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Abstract: Horizontal visibility (HVIS) is a primary index used for assessing air quality. Although
satellite images provide information regarding atmospheric aerosols, atmospheric visibility is
not directly measured. In this paper, a deep learning approach is proposed to retrieve HVIS
using moderate-resolution imaging spectroradiometer (MODIS) aerosol optical depth (AOD) data,
the European Centre for Medium-Range Weather Forecasts reanalysis dataset, and ground-based
visibility observations. The deep neural network model comprises a multi-layer unsupervised
restricted Boltzmann machine (RBM) and a layer for supervised learning. The dropout mechanism
was used in the training process to overcome the errors caused by over-fitting. The results demonstrate
that the correlation coefficient values between HVIS observations and retrievals during training,
pre-validating, and evaluation were 0.74, 0.723, and 0.697, respectively. The retrieved HVIS in Eastern
China exhibited a north-to-south increasing trend, increasing and decreasing in summer and winter,
respectively. In conclusion, the proposed model presents an effective and more reliable method
for HVIS retrieval. However, the small samples, low AOD, low albedo, high total column water,
high longitude, and the low vertical wind component at 10 m likely cause HVIS bias.
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1. Introduction

Atmospheric visibility, a primary index used for describing air quality, commonly refers to
horizontal visibility (HVIS) [1,2]. Low HVIS can result in human illness and diseases as well as
transportation risks [3–5]. The degradation of HVIS is caused by the scattering and absorption of
light by air molecules, hydrometeors (rain, snow, fog, and clouds), and aerosols. HVIS is affected by
various natural and anthropogenic factors [6–8]. The contamination of air by anthropogenic aerosol
particulates is the main factor causing low HVIS [6,7]. Generally, highly accurate atmospheric HVIS
observations can be obtained from ground-based observations. However, the sparse and uneven
spatial distribution of ground-based observations limits data availability. Satellite-derived aerosol
optical depth (AOD) remote sensing data with wide spatial coverage and fine spatial resolution,
e.g., the moderate-resolution imaging spectroradiometer (MODIS) Collection 6 Level 2 product with a
spatial resolution of 3 km, can provide useful information for air quality [9–11].

Satellite-derived AOD is defined as the integration of light extinction in the entire atmospheric
column. Satellite sensors have exhibited highly accurate retrieval of AOD [12,13]. Operational AOD
products have been widely used in various aerosol studies [9,14,15]; however, few studies have
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calculated HVIS using satellite-retrieved AOD. Koschmieder [16] demonstrated that aerosol extinction
coefficients at the surface (σs, 550 nm) is a parameter commonly used to derive HVIS with a simple
inverse formula, named Koschmieder’s equation (extinction coefficient = 3.912/HVIS). Early studies
examined the relationship between AOD and inverse of HVIS using simple linear regression model,
and the correlation coefficient between AOD and the inverse of HVIS was 0.85 in 1980 and 0.56 in 1981
in Washington, DC, USA [17]. The correlation between total vertical extinction and surface extinction
is high only under extreme conditions of high clarity and extremely low HVIS. Hadjimitsis et al. [18]
computed the inverse of HVIS based on the darkest-pixel (Landsat-5 thematic matter (TM) Band 1)
atmospheric correction algorithm in cooperation with radiative transfer model. Although the coefficient
of determination between determined and measured HVIS is 0.97, only a few satellite images were
used. However, the vertical distribution of aerosol is the most crucial factor for determining the
accuracy of HVIS from satellite-derived AOD [19,20]. Kessner et al. [21] tried to obtain the HVIS
using a scaling approach with HVIS =

HVISGEOS−5 × AODGEOS−5
AODMODIS

, where HVISGEOS−5 and AODGEOS−5

were obtained from Goddard Earth Observing System Model, Version 5 (GEOS-5) and AODMODIS

was obtained from the MODIS L2 product. The best result when compared with observational HVIS
showed that the root mean square error (RMSE) was 7.82 km and the correlation coefficient (R) was 0.7.
He et al. [22] proposed a vertical correction method based on a two-layer aerosol model to estimate the
HVIS of MODIS AOD. Seasonal spatial comparisons showed that most R(90%) were > 0.6, and more
than half the samples (68%) exhibited R of > 0.7.

