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Abstract: In this paper, we propose a new temperature prediction model based on deep learning by
using real observed weather data. To this end, a huge amount of model training data is needed, but
these data should not be defective. However, there is a limitation in collecting weather data since it is
not possible to measure data that have been missed. Thus, the collected data are apt to be incomplete,
with random or extended gaps. Therefore, the proposed temperature prediction model is used to
refine missing data in order to restore missed weather data. In addition, since temperature is seasonal,
the proposed model utilizes a long short-term memory (LSTM) neural network, which is a kind of
recurrent neural network known to be suitable for time-series data modeling. Furthermore, different
configurations of LSTMs are investigated so that the proposed LSTM-based model can reflect the
time-series traits of the temperature data. In particular, when a part of the data is detected as missing,
it is restored by using the proposed model’s refinement function. After all the missing data are
refined, the LSTM-based model is retrained using the refined data. Finally, the proposed LSTM-based
temperature prediction model can predict the temperature through three time steps: 6, 12, and 24 h.
Furthermore, the model is extended to predict 7 and 14 day future temperatures. The performance
of the proposed model is measured by its root-mean-squared error (RMSE) and compared with
the RMSEs of a feedforward deep neural network, a conventional LSTM neural network without
any refinement function, and a mathematical model currently used by the meteorological office in
Korea. Consequently, it is shown that the proposed LSTM-based model employing LSTM-refinement
achieves the lowest RMSEs for 6, 12, and 24 h temperature prediction as well as for 7 and 14 day
temperature prediction, compared to other DNN-based and LSTM-based models with either no
refinement or linear interpolation. Moreover, the prediction accuracy of the proposed model is higher
than that of the Unified Model (UM) Local Data Assimilation and Prediction System (LDAPS) for
24 h temperature predictions.

Keywords: temperature prediction; deep neural network (DNN); long short-term memory (LSTM);
recurrent neural network (RNN); missing data refinement; weather data

1. Introduction

In the last several decades, abnormal weather, such as cold weather, heavy snow, heavy rain,
and drought, has been occurring more and more frequently in all parts of the world, causing human
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injury and death, property damage, and health and environmental problems [1]. In other words,
weather change has a direct negative impact on the daily quality of life. In particular, unexpectedly
increased temperatures harm outdoor workers [2]. Temperature forecasts can be used to determine
what to wear on a given day and to plan one’s work outside [3]. Depending on the applications of the
temperature forecast, a suitable model should be designed at a specific site or a region with at least 10
days’ prediction [4].

Meteorological institutes usually forecast prediction results based on numerical weather prediction
(NWP) models that predict the weather based on current weather conditions [5]. In general, NWP
models target the forecasts for large geometrical areas, such as the East Asian region, and they are
good at handling weather that is complexly connected with various factors that dynamically influence
the subsequent day’s weather. However, NWP often produces biased temperatures in proportion to
the increase of the local elevation and topographical complexity [6]. Moreover, predicting spatial and
temporal changes in temperature for areas composed of complex topography remains a challenge to
NWP models [7].

Over recent decades, to train these irregularities, deep learning models have been developed
to predict weather change that involves atmospheric time series data. For example, a multi-layer
perceptron (MLP) model, which is a neural network with one hidden layer, was proposed to deal
with maximum ozone levels in Texas metropolitan areas [8]. Next, a three-layer deep neural network
(DNN) model was proposed to predict the air pollution levels of cities in China [9]. In addition, the
temperature prediction accuracy of a DNN-based model was compared with those of traditional
mathematical models, and it was discovered that the DNN provided comparable accuracy and offered
the advantage of including data that are not used in traditional equations [10].

Therefore, the purpose of this study is to design a temperature prediction model based on a
DNN by using real observed weather data. Among different kinds of neural networks, the proposed
prediction model is constructed based on a long short-term memory (LSTM) neural network, which is a
type of recurrent neural network (RNN). This is because the LSTM architecture is more appropriate for
weather data than a feedforward DNN or a typical RNN structure due to the time-series characteristics
of weather data [11]. In order to train a deep learning model, a huge amount of training data is needed,
but these data should not be defective. However, there is a limitation to collecting weather data since
we are unable to measure data that have been missed. Thus, the collected data are apt to be incomplete,
with random or extended gaps. Therefore, the proposed temperature prediction model incorporates a
function for missing data refinement into the LSTM framework in order to restore missing weather
data. The proposed model is composed of four stages. In the first stage, the model detects whether or
not any component of the input data is missing. The second stage of the model training constructs
an LSTM-based refinement model using all the training data. Then, the third stage of the proposed
model tries to predict the temperature for the missing vector components. The last stage retrains the
temperature prediction model using the refined data.

