heavy petrochemical industry. This area is surrounded by many petrochemical plants and chemical
industries within 2 km, which is a typical industrial area. The second site (S2) is located in Anning
district of Lanzhou, a residential area. Site S2 is less than 5 km from the industrial area of Xigu. The
third station (S3) is situated in Qilihe district, which is in a residential area. There are no large-scale
pollution sources in S3. And the last site (S4) is located in the environmental protection agency of
Lanzhou in Chengguan district, which is in a mixed functional area of commerce, transportation and
residence. All the sampling points were approximately 25–30m above the ground.
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Figure 1. Map of this study’s sampling sites in Lanzhou.

2.2. Sample Collection and Analysis

The samples of NMHCs were collected by SUMMA canister and analyzed by the Gas
chromatography–mass spectrometry (GC–MS) system. The sampling campaign was conducted
in May (24–26 May 2017) and June (27–29 June 2017) at Lanzhou. Sampling was conducted at
07:00~09:00, 12:00~14:00 and 19:00~21:00 each day. Because of experimental conditions and funding,
the sampling campaign in the S2 site was only conducted in June (27–29 June 2017). Samples were
collected in SUMMA canisters, specially designed stainless steel flasks. The inner surfaces of the flasks
were electro-polished and silonite-coated to avoid gas adsorption. After sampling, all samples were
delivered to the laboratory for chemical analysis within a week.

The samples were analyzed by preconcentrator (Entech 7100) and GC-MS system (Agilent 7890A
GC-5975CMS) [22]. With the Entech 7100, samples were concentrated using a glass bead trap that was
maintained at −165 ◦C with liquid nitrogen. The trapped VOCs were then desorbed at −40 ◦C and
the majority of CO2 was removed. Then, the secondary trap was heated to transfer target VOCs to a
third cryofocus trap at −170 ◦C. After the concentration step, the trap was rapidly heated, and VOCs
were transferred to the GC-MSD/FID system. The chromatographic conditions were as follows: a DB-5
column (60 mm × 0.25 mm × 0.25 µm) was used with the GC oven temperature program. The GC
oven temperature was programmed to 35 ◦C initially, which was held for 3 min; it then increased to
120 ◦C at 5 ◦C/min and then to 250 ◦C at 10 ◦C min, where it was held for 20 min. The MSD was used
in selected ion monitoring (SIM) mode, and the ionization method was electron impacting (EI, 70 eV)
with a source temperature of 220 ◦C.



Atmosphere 2019, 10, 745 4 of 17

Target compounds were identified based on their retention times and mass spectra, and quantified
by external calibration methods. C4–C10 hydrocarbons were determined based on mass selective
detection (MSD) signals, while C2 and C3 hydrocarbons were determined based on flame ion detection
(FID) signals. The calibration standards were prepared by dynamically diluting the 100 ppbv (parts per
billion by volume) PAMS (Photochemical Assessment Monitoring System) standard gas (1 ppm, Spectra,
USA) to 0.5, 1, 5, 15, 50 and 100 ppbv. The calibration curves were obtained by running the five diluted
standards, plus humidified zero air, the same way as the field samples. The concentration–response
(peak area) correlation coefficients were 0.992–0.999. The analytical system was checked daily with
humidified zero air to ensure that it was clean, and then a one-point (typically 1 ppbv) calibration
was performed before running air samples. If the response was beyond ±10% of the initial calibration
curve, recalibration was performed. The measurement precision was determined by repeated analysis
of a standard mixture (1 ppbv) seven times, and controlled within 5%, respectively. In all, 56 species
(as shown in Table 1) were identified and measured in this study. The sum of these 56 species was
defined as the total VOCs in this study.

Table 1. The non-methane hydrocarbons (NMHCs) compounds measured in this study.