However, simple linear regression is not based on systematic theories, whereas many
meteorological elements, such as relative humidity (RH) [23–25] and wind [26], were not considered,
which significantly affected the accuracy of HVIS derived from MODIS AOD. For the scaling approach,
the accuracy is limited by the uncertainties of the model parameterization. All these factors lead to
the inaccuracy of HVIS simulations. As such, developing an effective approach for HVIS estimations
is essential.

Deep learning (DL) is an area of machine learning that tries to model high-level abstractions
of data using multiple processing layers [27]. DL has attracted considerable academic and
industrial attention [28,29]. Recent studies have reported successful DL application in the fields
of character recognition [30], computer vision [31], natural language processing [32], human activity
recognition [33,34], and motion modeling [35,36]. The deep belief network (DBN) is a typical DL
method, which uses the restricted Boltzmann machine (RBM) as the basic unit of network modeling.
DBNs adopt the unsupervised greedy layer-by-layer training algorithm in co-operation with the
top-down fine-tuning training method to identify the essential characteristics of data, which can
considerably improve classification and prediction accuracy [37]. An integrated DBN was first proposed
for regression and time series prediction [38]. The deep confidence network that is used to characterize
and classify hyperspectral remote sensing data has considerably improved classification accuracy [39].
Recently, Huang and Xiang [40] proposed a DBN model based on a SoftMax classifier and dropout
mechanism to improve the prediction accuracy of landslides. The discard mechanism in the training
process can reduce the prediction errors caused by over-fitting.

The DL model and long short-term memory model have been applied to predict particulate
matter with an aerodynamic diameter less than or equal to 2.5 µm (PM2.5) concentration at ground
stations [41,42]. However, to the best of our knowledge, few recent studies have estimated HVIS, and
even fewer have combined satellite-derived AOD using deep learning models. Determining HVIS from
satellite-derived AOD is inherently complex as HVIS accuracy is influenced by various factors such
as boundary-layer height [BLH], RH, wind, pressure, and altitude. However, deep learning models
trained using a greedy hierarchical approach to generate representative impact factors to estimate
HVIS without any prior knowledge may produce accurate HVIS results.

In this study, we present a HVIS deep belief network (HVIS_DBN) model that could be directly
applied to estimate HVIS by using MODIS AOD, meteorological data, and other factors in Eastern
China. A spatial prediction framework was built based on the HVIS_DBN model considering the
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spatial correlations of HVIS in the simulation process. The experimental results demonstrated that the
proposed methods exhibit a more accurate performance than existing methods for determining HVIS.
The remainder of this paper is structured as follows: Section 2 provides a brief introduction of data
and describes the proposed method in detail. The results are discussed in Section 3. The conclusions
are summarized in Section 4.

2. Materials and Methods

2.1. MODIS AOD Product

The MODIS operational AOD data have been widely used to investigate the spatiotemporal
distribution of aerosols and to evaluate air quality [12,43]. The MODIS Collection 6 (C6) AOD Level 2
product with a spatial resolution of 3 km uses the dark target algorithm. The AOD over land is derived
from observed top-of-atmosphere reflectance at 0.47, 0.66, and 2.12 µm bands [10,11]. Remer et al. [11]
compared the MODIS AOD 3 km product with aerosol robotic network (AERONET) measurements and
showed that the MODIS AOD retrievals fall within one standard deviation of the predicted uncertainty
of ∆AOD (equal to ±0.05 ± 0.20 AOD over land). Xie et al. [44] compared 3 km MODIS AOD products
from Aqua with AERONET at three sites located in Beijing, China. The results showed that MODIS
AOD is highly consistent with AERONET measurements, with a Pearson correlation coefficient of
0.93 and the average difference in AOD was 0.29 at the three sites. In this study, the MODIS C6 AOD
Level 2 Aqua product with a spatial resolution of 3 × 3 km was applied for the retrieval of the HVIS.

