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Abstract: A new approach for modeling daily precipitation (RR) at very high spatial resolution (25 m
× 25 m) was introduced. It was used to develop the Precipitation Atlas for Germany (GePrA). GePrA
is based on 2357 RR time series measured in the period 1981–2018. It provides monthly percentiles
(p) of the large-scale RR patterns which were mapped by a thin plate spline interpolation (TPS).
A least-squares boosting (LSBoost) approach and orographic predictor variables (PV) were applied to
integrate the small-scale precipitation variability in GePrA. Then, a Weibull distribution (Wei) was
fitted to RRp. It was found that the mean monthly sum of RR (RRsum) is highest in July (84 mm) and
lowest in April (49 mm). A great dependency of RR on the elevation (ε) was found and quantified.
Model validation at 425 stations showed a mean coefficient of determination (R2) of 0.80 and a mean
absolute error (MAE) of less than 10 mm in all months. The high spatial resolution, including the
effects of the local orography, make GePrA a valuable tool for various applications. Since GePrA does
not only describe RRsum, but also the entire monthly precipitation distributions, the results of this
study enable the seasonal differentiation between dry and wet period at small scales.
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1. Introduction

Precipitation impacts the environment in a number of ways. It drives the water cycle by
determining the availability of water [1] and by affecting the exchange of water between the atmosphere
and the land surface [2]. With increasing intensity, precipitation may trigger floods and increase soil
vulnerability to erosion [3]. Many sectors, including forestry, agriculture, water resource management,
food security, hydropower, and disaster management, depend on the spatiotemporal dynamics of
precipitation regimes [2,4]. Thus, they are in need of accurate, local information on the statistical
properties of precipitation [5].

However, the high spatiotemporal variability of precipitation is a major constraint for the statistical
description of precipitation distributions [6]. On spatial scales, precipitation patterns are influenced by
the orography [6–10] and land cover [11,12]. On temporal scales, precipitation patterns are driven by
different temporal cycles of the large-scale atmospheric circulation [13] and diurnal warming [14].

To statistically consider the complexity of precipitation regimes in large areas, a large number of
long-term precipitation measurements is required. Unfortunately, the density of precipitation gauges is
often too sparse for a detailed representation of the small-scale precipitation variability [1,7,15].
Precipitation models with a high spatial resolution can fill the gaps that occur in low-density
networks [16]. In general, the modeling approaches can be differentiated into two categories:
(1) Atmospheric circulation models and (2) statistical models. Atmospheric circulation models are
useful tools for characterizing and investigating physical processes leading to precipitation. Applying
atmospheric circulation models requires deep knowledge of a large number of input parameters. Their
initialization and parameterization can thus be very complex.
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In contrast, statistical models are based on precipitation measurements and a variety of predictor
variables associated with the precipitation pattern in certain regions. Statistical approaches do not
provide deep insight into the underlying physical processes driving precipitation formation but can
describe the precipitation pattern at a very high spatial resolution, even when only a limited number
of precipitation measuring stations exists [8].

There are numerous investigations on the parameterization of statistical precipitation models. For
instance, a linear regression model was developed to describe the variability of winter precipitation in
Great Britain [17]. In another study, the monthly precipitation was modeled at a spatial resolution of
1 km × 1 km by applying a statistical downscaling approach [1]. Recently, a method for stochastic
simulation of precipitation was developed based on a linear theory, which described the orographic
precipitation and additional functions that consider synoptic and convective precipitation [18].
Statistical downscaling techniques were also used to build a precipitation model using satellite
and land surface data [19].

Based on currently known statistical approaches, a model was developed in this study which
enabled the mapping of the entire statistical precipitation distribution at a very high spatial resolution
(25 m × 25 m) in a large study area. To depict the annual cycle of the precipitation regime, the model
was monthly parameterized. For model development, a theoretical distribution capable to accurately
mimic the empirical precipitation distribution was found, which made it possible to quantify the strong
dependence of precipitation on elevation (ε).