Alkanes Alkenes and Alkyne Aromatics

Ethane 2,3-dimethylpentane Ethylene Benzene
Propane 3-methylhexane Propylene Toluene
Isobutane 2,2,4-trimethylpentane Trans-2-butene Ethylbenzene
N-butane N-heptane 1-butene m, p-xylene
Cyclopentane Methylcyclohexane Cis-2-butene O-xylene
Isopentane 2,3,4-trimethylpentane 1-pentene Styrene
N-pentane 2-methylheptane Trans-2-pentene Iso-propylbenzene
2,2-dimethylbutane 3-methylheptane Isoprene N-propylbenzene
2,3-dimethylbutane N-octane Cis-2-pentene M-ethyltoluene
2-methylpentane N-nonane 1-hexene P-ethyltoluene
3-methylpentane N-decane Acetylene 1,3,5-trimethylbenzene
N-hexane N-undecane O-ethyltoluene
2,4-dimethylpentane N-dodecane 1,2,4-trimethylbenzene
Methylcyclopentane 1,2,3-trimethylbenzene
2-methylhexane M-diethylbenzene
Cyclohexane P-diethylbenzene

2.3. Quality Control and Quality Assurance

Prior to sampling, all the canisters were cleaned at least twenty times by repeatedly filling
and evacuating them with humidified zero air. After cleaning, all canisters were refilled with pure
nitrogen and stored in the laboratory for at least 24 h to check if there was any contamination in them.
Additionally, pure nitrogen in canisters was analyzed in the same way as the field samples to ensure
that the target NMHCs were not present or were below the method detection limits (MDLs). To ensure
the stability of the instrument system, a reference standard (typically 1 ppbv) was injected every day
before analyzing the air samples. If the response was beyond ±15% of the initial calibration curve,
recalibration was performed [23].

2.4. Meteorological Parameters

Meteorological parameters, including temperature, relative humidity, wind speed and pressure
were collected simultaneously using an automatic meteorological observation monitor (WM07; Kimoto
Electric). In this study, results showed that the region has low wind speed in all sampling sites and the
average wind speed was less than 1 m/s (Figure 2). The frequency of calm winds was over 60%, which
makes the atmosphere in Lanzhou more stable. Therefore, we ignored the influence of meteorological
conditions during our study.
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Figure 2. Wind speed data for study sampling sites S1, S3 and S4 in Lanzhou in May and June.