2.2. European Centre for Medium-Range Weather Forecasts ERA-Interim Data

The reanalysis data used in this study were obtained from the European Centre for Medium-Range
Weather Forecasts Re-Analysis Interim (ERA-Interim) dataset. ERA-Interim is the latest global
atmospheric reanalysis data produced. The ERA-Interim project was conducted in part to prepare
for a new atmospheric reanalysis to replace ERA-40, which extends back to the early part of the
20th century [45]. In this study, data at 06:00 UTC (14:00 LST) were selected to match the equatorial
crossing time at 13:30 LST of Aqua. The ERA-Interim reanalysis data of albedo (AL), dewpoint
temperature at 2 m (D2m), surface pressure (SP), air temperature at 2 m (T2m), total column ozone
(TCO3), total column water (TCW), vertical wind component at 10 m (V10), and BLH with a
0.125◦ × 0.125◦ spatial resolution confined to the area 23◦–35◦ N and 113◦–123◦ E were used.

2.3. HVIS Data

HVIS data from 168 ground-based stations (Figure 1) were obtained from the China Meteorological
Administration (CMA). According to the forward scattering principle of light, the forward scattering
visibility meter emits infrared pulses to measure the forward scattering intensity of suspended particles
in the air. Based on Rayleigh scattering theory, the extinction coefficient is calculated by scattering
data, and then the HVIS is calculated by the equation HVIS = 3.912/σs (aerosol extinction coefficients
of 550 nm at surface) [16]. The accuracy of HVIS is ±10% in the range of 10 to 10,000 m and ±20% in
the range of 10,000 to 35,000 m. This dataset, with a 1 h temporal resolution, covered the period from
1 January 2014 to 31 December 2017. To match MODIS AOD data, the time difference was limited to
±1 h.
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Figure 1. Locations of the horizontal visibility (HVIS) ground-based stations in Eastern China. 
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supervised learning. The training process of the model includes three main stages: Pre-processing, 
pre-training, and fine-tuning. It uses a layer-by-layer unsupervised learning for pre-training the 
initial weights of the networks and global supervised learning for fine-tuning. 

Figure 1. Locations of the horizontal visibility (HVIS) ground-based stations in Eastern China.

2.4. Methodology

In this study, a typical DL method was designed for retrieving HVIS from MODIS AOD data.
As shown in Figure 2, the HVIS_DBN model is a multi-layered probabilistic, generative model [28,29].
It is a semi-supervised learning method that combines the advantages of unsupervised and supervised
learning methods. The model has a strong ability to classify and predict high dimensional feature
vectors. The HVIS_DBN model comprises a multi-layer unsupervised RBM and a layer for supervised
learning. The training process of the model includes three main stages: Pre-processing, pre-training,
and fine-tuning. It uses a layer-by-layer unsupervised learning for pre-training the initial weights of
the networks and global supervised learning for fine-tuning.
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Figure 2. Deep architecture model for HVIS predictions. The restricted Boltzmann machines (RBMs)
at the bottom are used for feature extraction, and the back propagation (BP) layer at the top is for
real-value predictions.

2.4.1. Pre-Processing

In the pre-processing stage, the input variables and parameters of HVIS_DBN were first initialized
using zero-mean method. The input variables included HVIS (m), AOD, AL, RH (%), SP (Pa),
TCO3 (kg m−2), TCW (kg m−2), V10 (m s−1), BLH (m), altitude (m), longitude (◦), and latitude (◦):

Vstd,i =
Vi − µi

σi
(1)

where Vstd,i is the standardized input variable, Vi is the original input variable, µi is the average of Vi,
and σi is the variance of Vi.

Since the ECMWF ERA-Interim dataset did not include the variable RH, we used the following
formula was used to calculate RH [46]:

RH = 100× exp
(17.2694×D2m

D2m + 237.3
−

17.2694× T2m
T2m + 237.3

)
, (2)

where D2m is the dewpoint temperature at 2 m and T2m is the air temperature at 2 m.