2. Material and Methods

2.1. Overview

The development of GePrA was composed of the following main steps (Figure 1): (1) Obtaining
daily precipitation data (parametrization data) provided by the German Meteorological Service for the
period 1981–2018; (2) fitting of 18 theoretical distributions to the precipitation time series and evaluation
of their goodness-of-fit; (3) building of predictor variables representing the local orography based on
a digital elevation model; (4) high spatial resolution modeling (25 m × 25 m) of the percentiles by a
least-squares boosting approach and thin plate spline interpolation; (5) fitting of Weibull distributions,
which provide the best fits, to the modeled precipitation percentiles; and (6) model validation by
independent precipitation data (validation data).
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2.2. Study Area and Precipitation Data

Germany has a size of about 357,000 km2. The country consists of the four large natural areas:
The North German Plain, Central German Plain, Alpine Foothills, and Alps in southern Germany [20].
Its topography is complex and ε ranges from below 0 m to nearly 3000 m (Figure 2). Besides the
high mountain range of the Alps, there are numerous low mountain ranges (500 m < ε < 1500 m).
The highest and largest contiguous low mountain range is the Black Forest in the southwest.
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Figure 2. Precipitation (RR) measurement sites subdivided into a parameterization dataset (DS1) and
validation dataset (DS2). Elevation (ε) in the study area varies between −216 m and 2964 m (top of the
mountain Zugspitze). For the points labeled “Grünow” and “Zugspitze”, more results are presented in
Figure 5. The figure inset highlights a region in the Black Forest for which detailed results are presented
in Figure 9.

The study was based on daily precipitation (RR) measurements of the period 1981–2018 available
from the German Meteorological Service climate data center [21]. Depending on the availability of
RR data (DA), RR time series were assigned to either the parameterization dataset (DS1) or to the
validation dataset (DS2). DS1 contained 2357 RR time series with DA > 50%. DS2 included 425 RR
time series with DA being in the range of 40.0% to 49.9%. All other and less complete time series were
not considered for further analysis.
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2.3. Distribution Fitting

The selection of suitable theoretical distributions is of great importance for the accurate description
of the statistical properties of precipitation time series. Thus, different statistical distributions used in
previous studies [22,23] were tested. From these distributions, those with less than four parameters
were selected (Table 1). The distributions were fitted to monthly empirical cumulative distribution
functions (ecdf) of RR included in DS1 by applying the maximum likelihood method. As there
is often a very high proportion of RR = 0 mm, the distributions were only fitted to RR > 0 mm.
The goodness-of-fit (GoF) of each theoretical distribution was assessed by the Kolmogorov-Smirnov
statistic (KS), the coefficient of determination related to the cumulative probability (R2

PP), and the
coefficient of determination related to the quantiles (R2

QQ) [24].

Table 1. Theoretical distributions fitted to daily precipitation (RR) including their parameters [25].

Distribution Abbreviation Parameters

Beta Be shape, shape
Birnbaum-Saunders BS shape, scale

Burr Bu shape, shape, scale
Epsilon Skew Normal ESN scale, location, skewness

Extreme Value EV location, scale
Gamma Gam shape, scale

Generalized Extreme Value GEV shape, scale, location
Generalized Pareto GP shape, scale, location
Inverse Gaussian IG scale, shape

Logistic L mean, scale
Log-logistic LL mean, scale (of logarithmic values)
Lognormal LN mean, standard deviation (of logarithmic values)
Nakagami Na shape, scale

Normal N mean, standard deviation
Poisson P mean
Rician R non-centrality, scale

t-Location Scale tLS location, scale, shape
Weibull Wei shape, scale

The distribution fitting was made using Mathworks’ Matlab® Software Statistics and Machine
Learning Toolbox (Release 2019a; The MathWorks Inc., Natick, MA, USA).

2.4. Predictor Variables

The orographic features (Table 2) were represented by 22 predictor variables (PV) derived from
the digital elevation model EU-DEM v.1 at a 25 m × 25 m spatial resolution [26]. The relative elevation
(η) was developed by subtracting the mean elevation of an outer circle of each grid cell from the grid
cell-specific ε value [27]. Four η variants with outer-circle radii of 1000 m (η1000), 3000 m (η3000), 5000
m (η5000), and 7500 m (η7500) were built. For the eight main compass directions, η was modeled with a
3000 m radius. Furthermore, the orographic sheltering (σ) was quantified. It was derived by calculating
the angles between grid cell-specific elevation and the visible horizon up to a distance of 1000 m [27].

Table 2. Orographic features used as predictor variables (PV) for modeling daily precipitation (RR).