As mentioned in [4], the proposed model also aims at predicting temperature up to 14 days in
advance using 24 h weather data as the input, and it can also provide 6, 12, and 24 h temperature
predictions. In order to compare the performance of the proposed model, four different temperature
prediction models are considered: (1) a prediction model using a DNN, (2) a prediction model using a
conventional LSTM without any refinement function, (3) a prediction model using an LSTM with a
simple gap-filling method by linearly interpolating missed data from past and future data, and (4) a
unified model (UM), which is a mathematical model currently used by the meteorological office in Korea.
Then, the performances of the different temperature prediction models are compared by measuring
the root-mean-squared errors (RMSEs) between the real observed and predicted temperatures for the
different models.

The remainder of this paper is organized as follows. Section 2 discusses the methodology of deep
learning-based temperature prediction models. Then, Section 3 proposes an LSTM-based temperature
prediction model along with the proposed refinement function. Section 4 evaluates the performance of
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the proposed model and compares it with that of other deep learning models and a UM model. Finally,
Section 5 summarizes and concludes this paper.

2. Deep Learning-Based Temperature Prediction Models

2.1. Deep Neural Network (DNN)

Deep learning is a field of machine learning that teaches machines to think like people.
Deep learning attempts a high level of abstraction from the given data through a combination
of several nonlinear transformations. A number of studies have been conducted on how to express
various data in a form that can be understood by machines. As a result, various deep learning models,
such as DNN, convolutional neural network (CNN), RNN, and LSTM, have been developed to replace
conventional signal processing techniques in many applications, including speech recognition, image
recognition, event detection, and natural language processing. Figure 1a shows an example of a typical
DNN. As shown in the figure, the DNN is a multi-layer artificial neural network that has at least two
hidden layers between its input layer and output layer, and many hidden layers can be stacked deeper.
Also, each layer has feed-forward connections between the neurons. Thus, information representation
is performed by logistic functions applied to each node of each layer.
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Figure 1. An example of (a) a deep neural network (DNN) composed of an input layer, hidden layers,
and an output layer and (b) three different DNNs with different numbers of input nodes.

In this study, in order to compare the performance of the temperature prediction model proposed
in Section 3 with that of the DNN model described in this subsection, we construct three different DNN
models for temperature prediction according to different time periods, whose architecture is shown in
Figure 1b, as proposed in [12]. As shown in the figure, each of the three DNN models has an input
layer with 6, 12, or 24 nodes for 6, 12, or 24 h prediction, respectively. In addition, each DNN model
has three hidden layers with 96 nodes per layer. The output layer has a single node whose target value
is assigned as the observed temperature at the corresponding future time. As an activation function,
the rectified linear unit (ReLU) [13] is applied to all the layers.

Each DNN model is implemented in the deep learning package Keras (version 2.1.6) using
TensorFlow (version 1.8.0) [14]. In particular, the temperature data in degrees Celsius are first converted
into degrees Kelvin, and the average temperature over all the training data is used for the initial
weights of all the models with zero biases [15]. The mean square error (MSE) between the target
and the predicted temperature is used as a cost function [16]. The adaptive moment estimation
(Adam) optimization is utilized for the backpropagation algorithm with a learning rate of 0.01 [17].
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The detailed description on the dataset as well as the prediction accuracies of the DNN models are
given in Sections 4.2 and 4.3.

2.2. Recurrent Neural Network (RNN)

In order to take advantage of the characteristics of time series data, RNNs have been proven
to give state-of-the-art performance in various applications [18]. As shown in Figure 2, an RNN is
capable of intrinsically handling both current and past time data, while a DNN only deals with current
time data. In other words, the hidden state value, ht, at a time step, t, can carry memory forward
mathematically by using the following equation:

ht = g(Wxixt + Whiht−1 + b), (1)

where xt, ht−1, and Wxi are the inputs to the RNN, the hidden state of the previous time step, t − 1, and
a weight matrix, respectively. Also, b is a bias added to the gate, and g(·) is the activation function
applied for the hidden state of current time ht, which is fed to the next layer directly.
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The structure of the RNN is more suitable for treating time-series data than that of DNN shown
in Figure 1. However, an RNN needs to recurrently track previous data in its hidden states, where
information from the inputs to the output is transferred through a huge number of multiplications
described in Equation (1). This causes the vanishing gradient problem during model training [19].