2.4.2. Pre-Training

After pre-processing, the input variables and parameters were trained using the layer-by-layer
network training method. For each training cycle, the unsupervised learning method was used
for training every layer of RBM. The weight and bias values of each layer can be obtained by
pre-training. The RBM is an energy-based model, consisting of a visible layer (V) and a hidden layer
(H). No neuronal connections were observed within the same inner layer; however, between layers,
neurons were fully connected.

In a binary RBM, a joint configuration (υ, h) of visible and hidden units has the following energy:

E(υ, h|θ ) = −
n∑

i=1

aiνi −

m∑
j=1

bjhj −

n∑
i=1

m∑
j=1

Wijνihj (3)

where θ =
(
Wij, ai, bj

)
represents the parameter of RBM; νi and hj are the binary states of visible

unit i and hidden units j, respectively; ai and bj are the biases of visible unit i and hidden units j,
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respectively; Wij is the connecting weight between visible unit i and hidden units j; and m and n are
the numbers of visible and hidden units, respectively. The purpose of the training algorithm is to
obtain θ, which determines the performance of the RBM network. The lower the energy, the better the
state of the network.

Based on the energy function, the joint probability of (υ, h) can be written as

P(υ, h|θ ) =
e−E(υ,h|θ)

Z(θ)
(4)

where Z is a partition function. It is used for normalizing:

Z(θ) = −
∑
υ,h

e−E(υ,h|θ). (5)

The marginal probability of the joint probability that the network distributed to υ, can be defined
as follows:

P(υ|θ) =
1

Z(θ)

∑
h

e−E(υ,h|θ). (6)

The gradient or derivative of the log probability of training vectors with respect to Wij, ai, and bj

can be derived as follows, respectively:

∂logP(υ|θ)
∂Wij

=
〈
υihj

〉
data
−

〈
υihj

〉
model

(7)

∂logP(υ|θ)
∂ai

= 〈υi〉data − 〈υi〉model (8)

∂logP(υ|θ)
∂bj

=
〈
hj

〉
data
−

〈
hj

〉
model

(9)

where 〈.〉data represents the expectation of the probability defined by the dataset and 〈.〉model is the
expection on the probability defined by the model. The learning rule for stochastic steepest ascent in
the log probability of the training data can be expressed as

∆Wij = η
(〈
υihj

〉
data −

〈
υihj

〉
model

)
(10)

∆ai = η(〈υi〉data − 〈υi〉model) (11)

∆bj = η
(〈

hj
〉

data −
〈
hj

〉
model

)
(12)

where η is the learning rate.
Because the units in a single hidden layer are unrelated, the conditional distribution P(h|v) can be

calculated as follows:

P
(
hj = 1 |v

)
= S

bj +
∑

j

Wi jυi

 (13)

where S(x) = 1/(1 + exp(−x)) is the logistic sigmoid function.
Due to the units in a single visible layer being unrelated, the conditional distributions P(v|h ) can

be calculated as
P(vj = 1 |h ) = S(aj +

∑
i

Wijhj). (14)

θ can be calculated by the maximum-likelihood estimation of the training set [29]. However,
the maximum-likelihood learning is infeasible in a large RBM because it is expensive to compute the
derivative of the log probability of training data. Expected outcomes obtained using the model are
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difficult to achieve. A highly satisfactory stochastic approximation, known as the contrastive divergence
(CD) algorithm, makes θ suitable as building blocks for learning DBN [28,29]. This algorithm uses Gibbs
sampling, which alternates between stochastically updating the hidden and visible units. Even when
only one iteration of Gibbs sampling is used, the CD algorithm provides satisfactory results [29]. The
weight and bias are updated according to the following equations:

∆Wij = η
(〈
υihj

〉
data −

〈
υihj

〉
recon

)
(15)

∆ai = η(〈υi〉data − 〈υi〉recon) (16)

∆bj = η
(〈

hj

〉
data −

〈
hj

〉
recon

)
(17)

where 〈.〉data represents the expectation on the probability defined by dataset, and 〈.〉recon is the
expectation of the probability defined by the reconstructed model.