Symbol Name Sector (◦) Distance (m) Data Source

lon longitude - - -
lat latitude - - -
ε elevation - - EU-DEM v.1

η1000 relative elevation 1–360 1000 EU-DEM v.1
η3000 relative elevation 1–360 3000 EU-DEM v.1
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Table 2. Cont.

Symbol Name Sector (◦) Distance (m) Data Source

η5000 relative elevation 1–360 5000 EU-DEM v.1
η7500 relative elevation 1–360 7500 EU-DEM v.1
ηn relative elevation 337.5–22.4 3000 EU-DEM v.1
ηne relative elevation 22.5–67.4 3000 EU-DEM v.1
ηe relative elevation 67.5–112.4 3000 EU-DEM v.1
ηse relative elevation 112.5–157.4 3000 EU-DEM v.1
ηs relative elevation 157.5–202.4 3000 EU-DEM v.1
ηsw relative elevation 202.5–247.4 3000 EU-DEM v.1
ηw relative elevation 247.5–292.4 3000 EU-DEM v.1
ηnw relative elevation 292.5–337.4 3000 EU-DEM v.1
σn sheltering 337.5–22.4 1000 EU-DEM v.1
σne sheltering 22.5–67.4 1000 EU-DEM v.1
σe sheltering 67.5–112.4 1000 EU-DEM v.1
σse sheltering 112.5–157.4 1000 EU-DEM v.1
σs sheltering 157.5–202.4 1000 EU-DEM v.1
σsw sheltering 202.5–247.4 1000 EU-DEM v.1
σw sheltering 247.5–292.4 1000 EU-DEM v.1
σnw sheltering 292.5–337.4 1000 EU-DEM v.1
σsum sheltering 1–360 1000 EU-DEM v.1

2.5. LS-Boost Modeling (LSBoost) and Thin Plate Spline Interpolation (TPS)

The RR percentiles (RRp), being p = {1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90,
95, 99}, were modeled in a two-step procedure: (1) A least-squares boosting (LSBoost) algorithm was
trained for RR included in DS1 using PV; and (2) the remaining DS1 residuals were further reduced
by applying a thin plate spline interpolation (TPS). The modeling of RR return times associated with
greater p > 99 (corresponding to a return period of 100 days) was omitted because they would exceed
the limitations with which a reliable model can be developed given the length of the available dataset
and would require an extreme value analysis [28].

The LSBoost model is a sequence of regression trees (B), i.e., decision trees with binary splits
for regression [29–31]. The LSBoost model strives to reduce the mean squared error (MSE) between
RRp and the aggregated RRp prediction (R̂Rp) of B. Starting with the median of RRp (R̃Rp) of all DS1
stations, the regression trees B1, . . . , Bm were combined in a weighted manner [29–31] to minimize
MSE. Mathematically, the LSBoost algorithm is described as:

R̂Rp(PV) = R̃Rp(PV) + v
∑M

m=1
pmBm(PV), (1)

where pm is the weight for model m, M is the total number of regression trees, and 0 < v ≤ 1 is the
learning rate.

More than 5000 predictor variable combinations (PVC) were tested for their predictive power.
Evaluation of the five-fold cross-validated R2 revealed the most powerful PVC associated with DS1.
The applied LSBoost algorithm was available from the Matlab® Software Statistics and Machine
Learning Toolbox (Release 2019a; The Math Works Inc., Natick, MA, USA).

The predictors lon and lat, which describe the geographic location of a measurement station, were
used as input for TPS [32]. The applied TPS algorithm was implemented in the Matlab® Software
Curve Fitting Toolbox (Release 2019a; The Math Works Inc., Natick, MA, USA).

Wet days were defined when R̂Rp > 0 (PRwet). Wei, which was found to provide the best
fitting accuracy, was fitted to R̂Rp on wet days applying the least-squares estimation method [33]
The probability density function of Wei (f(RR)) is defined as [33]:

f (RR;α, k) =
k
α

(RR
α

)k−1
exp

[
−

(RR
α

)k]
, (2)
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where k is the shape parameter and α is the scale parameter. From PRwet and f(RR), the mean monthly
precipitation sum (RRsum) was then calculated:

RRsum = αΓ
(
1 +

1
k

)
·nm·RRwet, (3)

where Γ is the Gamma function and nm is the number of days per month.
After completion of RRp modeling and distribution fitting, the model was validated for RRsum

calculation using DS2. The model quality was assessed by applying R2, mean absolute error (MAE),
and mean error (ME).