3. Results and Discussion

3.1. General Characteristics of NMHCs

Because of the high standard deviation, all VOC data collected was reported in this study as the
geometric mean. Figure 3 shows the statistical results of the concentrations of the NMHCs (the sum
of total VOC species) during the observation period. The measured NMHCs could be classified into
four categories, including alkanes, alkenes, alkyne and aromatics. The results indicated that the level
of NMHCs in Lanzhou was high with the average concentration of 48.4 ± 48.3 ppbv at the four sites.
In general, the NMHC level there was higher in May (78.6 ppbv) than in June (37.8 ppbv). The decline
in NMHC concentration levels in June depends on several environmental factors [24], including the
dilution from increases in the mixing layer depth, removal of NMHCs by particulate matter and dry
deposition, chemical removal, especially by OH radicals during summer. The highest concentration
of NMHCs was measured at S1, an industrial area, with a mean concentration of 150.3 ± 62.4 ppbv
and 58.5 ± 16.0 ppbv in May and June respectively, followed by the S2 site in June 47.9 ± 20.1 ppbv.
Xigu district is a typical petrochemical industrial area surrounded by most industries in Lanzhou,
which affect the NMHCs concentration at the S1 site obviously. The S2 site is about 5 km away from
the industrial area of Xigu District, and the sources of pollution also have a great influence there.
The concentration of VOCs at the S4 site in May and June was 47.0 ± 40.12 ppbv and 22.7 ± 20.5
ppbv, respectively; this site is an urban area surrounded by commercial areas and a transportation
hub. The S3 site was slightly lower than that of S4 with the NMHC concentrations of 38.5 ± 25.2
and 26.7 ± 15.3 ppbv, respectively. In general, the difference of NMHC emission sources is the key
factor determining the distribution of NMHC concentration in Lanzhou. Compared with other cities,
the concentration of atmospheric NMHCs in the non-industrial area of Lanzhou was close to those
reported in Beijing [25], Nanjing (48.17 ± 16.01 ppbv) [26], Wuhan (23.3 ± 0.5 ppbv) [27] and Shanghai
(28.9 ppbv) [28]. However, the level of NMHCs in industrial hubs in Lanzhou (S1 site) during the
sampling period was higher than that of many Chinese cities. Previous studies have shown that this
variation in average concentrations in locations can be attributed to traffic density, industrial activities,
fuel composition and combustion, solvent usage and other human activities, and it is also influenced
by local conditions such as terrain and weather [29].
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The chemical compositions of NMHCs divided into alkanes, alkenes, and aromatics groups at the
sampling sites are similar as shown in Figure 4. Alkanes were the dominant group at all sites during
the two sampling periods, especially in May (accounting for more than 70% of the total concentration
in Lanzhou). During the observation period in May, alkanes contributed to the most advantage for
NMHCs (79.7%), followed by aromatics (10.3%) and alkenes (8.4%). Other sites showed that alkanes
> alkenes > aromatics > acetylene; alkanes contributed to an absolute advantage with contribution
rate of more than 70%, followed by alkenes, accounting for 13.9% and 9.7% at S3 and S4, respectively.
The concentration of the aromatics was similar in these two sites, with the proportions of 8.4% and
7.1% respectively. However, the ratios of NMHCs components in June were a little different from May.
Though the ratio decreased, alkane was still the dominant group at all sites, with 61.1%, 70.0%, 63.6%
and 67.0% of the total concentration in S1, S2, S3 and S4, respectively. The other components of the
ranking were different from each site in June. The second-most dominant group at S2, S3 and S4 was
the aromatics, with 14.5%, 17.0% and 14.2% of the total concentration. Alkene pollutants contributed to
the total NMHCs more at S1, accounting for 19.9%, followed by aromatics (16.1%) and acetylene (2.9%).
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The concentrations of the 10 most abundant species based on the identified NMHCs species are
shown in Figure 5. During the sampling period, the most important NMHCs species at all sites were
alkane species, such as isopentane, n-butane, n-pentane, propane and ethane. It is noteworthy that
isopentane occupied first place in all sites, while propane or ethane always comprised the majority of
NMHCs in previous studies, such as in Beijing [2,30] and Shanghai [15]. According to our published
data on sources of NMHCs in the same period [31], isopentane is one of the most abundant species in
samples from the petrochemical industry, arising from the formation processes of kerosene, gasoline
and diesel. As the local pillar industry, petrochemical industrial facilities are the main source of
NMHCs in Lanzhou, which have an important effect on the component distribution of NMHCs in
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such a semi-closed basin. Isopentane in the atmosphere is thus likely to be from the petrochemical
industry. The results suggest that the petrochemical industries have evident contributions to the
ambient NMHCs concentrations over the whole area in Lanzhou. Besides, the share of acetylene at
S4 (7.4%) was much higher than at other sites (Figure 5); acetylene is possibly mainly derived from
vehicle emissions in urban areas [32]. Thus the NMHCs at S4 during the sampling period was probably
affected mostly by vehicle emissions.
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Figure 5. The top 10 species of NMHCs at each sample site over the sampling period of May and June.

3.2. Ozone and SOA Formation Potential for NMHCs

To effectively reduce O3 and SOA formation in Lanzhou, it is important to identify the major
VOC emissions and their transformation species. Thus, it is essential to clarify the role of VOCs by
calculating both the ozone formation potential (OFP) and secondary organic aerosol potential (SOAP)
values for this area.

3.2.1. Ozone Formation Potential for NMHCs

The maximum incremental reactivity (MIR) method, proposed by Carter (1994) [33], was a good
indicator for comparing the ozone formation potential (OFP) of each individual NMHC species, and
was defined by the following equation:

OFP = [NMHC i] ×MIRi (1)

where OFP is the ozone formation potential, NMHCi is the concentration of individual NMHCi, and
MIRi is the maximum incremental reactivity coefficient of individual NMHCi, which is defined by
Carter [33]. In this study, considering the reaction and volatilization in sunlight, the NMHCs sampled
at 07:00–09:00 h were used to calculate the OPF, when solar radiation is relatively low.