2.4.3. Fine-Tuning

Fine-tuning is a supervised training process with labeled data. To improve network performance,
the gradient descent algorithm is used for fine-tuning parameters. The back propagation (BP) algorithm,
which was used to adjust and optimize weight parameters extracted in the pre-training stage, was used
to fine-tune the entire network’s parameters in a top-down fashion. The weight of each layer was
pretrained by the RBM before fine-tuning. However, it was not in random initialization because BP
neural networks avoid local convergence. Through multiple-iteration forward and back propagation,
the weights between neurons were modified. When the error between the actual value and the output
value meets the requirement, the training stopped. Finally, the HVIS were retrieved using Equation (18):

VHVIS_retrieved = Vstd,HVIS × σHVIS + µHVIS (18)

where VHVIS_retrieved is the retrieved HVIS, Vstd,HVIS is the standardized output, µHVIS is the average of
the HVIS training set, and σi is the variance of the HVIS training set.

3. Results and Discussion

3.1. Model Training and Pre-Validation

We selected data for training and pre-validation of the HVIS_DBN model from 1 January 2014
to 31 December 2016 to evaluate the effectiveness and performance of the model. In the three years
of the study, the matchup samples totaled 31,377 pairs of input data and HVIS. In our experiment,
we randomly selected 80% of the data as the training set and 20% as the validation set [47]. The input
variables of HVIS_DBN were standardized according to Equation (1). To overcome potential HVIS_DBN
model over-fitting, dropout techniques were applied to train the model. The model with dropout
exhibited a higher predictive accuracy than without dropout, especially in the small dataset, where
dropout-DBN produced the best performance [29,32].

The dropout technique is a random retreat mechanism used to overcome the data problem of
over-fitting [32]. The basic idea of the dropout technique is to randomly ignore neurons of the hidden
layer in the training process to prevent over-fitting. In the pre-training process of the HVIS_DBN
model, some of the random sections of nodes were not involved in the forward propagation training
process and the weight was reserved during each iteration process. These neurons may be involved in
training in the next iteration. The dropout technique improves the generalization ability and effectively
overcomes the time-consuming problem of network training, thus preventing interdependence among
features and distinctly improving precision. The mean absolute error (MAE), RMSE, and R were used
to evaluate model prediction accuracy.

Figure 3 depicts comparisons between predicted and observed HVIS during the model training
and the pre-validation stages. The horizontal axis represents the observed HVIS from ground-based
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stations. The vertical axis represents the predicted HVIS from HVIS_DBN model. The numbers of the
matched data points are 25,101 and 6276 for model training and pre-validation, respectively. During
the model training stage (Figure 3a), the R was 0.74 and RMSE was 4.725 km. For the pre-validation
period (Figure 3b), the R value only decreased by 0.017 and RMSE only increased by 0.173 km. Basically,
the predicted HVIS values were slightly overestimated relative to observations below 20 km altitude,
however HVIS values were underpredicted above 20 km. This was consistent for both model training
and pre-validation periods. 8 of 15 
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3.2. Model Evaluation

The goal of the trained HVIS_DBN model is to be widely used for retrieving HVIS over Eastern
China. To provide a more objective evaluation of the HVIS_DBN model, the data from 2017 (different
from the training data) were applied. For evaluation, we matched HVIS from ground-based observations
with retrieval results from the HVIS_DBN model. The number of matchup samples in 2017 was 8717.
As shown in Figure 4, the relationship between observed and retrieved HVIS was approximately linear
with an R of 0.697 and RMSE of 4.996 km. Compared with the training and pre-validating results,
the R of retrieved results only decreased by 0.043 and 0.026, respectively. The RMSE only increased by
0.271 km and 0.098 km, respectively.