2.6. Inter-Area Variability

The variability of RRsum within the study area was quantified by the interarea variability (IAV)
according to:

IAV =
S

〈RRsum〉
, (4)

where S is the standard deviation of RRsum, and 〈RRsum〉 is the mean of RRsum in the study area.

3. Results and Discussion

3.1. Proportion of Wet Days (PRwet)

The monthly PRwet is displayed in Figure 3. The mean PRwet in the study area (〈PRwet〉) was lowest
(〈PRwet〉 = 33%) in April (Figure 3d) and highest (〈PRwet〉 = 44%) in December (Figure 3l). In addition to
the temporal PRwet variability, there was also a strongly pronounced spatial PRwet pattern. In January
(Figure 3a), February (Figure 3b), March (Figure 3c), October (Figure 3j), November (Figure 3k), and
December, the highest PRwet values occurred in the west (PRwet > 50%). The precipitation in these
months was mainly caused by precipitation fronts from the west. In contrast, in May (Figure 3e), June
(Figure 3f), and July (Figure 3g), the highest PRwet values occurred in the Alps (PRwet > 50%). During
summer, the high PRwet values in this area were caused by a high frequency of convective precipitation
events [34].
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3.2. Distribution Fitting

Results from the GoF evaluation are summarized in Figure 4 for all months. Out of the 18
candidate theoretical distributions, Gam, Wei, GP, and BS could be fitted to all empirical distributions
in all months yielding accurate fits. All other theoretical distributions could either not be fitted to all
RR time series or their GoF was low.

According to KS, Wei was the best fitting theoretical distribution (Figure 4a). The median KS of
Wei was 0.055, the first quartile was 0.047, and the third quartile was equal to 0.065. For Gam, GP,
and BS, median KS varied between 0.063 and 0.097. Similar results were found for R2

PP (Figure 4b).
The median R2

PP for Wei was 0.996 and was thus close to a perfect match between the theoretical and
empirical distribution. For Gam and GP, the median R2

PP was only slightly worse (0.994 resp. 0.995).
The outliers obtained by Wei were not lower than 0.97, indicating a reliable fitting accuracy. The third
calculated GoF confirms the capability of Wei to mimic f(RR) (Figure 4c). Its median R2

QQ was 0.992.

A similarly high GoF could only be achieved by Gam (median of R2
QQ = 0.991). Based on the GoF

evaluation, Wei was assumed to be generally able to reproduce f(RR) on wet days.
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Figure 4. Goodness-of-fit (GoF) of theoretical distributions fitted to daily precipitation (RR) on wet days
evaluated by (a) the Kolmogorov-Smirnov statistic (KS); (b) the coefficient of determination related to
the cumulative probabilities (R2

PP); (c) the coefficient of determination related to the quantiles (R2
QQ).

The boxplots include results from all DS1 measurement stations and months.

All of the RR probability density functions had similar shapes. In general, (1) the lowest RR
values have the highest probability density, and (2) the probability density decreases with increasing
RR. As an example of the coincidence of the empirical probability density and Wei, the results for two
different locations in summer (Jun–Aug, JJA) and winter (Dec–Feb, DJF) are presented in Figure 5.

For the city of Grünow, which is located in the northeast of the study area, f (RR) is shown
for August (Figure 5a). From this, it can be inferred that Grünow was very dry during summer.
The frequency of RR < 1.5 mm was highest (0.305). During summer, RR rarely exceeded 20 mm (0.027).
The Wei function reproduced the shape of the histograms very accurately.
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The second example shows f(RR) in August for Germany’s highest peak, the Zugspitze (Figure 5b).
Overall, the probability density of high RR was much higher compared to Grünow. For instance, f (RR
= 0 mm) was 0.148 and f (RR > 20 mm) was 0.125.

In December, the probability density of low RR values increased in Grünow (Figure 5c), with f(RR)
= 1 mm being 0.42. The exceedance probability of 10.4 mm was only 0.01, indicating that high RR
values were extremely rare.