Figure 6 shows the concentration of NMHCs and the value of OFP in Lanzhou during the sampling
time. There was a significant variation among OFPs at all sites in the sampling period. The OFP in May
was significantly higher than that in June at all sites. Among the four sites, S1 exhibited the highest
OFP, followed by S2 and S4. The contribution of NMHCs to OFP was relatively low in S3.
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As shown in Figure 7, The OFP in S1 and S2 were mainly from aromatics, accounting for 46.3%
and 35.2% of the total OFP, respectively. Followed by alkanes (38.4% and 34.1%) and alkene (15.3% and
30.2%). Meanwhile, the OFP in S3 was mainly from alkene (43.8%), and secondly by alkanes. The OFP
in S4 was mainly from alkanes due to high ambient concentration, accounting for 37.9%. Aromatics
and alkenes had a similar contribution to OFP in S4 site.
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Compared with other cities (Figure 7), the contributions of NMHC groups to the total OFP in
Lanzhou were significantly different. The OFP proportion of alkanes varied within a large range
(29.5–37.9%), which were much higher than Beijing [2], Shanghai [34], Nanjing [35] and Guangzhou [36].
The results indicate the ozone formation was mainly influenced by aromatic and alkenes in summer.
While different from other cities, the OFPs in Lanzhou were also significantly influenced by alkanes.
The results can be helpful for policy makers wishing to prevent local ozone formation in different
city locations.

As shown in Table 2, the top 10 NMHC species with the highest OFP were mainly from the
aromatic and alkene groups. During sampling period, the top ten OFP VOCs species account for more
than 77% of total OFP of all measured species in Lanzhou. Ethylbenzene, propene, toluene and styrene
were the most important species in O3 formation in this region. It is noteworthy that some alkane
species occupied an important position in the top 10 greatest contributions to the total OFP at all sites,
such as isopentane, n-pentane, n-butane, which are inseparable from industrial sources [37]. While
these species have low reactivity, their high environmental concentration was the main reason for their
important contribution to ozone formation in Lanzhou. Propene had the highest OFP in the S2, S3 and
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S4 sampling sites; its contribution to total ozone formation potentials (OFP) were 15.38%, 15.85% and
12.39%, respectively. Ethylbenzene and propene ranked first and second of the top 10 OFP species
during the sampling periods of S1 site.

Table 2. The top 10 species with the highest ozone formation potential (OFP) in different sites in
sampling period (May and June).

S1 OFP S2 OFP S3 OFP S4 OFP

ethylbenzene 14.13% propene 15.38% propene 15.85% propene 12.39%
propene 12.97% toluene 14.94% n-butene 13.01% ethylbenzene 11.47%
styrene 12.48% isopentane 11.19% ethylbenzene 9.09% n-Pentane 10.50%
n-pentane 9.18% m/p-xylene 10.49% styrene 8.92% styrene 10.29%
m/p-xylene 9.16% ethylene 7.85% m/p-xylene 7.58% Trans-2-butene 10.25%
n-butene 7.76% styrene 4.60% 1-Pentene 5.59% m/p-xylene 6.41%
toluene 5.28% cis-2-butene 4.00% isopentane 5.27% 1-Butene 5.87%
Trans-2-butene 4.73% n-pentane 3.89% n-pentane 4.33% isopentane 5.17%
2,2-Dimethylbutane 2.72% n-butane 3.80% toluene 4.14% 1-Pentene 4.04%
1-Pentene 2.32% n-butene 3.35% isobutane 3.26% Benzene 2.71%

3.2.2. Secondary Organic Aerosol Formation Potential

As important precursors of SOA formation, NMHCs are of great significance in the research on
SOA formation potential. In this study, the parameter secondary organic aerosol potential (SOAP)
developed by Grosjean et al. (1992) [38] was used to calculate the contribution of NMHC species to
SOA. In their study, 26 NMHC species were considered as precursors for secondary organic aerosols to
calculate the SOAP. SOAP reflects the propensity of each organic compound to form SOA on an equal
mass-emitted basis. The SOAP could be expressed as Equations (2) and (3):