Figure 5 provides the time series of daily averaged HVIS between ground-based observations
and retrievals from the HVIS_DBN model in 2017. The R and RMSE values of the daily mean HVIS
were better than those of the separated matchup samples. The R was 0.77 with an RMSE of 3.08 km.
According to statistical analysis, approximately 83.4% of the daily mean HVIS samples had a MAE of
<4 km. The percentage of the samples with a MAE of <2 km was approximately 59.2%. The average
number of matchup samples was approximately 31.6 when the MAE was less than 4 km. However,
when the MAE was >4 km, the average number of matchup samples decreases to approximately 8.5.
One of the reasons for the lower precision of HVIS retrieved by the HVIS_DBN model is an inadequate
number of samples.
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Figure 5. (a) Time series of daily averaged HVIS between ground-based observations (black dots) and
retrievals (red dots) over Eastern China during 2017; (b) mean absolute error (MAE) (blue bars) of
HVIS between observations and retrievals (shaded areas represent MAE less than 4 km); (c) numbers of
valid matchup samples between observed HVIS and moderate-resolution imaging spectroradiometer
(MODIS) aerosol optical depth (AOD) (gray bars).

For all the matchup samples, the value of AOD ranged from 0 to 3.7. To analyze the precision of
retrievals, the AOD was graded in 0.1 intervals. As shown in Figure 6a, the value of RMSE ranged
from 0.641 to 11.087 km. The number of samples indicated significant variations with different AOD
values. When the number of samples exceeded 20, the RMSE, ranging from 2.9 to 5.5 km, decreased
with increasing values of AOD. The linear regression between AOD and RMSE produced correlation
coefficient of −0.87 (significant at the 0.01 level(two-tailed)). This indicated that lower AOD values
may have higher biases when retrieving HVIS using the HVIS_DBN model.
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Figure 6b–e illustrates the variations in RMSE with AL, TCW, longitude, and V10. The graded
intervals were 0.004, 2 kg m−2, 0.25, and 0.25 m s−1, respectively. The RMSE ranged from 2.403 to
7.536 km for AL, from 3.224 to 9.782 km for TCW, from 2.859 to 6.824 km for longitude, and from 0.069
to 8.438 km for V10. When the number of samples exceeded 20, the RMSE between observed HVIS
and predicted HVIS showed a gradually decreasing trend with increasing AL (Figure 6b). The values
of RMSE increased when TCW increased (Figure 6c). The values of RMSE increased slightly when
longitude increased (Figure 6d); the values of RMSE decreased slightly when V10 increased (Figure 6e).
The R values of linear fitting were −0.58, 0.53, 0.41, and −0.34, respectively. The correlation coefficient
between RMSE and AL, and the correlation coefficient between RMSE and TCW, all passed the t-test
at a 0.01 level of significance (two-tailed). The correlation coefficient between RMSE and longitude,
and the correlation coefficient between RMSE and V10, were significant at the 0.05 level (two-tailed).
According to the analysis, the lower precision of HVIS retrievals by the HVIS_DBN model were
probably due to lower AL, higher TCW, higher longitude, and lower V10.
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(e) vertical wind component at 10 m (V10) in the study region during 2017. The grey bars represent the
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blue dotted lines represent the sample numbers of different AOD, AL, TCW, longitude, and V10 values;
the red lines represent the best linear fitting results for sample numbers higher than 20.

Figure 7 illustrates the seasonal and annual variations in the predicted and observed HVIS over
Eastern China during 2017. Figure 7 reveals the high consistency between predicted and observed HVIS
both for spatial and seasonal variations. The HVIS_DBN model effectively improves HVIS retrievals.
Compared with ground-based observations, it performed well when analyzing the spatial distributions
of HVIS, revealing that HVIS values followed a north-to-south increasing trend. The lower values of
HVIS were mainly located in Jiangsu Province. The spatial distribution of HVIS also showed that the
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HVIS over water bodies (such as Taihu Lake and Yangtze River) was lower than other land covers.
The HVIS exhibited a strong seasonal variation, which increased in summer and decreased in winter.
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Figure 7. Top: Observed seasonal ((a) Spring, (b) Summer, (c) Autumn, (d) Winter) and annual mean
(e) HVIS of the ground-based stations; bottom: predicted seasonal ((f) Spring, (g) Summer, (h) Autumn,
(i) Winter) and annual mean (j) HVIS over Eastern China during 2017. The areas in the black rectangular
box represent water bodies.