2.3. Long Short-Term Memory (LSTM) Neural Network

LSTM neural networks are a kind of RNN developed to be able to learn longer periods of data
than RNNs [20]. This is achieved by controlling the hidden state from the gates in the LSTM to solve
the vanishing gradient problem. Each block of the LSTM used in this paper consists of an input gate,
a forget gate, and an output gate, as shown in Figure 3a.

For a given time, t, the gates in the LSTM calculate the gate values with the input, xt, the previous
hidden state value, ht−1, and the previous cell value, ct−1, by the following equations [21]:

it = σ(Wxixt + Whiht−1 + Wcict−1 + bi), (2)

ft = σ
(
Wx f xt + Wh f ht−1 + Wc f ct−1 + b f

)
, (3)

ot = σ(Wxoxt + Whoht−1 + Wcoct + bo), (4)

where it, ft, and ot are the input, forget, and output gate values, respectively, for the current time, t.
In addition, σ is an activation function that is usually realized as the logistic sigmoid function, ranging
from 0 to 1. Further, the W in Equations (2)–(4) denotes the weight matrices for computing the gate
values. For example, Wxi in Equation (2) is a weight matrix connecting the input, xt, to the input gate,
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it. Lastly, bi, b f , and bo are the biases that are added to each gate in order to adjust the center of a data
space according to the training data.

The LSTM cell takes a block input to decide whether it forgets the entire previous memory or
ignores new input data by applying an activation function, g(·), which is implemented by a hyperbolic
tangent function. Consequently, the cell value at time t is computed as

zt = tan h(Wxcxt + Whcht−1 + bc), (5)

ct = ftct−1 + itzt, (6)

where bc is a bias for the cell. That is, the memory of LSTM retains the amount of the multiplication of
the previous cell value, ct−1, and the forget gate value, ft, as well as the partial amount of the input
gate value, it, controlled by zt.

Next, the cell value, ct, is used to get the hidden state value, ht, by applying an activation function,
h(·), to ct, which is also a hyperbolic tangent defined as h(·) = tan h(·), such as

ht = ottanh(ct). (7)

Compared to the RNN described in the previous subsection, the LSTM has three gates that control the
truncation of the length of data sequence properly, which can solve the vanishing gradient problem
with small extra computational costs [22].
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Figure 3b shows the architecture of a conventional LSTM neural network for temperature
prediction, which consists of one input layer, two LSTM layers, and one output layer. Also, there are L
hidden nodes in the model (L = 192), which is set based on exhaustive experiments. Note that, similar
to the DNN models described in Section 2.1, there are three LSTM models, respectively, with 6, 12,
and 24 nodes for the input layer depending on the prediction time periods (T in the figure) of 6, 12,
and 24 h, respectively. In addition, each LSTM layer has one cell, as shown in Figure 3a. The training
procedure and development environment of the three LSTM models are identical to those of the DNN
models mentioned in Section 2.1; a detailed description of the dataset and the prediction accuracies of
the DNN models will be also given in Section 4.3.
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3. A Proposed LSTM-Based Temperature Prediction Model with Missing Data Refinement

According to our preliminary experiments on an LSTM-based temperature prediction model, as
described in Section 2.3, the temperature prediction can work accurately to some degree. However,
as mentioned in Section 1, it is a difficult task to collect a huge amount of training data without any
defects. In other words, the collected data are apt to be incomplete, with random or extended gaps.
To this end, this section proposes a new temperature prediction model based on LSTM so the proposed
model intrinsically has a function for missing data refinement to restore the missing weather data.

3.1. Investigation of Weather Factors Correlated to Temperature

This subsection investigates the weather factors that affect temperature. To this end, the weather
data released by the Meteorological Office of South Korea (KMA) [23] are used. In particular, the
weather data are composed of hourly measurements for temperature, wind direction, wind speed,
relative humidity, cumulative precipitation, vapor pressure, and barometric pressure, collected over
36 years (from November 1981 to December 2016). Then, the correlation coefficient between the
temperature and each of other weather factors is computed for all 36 years (Table 1). As shown in
the table, temperature is highly correlated with wind speed, wind direction, and humidity. Therefore,
wind speed, wind direction, and humidity are used for temperature prediction throughout this paper.