SOAP = NMHCs0 × FACi (2)

NMHCst = NMHCs0 × 1− FVOCr (3)

Here, SOAP is the changes of SOA formation potential; NMHCs0 is the initial concentration
of individual NMHCi, µg/m3; NMHCst is concentration in ambient air; FACi is fractional aerosol
coefficient of NMHCi; and the FVOCr is the fraction of NMHC reacted. The FACi and FVOCr come
from smoke chamber tests of Grosjean [38] and another study [39].

In this study, the average SOAP values were 1.38, 0.99, 0.79 and 0.84 µg/m3 at four sampling sites,
respectively. The values of SOAP at our sampling site were much higher than previously reported
results from an urban site in Lanzhou for autumn of 2013 [21]. Table 3 suggests that aromatic compounds
contribute most to SOA formation, accounting for 84.7%,90.1%,91.7% and 81.3% of total SOAP at S1, S2,
S3 and S4 followed by alkanes (14.2%,7.9%,17.0% and 17.8%), especially the long-chain alkanes, such
as n-dodecane and n-undecane. The results were similar to most cities in China, such as Beijing [2]
and Wuhan [3]. But the contribution of alkanes was more remarkable there due to high emissions and
relatively high SOA yields. As we can see (Figure 8), although the order of contribution of NMHCs
components to SOA was slightly different from each site, all of them are dominated by high-carbon
alkanes and aromatic compounds for the SOA formation. For individual NMHC, the top 10 species
contributing most to total SOAP were toluene (29.1–42.2%), m-xylene (12.6–16.2%), ethylbenzene
(10.9–12.6%) and p-Xylene (6.3–9.1%), etc, which results from their great emissions and relatively
large SOA yields compared with other NMHC species. The most important individual NMHCs were
similar to previous results for China, which identified toluene, m-xylene, o-xylene, naphthalene and
p-xylene as the five top NMHCs in 2017 [40]. The results highlighted the great SOA formation ability of
aromatics and long-chain alkanes as well as the necessity for identifying the sources and the importance
of controlling the emissions of these compounds. Actually, the SOAp calculated underestimated the
actual atmosphere in this way. One of the reasons for underestimation is that compounds with high
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SOA formation potentials, such as terpenes and pinene, were not measured [41]. Furthermore, it is still
unclear how photo-oxidation mechanisms are involved in SOA production. However, NMHCs do
promote more SOA production due to atmospheric oxidation. Therefore, the SOAp of each species
could be used to effectively identify the important NMHC species for SOA formation.

Table 3. Secondary organic aerosol formation potential (SOAp) at different sites in Lanzhou.

Species FAC Fvocr
SOAp (µg/m3)

S1 S2 S3 S4

alkane

Methylcyclopentane 0.002 0.100 0.001 0.001 0.001 0.001
Cyclohexane 0.002 0.140 0.001 0.000 0.000 0.001
n-Heptane 0.001 0.140 0.000 0.001 0.000 0.000
Methylcyclohexane 0.027 0.200 0.012 0.015 0.008 0.007
2-Methylheptane 0.005 0.100 0.001 0.001 0.001 0.001
3-Methylheptane 0.005 0.100 0.001 0.001 0.001 0.001
n-octane 0.001 0.170 0.001 0.001 0.000 0.000
n-Nonane 0.015 0.200 0.011 0.006 0.006 0.005
n-Decane 0.020 0.220 0.035 0.011 0.020 0.032
n-undecane 0.025 0.250 0.065 0.028 0.039 0.032
n-dodecane 0.030 0.260 0.068 0.014 0.058 0.070