On the Zugspitze, the differences between f(RR) in August and f(RR) in December were marginal
(Figure 5d). The probability density of f (RR) > 10.4 mm was even higher (0.35) in December.
The examples show a broad spectrum of different RR regimes. Nevertheless, the fitting of Wei was
always very close to the empirical histogram.
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Figure 5. Weibull (Wei) probability density functions fitted to the empirical daily precipitation (RR) on
wet days in (a) Grünow in August; (b) Zugspitze in August, (c) Grünow in December; (d) Zugspitze
in December.

3.3. Heavy Precipitation

As an example of heavy precipitation, R̂R99 is shown in Figure 6. It corresponds to a return period
of 100 days. Similar to PRwet, summer months were more precipitous than all other months. In July,
the highest R̂R99 values generally occurred. The mean R̂R99 in the study area (〈R̂R99〉) in July was equal
to 28.3 mm (Figure 6g). In contrast, 〈R̂R99〉 in February was only 16.0 mm (Figure 6b). In May and
September, 〈R̂R99〉 corresponded to 23.3 mm, whereas in March, April, and November, 〈R̂R99〉 < 20 mm.
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Figure 6. Heavy precipitation indicated by the 99th percentile of daily precipitation (R̂R99) in (a) January;
(b) February; (c) March; (d) April; (e) May; (f) June; (g) July; (h) August; (i) September; (j) October;
(k) November; (l) December.

The R̂R99 gradient in DJF is west-east oriented whereas in the summer months it is more
northwest-southeast oriented. An important reason for this could be that heavy precipitation in winter
is mainly stratiform [35] and predominantly from western directions. In summer, precipitation is
predominantly convective. However, there are also regions in DJF were R̂R99 is very high. In the low
mountain ranges, especially on their west-east oriented slopes, R̂R99 is often higher in winter than
in the summer. In December, R̂R99 frequently exceeds 50 mm in the Black Forest and near the Alps
(Figure 6l). By comparison, in eastern Germany, R̂R99 is clearly lower at less than 15 mm. Overall,
the R̂R99 variability is greater in winter than in summer. This indicates that the small-scale properties
of the orography determine the heavy precipitation pattern in winter.
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3.4. Monthly and Annual Precipitation Sums

In Figure 7, RRsum is presented. The large-scale spatial pattern shows similarities to the R̂R99

pattern. In January (Figure 7a) and December (Figure 7l), RRsum was highest on the west–east oriented
slopes of the western low mountain ranges, where it often exceeded 150 mm. In contrast, in the eastern
parts of Germany, RRsum was frequently below 50 mm.
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In the study area, RRsum was highest (〈RRsum〉 = 84 mm) in July (Figure 7g) and lowest (〈RRsum〉 =

49 mm) in April (Figure 7d). The annual RRsum cycle in the study area had two maxima: One in July
and a second in December. At the regional scale, the annual RRsum cycle may differ from 〈RRsum〉. For
instance, in the vicinity of the Alps, RRsum was often more than twice as high in JJA compared to DJF.
In contrast, in some areas of the western low mountain ranges, the maximum RRsum was modeled
in December.

The interarea variability of RRsum in the study area was highest (IAV = 3.6) in September (Figure 7i),
October (Figure 7j), and November (Figure 7k). This indicates that both the large-scale and orographic
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influence on RRsum in these months were strong. In contrast, RRsum was more evenly distributed (IAV
= 2.9) in April (Figure 7d).

The mean annual precipitation sum (RRsum,yr) is displayed in Figure 8. In the study area,
it corresponded to 〈RRsum,yr〉 = 790 mm and tended to increase toward the south and decrease toward
the east. In most of the low mountain ranges, RRsum,yr usually exceeded 1000 mm. In the southern low
mountain ranges and close to the Alps, RRsum,yr often exceeded 1500 mm. At individual sites, RRsum,yr

may even be higher than 2000 mm.
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3.5. Orographic Influence on Precipitation Sums

The small-scale variability of precipitation over the course of the year is highlighted for the low
mountain range of the Black Forest in Figure 9. In January, RRsum varied from ≈ 50 mm to almost
200 mm over a distance of less than 30 km (Figure 9a). The highest RRsum values occurred on the high
mountain slopes exposed to the west. The lowest RRsum values can be found in the lowest regions
of the map extract. The spatial pattern of RRsum remained similar in April (Figure 9b). However,
the RRsum variability decreased compared to January. This was mainly due to the fact that RRsum

was lower at high elevations compared to January. In July, RRsum increased in the entire study area
(Figure 9c). In almost the entire map extract, RRsum > 90 mm. In the high elevation regions, RRsum was
slightly lower compared to January. In October, RRsum tendencies remained similar to the other months
(Figure 9d). RRsum ranged from 75 mm to 160 mm. From the presented figure, it can be deduced that
(1) elevation had a significant influence on RRsum and (2) its effect on RRsum varied over the course of
the year.