Table 1. Comparison of correlation coefficients between temperature and other weather factors.

Weather
Factors

Wind
Direction Wind Speed Relative

Humidity
Cumulative
Precipitation

Vapor
Pressure

Barometric
Pressure

Correlation 0.71 0.69 0.64 0.38 0.25 0.30

3.2. Proposed Refinement Function Using LSTM

As mentioned in the previous subsection, three weather factors (wind speed, wind direction, and
humidity) are correlated with temperature. Thus, if temperature data are missed at given times but
there are other weather factors available, these missed data can be restored by using the correlated
characteristics. Based on this fact, a refinement function of the proposed model is realized by also
using the LSTM that works as a correlator between other weather factors and temperature.

Figure 4 shows the architecture of the proposed LSTM-based temperature prediction model with
a missing data refinement function incorporated. The proposed model is composed of four processing
stages. The first stage detects whether or not any component of an input vector is missed, where each
input vector is composed of 4-dimensional weather data (temperature, RH, wind speed, and wind
direction). If one or more components are missed, then each missed component is linearly interpolated
with past and future observed data. This process is done for all the training data.

Next, the second stage constructs an LSTM-based refinement model using all the training data,
in which the missed data are already linearly interpolated. The LSTM-based refinement model is
composed of one input layer, two LSTM layers, and one output layer, where 4-dimensional weather
data are also used for an input vector, as shown in the second stage of Figure 4.

After training the LSTM-based refinement model, the third stage of the proposed model predicts
temperature for the times when the temperature data, which were already detected in the first stage,
are missing. By doing this, the missed temperature data are replaced with the predicted data; this
process is referred to as a refinement function. The last stage of the proposed model is identical to that
of the conventional LSTM model, as described in Section 2.3. The difference between the conventional
LSTM model and the proposed one is in that in the proposed model, the missing data are refined
through the refinement function and then are combined with the collected data without any missing
components to train the LSTM.
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3.3. Selection of Hyperparameters of LSTM

As weather is a chaotic process, many different factors play pivotal roles in controlling the change
of a weather variable. Likewise, the deep structure of a neural network functions as very complex logic;
thus, changing the network factors affects the prediction results. The network factors, called neural
network hyperparameters, include the learning rate, batch size, number of epochs, regularization,
weight initialization, number of hidden layers, number of nodes, etc. [24].

For hidden layers, activation functions determine whether the input feature is considered to be
connected to the output nodes. In general, the activation functions need to be bounded. If the value of
an activation function is above a certain bound, it is considered activated. If it is less than the bound, it
is discarded. To make the proposed LSTM-based prediction model focus on weather data, especially
temperature, we need to use several activation functions, such as linear, sigmoid, and ReLU functions.
To this end, each of these three activation functions is employed in this model, and one of them is
chosen for the best prediction accuracy. The ReLU was ultimately selected through this process and
will be discussed in Section 4.3.

Similarly, the effect of different combinations of the numbers of LSTM layers and hidden nodes on
the prediction accuracy is investigated by changing the LSTM layers from 2 to 6 and 192 to 480, with 96
hops for the hidden nodes. As a result, the number of LSTM layers is selected as 4, and the number of
hidden nodes is selected as 384.

4. Experiments and Discussion

This section first briefly reviews a unified model (UM) that delivers the forecast results. Then,
the database used in this paper is described. After that, the prediction accuracy of the proposed
LSTM-based temperature prediction model is evaluated, where three LSTM models with the refinement
function proposed in Section 3.2 are individually trained for hourly temperature predictions such as
6, 12, 24 h predictions. In addition, the other two LSTMs with the proposed refinement function are
trained for 7 and 14 day temperature predictions. To compare the performance of the proposed model,
the DNNs and conventional LSTMs in Sections 2.1 and 2.3, respectively, are implemented for 6, 12, and
24 h temperature predictions, where missing data were simply ignored. Next, the conventional LSTMs
were also implemented for 7 and 14 day temperature predictions, where two simple strategies for
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processing missing data, such as ignorance and linear interpolation, are applied. Finally, the prediction
accuracy of the proposed model is compared with that of the UM model with the same weather data.