alkene Isoprene 0.026 0.230 0.016 0.020 0.010 0.008

aromatic

Benzene 0.020 0.100 0.084 0.035 0.035 0.029
Toluene 0.054 0.120 0.480 0.418 0.246 0.244
Ethylbenzene 0.054 0.150 0.175 0.118 0.096 0.091
m -Xylene 0.047 0.340 0.173 0.160 0.100 0.124
p-Xylene 0.047 0.340 0.107 0.062 0.068 0.076
o-Xylene 0.050 0.260 0.062 0.052 0.046 0.051
iso-Propylbenzene 0.040 0.130 0.008 0.003 0.004 0.004
n-Propylbenzene 0.016 0.120 0.003 0.002 0.002 0.002
m-ethyltoluene 0.063 0.310 0.011 0.006 0.008 0.011
p-ethyltoluene 0.025 0.210 0.004 0.002 0.003 0.004
1,3,5-Trimethylbenzene 0.029 0.740 0.005 0.002 0.003 0.003
o-ethyltoluene 0.056 0.230 0.005 0.003 0.004 0.004
1,2,4-Trimethylbenzene 0.020 0.580 0.009 0.005 0.005 0.006
1,2,3-Trimethylbenzene 0.036 0.510 0.009 0.006 0.006 0.010
m-diethylbenzene 0.063 0.470 0.017 0.007 0.007 0.009
p-diethylbenzene 0.063 0.470 0.019 0.011 0.012 0.013

NMHCs SUM - - 1.38 0.99 0.79 0.84
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3.3. Source Analysis of NMHCs

3.3.1. Ratios of the Specific NMHCs

(1) Local sources and transport from remote sources
Some specific NMHC species are commonly used as indicators of photochemical and atmospheric

transport processes [42,43] as well as tracers for emission sources [11], such as the ratio of m,p-xylene
to ethyl-benzene (X/E) and the ratio of toluene to benzene (T/B).

The ratio of m,p-xylene to ethyl-benzene (X/E) is commonly used as an indicator for photochemical
reactions [44]. Because they are usually from common sources and the reaction rate constants are
different. The ratio becomes smaller as the NMHCs stay longer in the atmosphere, because m,p-xylene
is more reactive than ethylbenzene. The atmospheric life times of m,p-xylene and ethylbenzene are
3 h and 8 h, respectively. This means that as the air mass containing NMHCs travels, m,p-xylene will
react more rapidly than the ethylbenzene and at the specific distance from the source the ratio will
decrease [45].

In this study, high correlations (R2 > 0.85) were found between ethyl-benzene and xylene at all
sites during sampling period. The X/E ratio at S1, S2, S3 and S4 was 2.65, 2.33, 2.62 and 2.21, respectively
(Figure 9) during the whole observation period, which was significantly higher than those recorded in
Beijing (1.13) [2], Shanghai (0.87) [34] and other cities. The results indicate that the Lanzhou would be
expected to have a less photochemically aged mix of NMHCs, and the air mass experienced less aging
during sampling, reflecting its greater proximity to NMHC sources [44] and obvious influence by local
sources around the sampling site.Atmosphere 2019, 11, x FOR PEER REVIEW 12 of 18 
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Considering the S3 and S4 sites are located within the urban area and close to traffic arteries,
the influence of vehicle emission sources is significant, whereas the S1 and S2 sites are far from the
major traffic area. Whether there is an impact of pollutant transport from industry on VOCs is not
clear. Therefore, we analyzed the transportation of industrial sources in the whole Lanzhou region
by obtaining the traffic data from the database of S3 and S4 sites that contains traffic congestion hour
or period. As shown in Figure 9 (S3—No traffic and S4—No traffic). Regardless of the influence of
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traffic, the X/E ratio increased from west to east. Furthermore the X/E ratio at S1, S2, S3 and S4 in such
circumstances were 2.65, 2.33, 1.77 and 1.54, respectively, indicating that the atmospheric oxidation
capacity increased [3]. A fresh air-mass sample was collected from the S1 site, indicating that the
contribution of local emissions of industry in this area is larger than other sites. Meanwhile the ratio of
X/E implies a slight aged air parcel in S4, suggesting that S4 site is also affected by pollution transport
to some extent. On the whole, it is believed that the higher ratio in Lanzhou is possibly due to the
non-aged character of the air mass, suggesting that the ratios were strongly influenced by local sources,
especially at S1 site. Besides the influence the traffic, pollution transport also influences the S3 and
S4 sites.