To quantify the dependency of RRsum on ε, boxplots of RRsum as a function of ε are shown in
Figure 10. In January, RRsum increased only slightly, with increasing ε until 600 m (Figure 10a). Above
800 m, RRsum rapidly increased. At ε > 1200 m, RRsum remained quasi-constant. The variability of
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RRsum was greatest at ε ≈ 1200 m. A possible reason for this is that the orographic features (e.g.,
orientation, inclination) are very diverse in this elevation range.Atmosphere 2019, 10, x FOR PEER REVIEW 12 of 15 
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In April, the interquartile range of RRsum was lower, especially at low ε (Figure 10b). In July, the
rate of RRsum change as a function of ε was greatest (Figure 10c). The median RRsum increased from
71 mm at ε = 200 m to 205 mm at ε > 1200 m. In addition, RRsum variability also increased. Both the
general RRsum level and the variability of RRsum decreased in October (Figure 10d). The median of
RRsum increased from 53 mm at ε = 200 m to 124 mm at ε > 1200 m.

3.6. Model Validation

Results from model validation are summarized in Table 3. From this summary, it can be seen
that the R2 ranged from 0.70 in February to 0.87 in June and July. In 11 months, the R2 exceeded 0.75.
From May to September, R2 > 0.80, which indicates that the accuracy of the model used to simulate
RRsum was higher in summer than in winter. The RRsum,yr model had the highest accuracy (R2 = 0.91).
Further, MAE indicates that the accuracy of the models was very good (below 10 mm in all months).
For RRsum,yr, MAE = 9 mm. ME indicates that there was no bias in the models, because it was either
0 mm or 1 mm in all months and on the annual scale.

Table 3. Model validation evaluated by the coefficient of determination (R2), the mean absolute error
(MAE), and mean error (ME) calculated for the mean monthly precipitation sum (RRsum) and the mean
annual precipitation sum (RRsum,yr).

Month R2 MAE (mm) ME (mm)

January 0.78 9 1
February 0.70 8 1

March 0.76 9 1
April 0.75 7 1
May 0.83 8 0
June 0.87 8 0
July 0.87 9 0

August 0.85 8 0
September 0.80 8 0

October 0.79 8 1
November 0.75 8 0
December 0.78 9 0

Year 0.91 9 1

4. Conclusions

In this study, daily precipitation was modeled monthly at a very high resolution in Germany.
It was demonstrated that the annual precipitation cycle depends on regions and orographic properties
such as elevation, relative elevation, and topographic sheltering. The high resolution provided the
foundation for a very detailed detection of local precipitation regimes. According to the rigorous
goodness-of-fit evaluation using a parametrization dataset and a validation dataset, the accuracy of
the models built was good. The coefficient of determination reached values up to 0.91, which was
achieved by evaluating the results from modeling the mean annual precipitation sum.

One important feature of GePrA is that it is not limited to the mapping of large-scale precipitation
patterns. It can also be used to quantify the effects of the local orography on monthly and annual
precipitation. Moreover, GePrA does not only reproduce the monthly and annual precipitation sums,
but also the entire monthly precipitation distributions. The two parameters of the Weibull distribution
used to fit the empirical precipitation distributions and the share of wet days are available monthly for
all grid cells in the study area. Using the monthly Weibull parameters and the share of wet days, it was
possible to calculate any percentile and the monthly precipitation sum.

Although the developed models reflect the monthly distribution of precipitation very well,
the results and the approach are not without limitations. GePrA does not indicate precipitation
intensity on sub-monthly scales. The statistical approach of GePra does not allow the mapping of
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daily precipitation conditions. No direct relationship can be established between individual synoptic
conditions and the simulated precipitation sums. Furthermore, it is not possible to map extreme heavy
precipitation events with return periods exceeding 100 days. It is possible to transfer the proposed
approach to the analysis of extreme precipitation events, but that would require longer time series
than those used in this study.
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