Note here that different LSTMs are evaluated using different values of the hyperparameters
to examine the effectiveness of the hyperparameter set on the prediction accuracy, as described in
Section 3.3. Therefore, throughout this paper, the numbers in the parentheses after LSTM, denoted as
LSTM(x, y), mean that the number of LSTM layers is x, and the number of hidden nodes is y.

4.1. UM Model

The KMA has been conducting weather forecasts since 2010 based on the unified model (UM)
developed by the U.K. Met Office [25]. The weather forecasting system of KMA consists of three
NWP systems: Global Data Assimilation and Prediction System (GDAPS), Regional Data Assimilation
and Prediction System (RDAPS), and Local Data Assimilation and Prediction System (LDAPS). The
predictions of GDAPS and RDAPS are used as the boundary conditions for the operations of RDAPS
and LDAPS, the domains of which are represented in Figure 5. As shown in the figure, RDPAS and
LDAPS cover East Asia and South Korea with horizontal resolutions of 12 km × 12 km and 1.5 km ×
1.5 km, respectively. Both systems have 70 sigma vertical layers, but the top heights are set to 80 km
and 40 km for the RDAPS and LDAPS, respectively.
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Table 2 summarizes the physical options used for the operation of the UM-based NWP system in
KMA. The temperature predicted by the proposed LSTM-based model was compared with that by the
UM LDAPS, which was obtained from the official data archive [23].

Table 2. Physical options of unified model (UM)-based numerical weather prediction (NWP) system
used in KMA.

Physical Options Scheme

Microphysics Mixed-phase precipitation [26]

Cumulus scheme Mass flux convection with convective available potential energy
(CAPE) closure [27]

Land surface model scheme Met office surface exchange scheme (MOSES)-II land-surface [28]
Planetary boundary layer (PBL) scheme First-order non-local boundary layer scheme [29]
Radiation scheme Edwards-Slingo general 2-stream scheme [30]

4.2. Database

In this study, we prepared the weather data released by the KMA, where the observations for
all the observations including temperature, relative humidity, wind speed, and wind direction were
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made every hour [31]. The weather data were observed for around 37 years (from November 1981 to
December 2017) from three different locations in South Korea (Seoul, Gyeonggi, and Jeolla), and these
data were divided into two datasets: the data for around 36 years (from November 1981 to December
2016) were used as a training set, and the data for one year (from January 2017 to December 2017) as
a test set. Note here that the period of weather data recording for the training set did not overlap
that for the test data. Therefore, all the prediction models in this paper were trained and evaluated
by using the training data and test data, respectively, unless there was no additional explanation for
the training and test set. In addition, each prediction model per location was constructed, and the
prediction accuracy for the model was averaged over three locations.

The performance was averaged over the three different prediction models. Moreover, some of the
weather factors in the training set were missing, with 38%, 21%, 19%, and 11% missing data for relative
humidity, wind speed, wind direction, and temperature, respectively. Since the number of missing
data was relatively large, we developed a technique for dealing with the missed data, as described
in Section 3.2. The performance comparison was done by calculating the RMSE and mean bias error
(MBE) between the real observed temperature, Yr

t , and the predicted temperature, Yp
t , at a time, t,

which are defined as

RMSE =

√∑N
t=1

(
Yr

t −Yp
t

)2

N
, (8)

and

MBE =
1
N

N∑
t=1

(
Yr

t −Yp
t

)
, (9)

where N is the total number of times for the evaluation.

4.3. Comparison Between DNN and LSTM

In this subsection, we compare the prediction accuracy of the RMSE between the DNN model
in Section 2.1 and the LSTM model in Section 2.3. Here, the architectures of the DNN and the LSTM
model follow the previous works in [12,21], respectively. In particular, the numbers of LSTM layers
and hidden nodes were set to 2 and 192, respectively. In both the DNN-based and LSTM-based
temperature prediction models, the missing data were simply ignored for training and testing the
models. In addition, each DNN or LSTM was implemented with three different activation functions:
linear, sigmoid, and ReLU.