(2) Traffic emissions and non-traffic sources
Because different emission sources have their specific NMHC profiles, the comparison of NMHC

ratios between the ambient measurements and emission sources could be a reliable diagnostic tool to
identify VOC sources [46,47]. The ratio of benzene/toluene (B/T) is widely used as an indicator for
various sources because of the significant difference of the ratios between the vehicle exhaust and other
sources, such as coal combustion, biomass burning, solvent usage and other BTEX (benzene, toluene,
ethylbenzene and xylene) emission sources. To further examine the source of NMHCs, toluene to
benzene ratio (T/B) was often used to identify NMHCs sources in this study.

The distinction of T/B ratios between various sources suggested that the ratio should be a useful
marker during the source analysis of atmospheric VOCs. Previous research has indicated that the
average ratio was 1.7, based on 27 roadside samples in 25 cities in China [39]. A T/B ratio within the
range of 0.37–0.58, is considered to be an indicator of biomass burning, as reported by Wang et al. [47].
Meanwhile a T/B value of 0.71 was used as an indicator of coal combustion [47]. Mo et al. (2015) [48]
found that T/B ratios in the petrochemical industry and basic chemical industry were 1.1 and 2.8,
respectively. Shi et al. (2015) [49] found T/B ratios varied from 0.29 to 1.38 in the coke production
industry, iron smelting industry, thermal power plants and heating station plants. A T/B value of 1.43
was found in a traffic tunnel [50].

As shown in Figure 10, the T/B ratios were relatively large and ranged 1.78–3.23 in Lanzhou.
This result indicates that the observation points were greatly affected by the surrounding industrial
agglomeration areas, particularly in the S1 site (3.23) and S2 site (2.23). Higher T/B at S1, on the other
hand, reflected a contribution mostly originating from non-traffic sources, such as coal combustion,
biomass burning, and petrochemical industrial emissions. There the result was closer to that of the
industrial area in Nanjing [23]. Finally, the ratios at S3, S4 were 1.62 and 1.78, respectively, which
suggests the main BTEX source at both sites was traffic.Atmosphere 2019, 11, x FOR PEER REVIEW 13 of 18 
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3.3.2. Source attribution of NMHCs by PCA

Due to the small amount of data from a single site, data from all four sites are used together for
source analysis comprehensively by Principal component analysis (PCA). Thirteen typical components
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of the NMHCs were selected, and a PCA mode was used to analyze the sources of the NMHCs in
Lanzhou during the observation period. These are the most abundant compounds (accounting for 60%
of the total NMHCs) and are good tracers for major sources such as vehicle exhaust, solvent usage
and the petrochemical industry. According to the results from the study conducted by Thurston and
Spengler (1985) [51], when n > m + 50 (n represents the number of samples and m represents the
number of pollutants for analysis), a reliable PCA result can be obtained; the number of data samples
in the present study met this requirement. During the factor extraction process, Kaiser’s criteria were
adopted to determine appropriate number of factors to be retained (only those factors with eigenvalue
>1) [51]. Table 4 lists the results of the PCA analysis and source apportionment of Lanzhou. Four
factors were extracted from the application of PCA to the data. As shown in Figure 9, the factors were
identified as vehicular emissions, petrochemical industry emissions, solvent usage and combustion.

Table 4. Component analysis of VOCs in Lanzhou.

VOCs
Principal Component

PC1 PC2 PC3 PC4

Ethane - 0.83 0.5 0.1
Propane 0.13 0.11 0.97 0.04
n-hexane 0.2 0.85 - 0.35
Isopentane 0.83 0.02 0.48 0.07
Dodecane 0.12 0.06 0.95 -
Ethylene - 0.92 - -
Propylene - 0.85 0.47 0.03
Isoprene 0.12 0.87 - -
Acetylene - 0.13 0.05 0.98
Benzene - 0.98 0.63 0.01
ethyl benzene 0.98 0.05 0.75 -
p-xylene 0.08 0.02 0.95 -
Styrene 0.95 0.03 - -

variance contribution 33% 32% 19% 7%

Note List the factor load >0.01 only; Extract Method: Principal component analysis; Rotation Method: Varimax
orthogonal rotation.