Figure 8 depicts a case from 1 November 2017. The MAE spatial distribution of HVIS between
ground-based observations (Visg) and retrievals (Vism) is demonstrated in Figure 8a. In total, 96 matchup
samples were used for the analysis. According to the statistical result, the R of all the samples was
0.87 and the RMSE was 3.978 km. There were 59 samples with a MAE less than 3 km and 18 samples
with a MAE larger than 5 km. The values of MAE in the regions with lower AOD (such as Fujian)
were always higher than 5 km (Figure 8b). This finding is consistent with the analysis in Figure 6a.
Figure 8c displays the distributions of retrieved HVIS over Eastern China on 1 November 2017. The
distribution revealed that the regions with lower HVIS always had lower MAE. The findings indicate
that the HVIS_DBN model is more reliable for retrieving low HVIS.
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HVIS and predicted HVIS (the base image is MODIS true color map composed by one, four, and three
bands, and the purple rectangular box represents higher MAE); (b) MODIS AOD image (cloudy area
has no AOD data); and (c) retrieved HVIS over Eastern China.
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4. Conclusions

In this study, a DL method for retrieving HVIS was presented. This method is primarily based on
a HVIS_DBN model with data from the MODIS AOD product, ECMWF reanalysis data, and the HVIS
observations of CMA. The HVIS_DBN model comprises a multi-layer unsupervised RBM and layer for
supervised learning. The training of the HVIS_DBN model involved three main steps: Pre-processing,
pre-training, and fine tuning. In the pre-processing stage, the input variables and parameters of
HVIS_DBN were first initialized using zero-mean method. In the pre-training step, the input variables
and parameters were first initialized. The BP algorithm, which is used to adjust and optimize weight
parameters extracted in the pre-training stage, was used for fine-tuning the entire network’s parameters
in a top-down manner. The dropout mechanism introduced in the HVIS_DBN training process was
used to overcome the over-fitting problem.

We used data from three years (2014–2016) for training and pre-validating the HVIS_DBN model.
The data from 2017 were applied for model evaluations. The results demonstrated that the R values
between observations and retrievals were 0.74 for training, 0.723 for pre-validating, and 0.697 for
evaluations. The values of RMSE were all less than 5 km. The time series result of daily averaged
HVIS showed high consistency between the ground-based observations and retrievals, with R of 0.77
and RMSE of 3.08 km; a small number of samples resulted in low precision. The precision analysis
revealed that the bias of HVIS retrievals by the HVIS_DBN model was probably caused by lower
AOD, lower albedo, higher TCW, higher longitude, and lower V10. The spatial distribution of HVIS
followed a north-to-south increasing trend, showing that the HVIS over water bodies (such as Taihu
Lake and Yangtze River) is lower than over other land cover types. The HVIS exhibited a strong
seasonal variation, which increased in summer and decreased in winter. The regions with lower
HVIS invariably exhibited lower MAE, which indicates that the HVIS_DBN model is more reliable in
retrieving low HVIS.

Overall, the HVIS_DBN model provides an effective method for retrieving HVIS. The evaluations
also exhibited a higher performance than ground-based HVIS. In future studies, the model should be
improved to adapt to different ranges of input data (including higher AOD, higher albedo, lower TCW,
lower longitude, and higher V10), and a larger number of training samples should be used, particularly
for the samples with lower HVIS to improve the accuracy of the HVIS_DBN model. The retrieved
HVIS can be further applied for PM2.5 estimation by introducing humidity correction for hygroscopic
growth. This work would have certain application in atmospheric environmental monitoring and air
quality forecasts over Eastern China.
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