Table 3 compares RMSEs of DNN- and LSTM-based temperature prediction models according to
different activation functions. It was shown from the table that LSTM(2,192) provided a lower RMSE
than the DNN for all activation functions and three different time steps. In addition, the RMSEs of
LSTM employing the ReLU activation function were smaller than those employing the linear and
sigmoid activation functions for all three time-steps. Based on this experiment, the ReLU activation
function was only considered for the following discussion, as mentioned in Section 3.3.

Table 3. Performance comparison of the root-mean-squared error (RMSE) according to different
activation functions applied to the DNN and conventional LSTM.

Model Activation Function
Hour Average

6 12 24

DNN
linear 1.86 2.81 3.77 2.81

sigmoid 1.74 2.67 3.52 2.67
ReLU 1.59 2.49 3.11 2.40

Conventional
LSTM(2,192)

linear 1.21 1.47 1.33 1.34
sigmoid 1.19 1.31 1.15 1.21

ReLU 1.12 1.29 1.13 1.18
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4.4. Comparison of LSTMs with Different Refinement Functions

Table 4 shows the performance comparison of LSTMs according to different missing data refinement
functions for 6, 12, and 24 h temperature predictions. Here, the numbers of LSTM layers and hidden
nodes were also set to 2 and 192, respectively, resulting in LSTM(2,192). However, instead of ignoring
missing data, the linear interpolation refinement that interpolated the missing data with adjacent
observed temperature data was incorporated into LSTM(2,192). As a result, it is shown in the table
that LSTM(2,192) with linear interpolation greatly reduced the RMSE compared to the RMSE ignoring
the missing data. Next, our proposed LSTM-based refinement function was applied to LSTM(2,192).
Consequently, the LSTM(2,192) with LSTM-refinement further reduced the RMSE, especially for 12
and 24 h temperature predictions.

Table 4. Performance comparison of the RMSE of the LSTMs with the linear interpolation and
LSTM-refinement for 6, 12, and 24 h temperature predictions.

Model
Hour

6 12 24

Conventional LSTM(2,192) from Table 3 1.12 1.29 1.13
LSTM(2,192)—linear interpolation 0.77 1.24 1.02
LSTM(2,192)—LSTM-refinement 0.77 1.20 1.01

Next, in order to examine the effectiveness of the different hyperparameters on the performance
of LSTM with the proposed LSTM-based refinement function, several evaluations on LSTM were
conducted by changing both the number of LSTM layers from 2 to 6 and the number of hidden
nodes from 192 to 480. In this experiment, the training dataset described in Section 4.2 was split into
subsets: one is the data set for around 34 years from November 1981 to December 2014, denoted as the
34-dataset, and the other is for the two years of data from January 2015 to December 2016, denoted
as the 2-dataset. Then, each LSTM was trained and evaluated using the 34-dataset and 2-dataset,
respectively, to set the hyperparameters. Note that there was no overlap between the 2-dataset in this
subsection and the test set described in Section 4.2.

Table 5 compares the RMSEs according to different numbers of LSTM layers and hidden nodes,
where the proposed LSTM-based refinement function was applied for 24 h temperature prediction.
As shown in the table, we achieved the lowest RMSE when the numbers of LSTM layers and hidden
nodes were set to 4 and 384, respectively, with a smaller number of hyperparameters than LSTM(4,480)
or LSTM(5,384). Based on these, the performances of LSTM(4,384) for different prediction time periods
were compared.

Table 5. Performance comparison of the RMSE of LSTMs for 24 h temperature prediction according
to different numbers of LSTM layers and hidden nodes, where the proposed LSTM-based refinement
function was applied (Training data: November 1981 to December 2014, Test data: January 2015 to
December 2016).

No. of LSTM Layers
No. of Hidden Nodes

192 288 384 480

2 1.19 1.16 0.94 0.89
3 0.99 0.89 0.86 0.88
4 0.94 0.86 0.82 0.95
5 0.87 0.86 0.84 0.88
6 0.98 0.93 0.89 0.87

4.5. Comparison of LSTMs for Short and Long Period Temperature Prediction

First, LSTM(4,384) was trained using three different refinement approaches: (1) the ignorance
of missing data (i.e., without refinement), (2) linear interpolation, and (3) the proposed LSTM-based
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refinement function. Table 6 compares the average RMSEs and MBEs of the three LSTMs and the UM
for 6, 12, and 24 h temperature prediction. As shown in the table, the LSTM-based prediction models
with/without refinement functions gave a lower average RMSE and MBEs than the UM for all the
different time steps. Moreover, similar to Table 4, the LSTM(4,384) with a refinement function, such as
linear interpolation or LSTM refinement, reduced the RMSE compared to that without any refinement.
In particular, the LSTM(4,384) with the proposed LSTM-based refinement function was better than
that with linear interpolation. Note here that the prediction accuracies for 12 h temperature prediction
was a little worse than those for 24 h prediction. This was because the input data to the LSTM were
composed of the data observed at the current time and previous 11 h, while the target was advanced
by 12 h, which might result in the day-night reversal due to the time difference between the input and
target data of the models. This could be mitigated when the input data would be selected according to
the target time.