Factor 1 (PC1) consists mainly of isopentane, ethylbenzene and styrene which are major
components of petrochemical industry sources [37,52]. Further, isopentaneandethyl benzene are
the main species in the petrochemical plants of Lanzhou [31]. Therefore, source 1 was identified as
petrochemical industry emissions. Factor 2 (PC2) from the PCA explained 31.6% of the total variance.
High loadings were found on hexane, ethane, ethylene, propylene, benzene and acetylene. It has
been known that propylene and acetylene are the typical species of vehicle emissions, and C3–C6
alkanes are associated with unburned vehicular emissions [53,54]. Propylene and benzene in urban
areas also mainly come from automobile exhaust. All these VOCs imply emissions from vehicles,
including exhaust and evaporative emissions. For Factor 3 (PC3), benzene, ethyl benzene, dodecane
and propane were weighted relatively higher; a high proportion of BTEX was related to the use of
solvents in painting, coating, synthetic fragrances, adhesives and cleaning agents [15,47]. Moreover,
according to our published data of source of NMHCs in the same period [31], high-carbon alkanes
are relatively abundant, e.g., dodecane, in the coating factory of Lanzhou. Therefore, this factor was
identified as solvent usage, and the contribution to the NMHCs concentration was 19.2%. For factor
4 (PC4), acetylene, ethane and n-hexane were the species with the high factor loading, marker for
combustion sources [55]. This factor was likely related to combustion emissions, including coal and
biomass burning. The contribution of combustion emissions to NMHCs concentration was 7.4%.

Overall, these four factors explain 92.1% of the total variance in Lanzhou. As showed in Figure 11,
petrochemical industry emissions were the major contributors of NMHCs in Lanzhou accounting for
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33.9%. Vehicular exhaust and petrochemical industry emission were still the major control sources for
reducing NMHCs concentration in Lanzhou.
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4. Conclusions

NMHCs were collected using the SUMMA canister sampling method in four sampling sites in
Lanzhou, including Lanyuan Hotel (S1), Anning district (S2), Qilihe (S3) and at the Environmental
Protection Bureau of Lanzhou (S4) in May and June of 2017. A total of 56 NMHCs data sets were collected
in order to analyze their compositions and concentration distributions, illustrate overall characteristics
of different classes of NMHCs, and evaluate the OFPs and SOAp, and source apportionment of NMHCs
using diagnostic ratios and PCA model. The results showed that the level of concentration of VOCs
in Lanzhou was 48.4 ± 48.3 ppbv during the two observations. The concentration of NMHCs was
higher in May (78.6 ppbv) than in June (37.8 ppbv), alkanes contributed the most to NMHCs in all
sites, and the chemical composition of NMHCs was stable. The OFP and SOAp of NMHCs showed
that the photochemical reactivity was high in Lanzhou and the S1 site contributed the most to the both
of these parameters. Ethylbenzene, propene, toluene and styrene were found to be more reactive, with
relatively high contributions to ozone formation in Lanzhou, while aromatics and high carbon alkanes
were major contributors to SOAp (i.e., n-dodecane, n-undecane, toluene, m-xylene and ethylbenzene).
The ratio of m,p-xylene to ethylbenzene (X/E) indicated that the air mass was fresh in Lanzhou, which
showed local emission is the main source of VOCs in atmosphere of Lanzhou. The principal component
analysis (PCA) and toluene/benzene (T/B) confirmed that industry and traffic were the larger sources
of NMHCs in Lanzhou. Overall, local emissions are the main source of NMHCs and the petrochemical
industry has a great influence on the distribution of NMHCs in the whole region of Lanzhou.
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