Table 6. Performance comparison of the RMSE and MBE of the LSTMs with the linear interpolation
and LSTM-refinement, as well as the UM model for 6, 12, and 24 h temperature prediction.

Model

Hour RMSE MBE

6 12 24 6 12 24

LSTM(4,384)–without refinement 1.08 1.14 1.02 −0.05 0.09 0.15
LSTM(4,384)–linear interpolation 0.64 1.04 0.84 0.02 −0.06 0.08
LSTM(4,384)–LSTM-refinement 0.53 1.01 0.79 −0.01 0.05 0.04
UM (LDAPS) 1.39 1.45 1.52 −0.37 −1.18 1.76

Next, the proposed LSTM-based temperature prediction model was extended to predict 7 and
14 day future temperatures, and its RMSE was compared with the RMSEs by using the LSTM(4,384)
without any refinement and with linear interpolation. As shown in Table 7, the tendency toward RMSE
and MBE reduction for this long period temperature prediction was similar to that for 6, 12, and 24 h
prediction. Interestingly, the proposed model with the LSTM-refinement had a 3.06 RMSE for 14 day
prediction, which was lower than the DNN for 24 h predictions, as shown in the third row of Table 3.
Moreover, the RMSE of the proposed LSMT-based model seems to be lower than that reported in [32],
where a RMSE around 3 was achieved for 69–91 h (around 4 day) predictions and an RMSE of around
4 for 261–283 h (around 12 day) predictions.

Table 7. Performance comparison of the RMSE and MBE of the LSTMs with linear interpolation and
LSTM-refinement for 7 and 14 day temperature predictions.

Model

Day RMSE MBE

7 12 7 12

LSTM(4,384)–without refinement 3.15 3.61 −2.08 −3.26
LSTM(4,384)–linear interpolation 3.05 3.21 0.93 1.68
LSTM(4,384)–LSTM-refinement 2.81 3.06 0.41 −0.79

4.6. Comparison with the UM Model

As mentioned above, in order to assess the potential usability of the proposed LSTM-based
temperature prediction model, the accuracy comparison between the proposed model and LDAPS was
conducted for 24 h temperature predictions from January 2017 to December 2017. In addition, the
temperature predicted by the proposed model was compared with the forecast results of the UM model.
It was confirmed that average RMSEs were 1.39, 1.45, and 1.52 for all 6, 12, and 24 h temperature
predictions, respectively, as shown in the last row of Table 6. Note that unfortunately the KMA only
provided up to a 48 h prediction of LDAPS; thus, we could not compare the performance for 7 and
14 day temperature predictions. Based on this experiment, which used one-year weather data, the
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proposed LSTM-based temperature prediction model achieved a lower RMSE for 24 h predictions than
the UM model.

Figure 6 illustrates a time-series plot of the observed and predicted temperature data for two
months (August to October 2017) in Seoul, Korea for 24-h (1-day) prediction. In the figure, four different
models are compared, including the three models described in Table 6 and the UM LDAPS. As shown
in the figure, the 24 h temperatures predicted by the proposed LSTM-based model employing the
LSTM-refinement were, on average, close to those of the observed data. In particular, the proposed
model had a lower average RMSE measured from August to October 2017 than LDAPS.Atmosphere 2019, 10, x FOR PEER REVIEW 12 of 16 
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Figure 6. Daily basis plot of the observed and predicted temperature data for two months from August
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However, when the season changed, the proposed LSTM-based temperature prediction model
was less accurate than that for the other periods. For example, we divided the 24 h prediction results
of Figure 6 at weekly intervals, as shown in Figure 7, where each bar in the figure was drawn after
averaging the RMSE over each week, and the vertical line at the top of each bar denotes the MBE of each
RMSE. As shown in the figure, the week that contained the lowest temperature from the graph had a
relatively higher RMSE than that of the other weeks. Nevertheless, it was shown that the proposed
LSTM-based model still achieved better performance than LDAPS over the entire two month duration.
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Finally, Figure 8 illustrates a time-series plot of the observed and predicted temperature data for
two months (August to October 2017) in Seoul, Korea for 7 day and 14 day predictions. Note that only
three different models in Table 7 were compared in this figure, because KMA only provided up to 48 h
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prediction result for LDAPS, as mentioned earlier. As shown in the figure, as the prediction period
increased as 7 and 14 days, the prediction errors of the proposed LSTM-based temperature prediction
model with LSTM-refinement were significantly smaller than those of other models, which implies that
the LSTM-refinement contributed to providing a better fit to the pattern of the real observed data than
linear interpolation. Similar to Figures 7 and 9a,b show the averaged RMSEs and MBEs over each week
for 7 day and 14 day temperature predictions shown in Figure 8a,b, respectively. It was clear that the
proposed model achieved lower RMSEs than other LSTM-based prediction models for all the weeks.Atmosphere 2019, 10, x FOR PEER REVIEW 13 of 16 
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5. Conclusions

In this paper, a neural network-based temperature prediction model has been proposed to keep
track of temperature variations from 6 h to 14 day time periods through a consideration of the major
influences of the primary weather variable. The proposed model was based on an LSTM neural
network to fit the time-series data. In particular, the missing data, which frequently occur in the
collected weather database, were refined by using an LSTM framework with temperature, relative
humidity, wind speed, and wind direction. Then, the proposed LSTM-based model was implemented
to predict temperature for short time periods such as 6, 12, and 24 h. In addition, it was also extended
to predict temperature for relatively long time periods, such as 7 and 14 days. The performance
evaluation used actual weather data for 37 years (from 1981 to 2017) at three different locations in
South Korea, including hourly-based measurements for temperature, humidity, wind speed, and wind
direction. In addition, the RMSE between observed and predicted temperatures was measured for
each of the neural network models.

First, the effectiveness of the hyperparameters in the LSTM on prediction accuracy was examined.
As a result, the number of LSTM layers and the number of hidden nodes were set to 4 and 384,
respectively, for the proposed model. Next, the performance of the proposed model was evaluated and
compared with that of the conventional LSTM-based and DNN-based models with either no refinement
or linear interpolation refinement. Results showed that the proposed LSTM-based model gave the
RMSE of 0.79 degrees Celsius for 24 h predictions while the conventional LSTM without any refinement
and with linear interpolation had RMSEs of 1.02 and 0.84 degrees Celsius, respectively, and the UM
model based on LDAPS provided by the Meteorological Office of South Korea achieved an RMSE
of 1.52 degrees Celsius. In addition, the proposed LSTM-based model employing LSTM-refinement
achieved RMSEs of 2.81 and 3.06 degrees Celsius for 7 and 14 day predictions, respectively, while the
conventional LSTM-based model with linear interpolation provided RMSEs of 3.05 and 3.21 degrees
Celsius for 7 and 14 day predictions, respectively.

However, the prediction accuracy of the proposed model needs to be improved during periods
of seasonal changes, when sudden temperature changes occur. According to the 24 h temperature
prediction from August 2017 to October 2017, the proposed LSTM-based model during September 2017
provided a slightly higher average RMSE than the average RMSE over one year, while the proposed
LSTM-based model still had a lower average RMSE than LDAPS during September 2017. Since the
improvement of the prediction accuracy in this period will have a great influence on the improvement
of the overall temperature prediction model, we are considering extending our research to improve
prediction accuracy during the season-changing period by, for example, using a new form of neural
networks, which have an attention architecture for tracking transient data changes.
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Moreover, weather data, such as relative humidity, wind speed, and wind direction, were used to
refine the missing data in this paper. Although this paper shows the validity of the performance of the
proposed model based on the result for temperature prediction, we indicate that this model is also
applicable to not only temperature but also to other weather factors. However, as a future work, we
are interested in constructing a deep learning model for predicting temperature by directly using more
weather factors, including soil temperatures or aerosols. In other words, all the weather data available
will be brought together as input features for a DNN, which will be both a temperature predictor and a
missing data refiner.
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