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Abstract: This study evaluates 32 climate models from CMIP5 compared with a daily gridded
observation dataset of extreme precipitation indices including total extreme precipitation (R95p),
maximum consecutive five days of precipitation (RX5day) and wet days larger than 10 mm of
precipitation (R10mm) over Northern China during the historical period (1986–2005). Results show
the majority models have good performance on spatial distribution but overestimate the amplitude of
precipitation over Northern China. Most models can also capture interannual variation of R95p and
RX5d, but with poor simulations on R10mm. Considering both spatial and temporal factors, the best
multi-model ensemble (Group 1) has been selected and improved by 42%, 34%, and 37% for R95p,
RX5d, and R10mm, respectively. Projection of extreme precipitation indicates that the fastest-rising
region is in Northwest China due to the enhanced rainfall intensity. However, the uncertainty
analysis shows the increase of extreme rainfall over Northwest China has a low confidence level.
The projection of increasing extreme rainfall over Northeast China from Group 1 due to the longer
extreme rainfall days is more credible. The weak subtropical high and southwest winds from Arabian
Sea lead to the low wet biases from Group 1 and the cyclonic anomalies over Northeast China, which
result in more extreme precipitation.
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1. Introduction

Global warming has had a profound impact on climate change in recent years not only regarding
the mean climate system but also regarding extreme events. The continued emissions of green gas will
induce more serious disasters on the ecosystem, human society, and the global environment, according
to the Fifth Assessment Report (AR5) of the intergovernmental Panel on Climate Change (IPCC) [1–3].
Many studies have found regional climate changes are more complex. Therefore, accurate simulation
is a challenge for climate models under global warming scenarios [4–8]. China is a vulnerable region of
great concern affected by the East Asian monsoon and complex topography. This country is susceptible
to extreme precipitation events. Hence, several studies have investigated the future change of extreme
events over China under different emission scenarios based on the simulations of global climate models
from Coupled Model Inter-Comparison Project Phase 5 (CMIP5) [9–12]. Zhou et al. [13] showed the
inhomogeneous intensification of extreme precipitation in different regions of China. Di et al. [14] also
demonstrated the large increasing percentage of extreme rainfall in Northern China and weak drying
in Southwestern China in the future. Xu et al. analyzed the similar diploe pattern of consecutive dry
days with a reduction in the north and an increment in the south over China [15]. Previous studies
have focused on the projection of extreme rainfall events over all of China using the climate model
ensembles and paid more attention to Southeast China. However, the ecological environment of
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Northern China is more fragile because of rare vegetation and the change of extreme precipitation
may increase the risk of the local ecosystem. Hence, the main objective of this paper is to investigate
the future change of extreme rainfall events over Northern China and the results are important for
references of Chinese developing adaptation strategies [11,16].

In recent years, the argument of the future projection should be based on the multi-model ensemble
or the optimal model ensemble becomes a major issue. The previous studies have indicated the
multi-model ensemble shows better performance than the single model and this method is usually
used for a future projection [17,18]. However, some researchers consider that not every model has good
performance on the individual variable over the locale area. Thus, selecting the optimal model ensemble
is vital to reduce the uncertainness of the projection [19–21]. In order to reduce the uncertainties of
future change projection of extreme events, it is vital to evaluate the climate models’ performance
based on the observations [22–24]. Many studies have evaluated CMIP5 model simulation abilities of
extreme events over China both on spatial distributions and temporal variations. Ou et al. [12] found
most climate models overestimate extreme precipitations in Western China especially for mountain
regions while underestimating it in Southern China. Additionally, the models simulate well in Eastern
China. Jiang et al. [25] also showed the simulations are more reliable in the eastern part of China.
However, few studies have investigated the uncertainties and the differences of the future projections
between the optimal model ensemble and the multi-model ensemble.

As mentioned above, evaluating the simulation ability of extreme rainfall from each model on
spatial and temporal variations over Northern China and selecting the best model ensemble for future
projection are key issues for this study. We compare the simulations against the observations of
extreme indices from Expert Team on Climate Change Detection and Indicies (ETCCDI) [26,27] in the
historical period and select the best performance model ensemble for projecting climate change of
extreme rainfall events under RCP4.5 and RCP8.5 scenarios. Additionally, the uncertainties, differences,
and possible reasons of the future projections based on the optimal model ensemble and multi-model
ensemble are also explored. The paper is organized as follows. The data and method are described
in Section 2. Section 3 evaluates the model performance on spatial patterns and temporal variations.
Projected future changes of precipitation extremes are present in Section 4. Lastly, the discussion and
conclusions are given in Section 5.

2. Experiments

2.1. Observation Data and CMIP5 Simulations

The CN05.1 gridded observation dataset with 0.5◦ high resolution [28], which contains 2416
stations in China by the National Climate Center, China Meteorological Administration, has been
used to validate model performance for extreme simulations [13,14]. This dataset includes daily
precipitation, daily mean, and maximum and minimum temperature [29]. CMIP5 ensembles based
on 32 models from 18 different institutes supply the historical run from 1986 to 2005 for assessment
with observations in Northern China (north of 35◦ N). In addition, we focus on the projections of
CMIP5 simulations under RCP4.5 and RCP8.5 that are medium and high emission scenarios during
two periods from 2046–2065 (middle of the 21st century) and 2080 to 2099 (end of the 21st century).
The details of each model are listed in Table 1. The entirety of Northern China (WNC) has been divided
for three sub-regions including Northeast China (NEC, 39◦–54◦ N, 119◦–134◦ E), North China (NC,
36◦–46◦ N, 111◦–119◦ E), and Northwest China (NWC, 36◦–46◦ N, 75◦–111◦ E) [14] to investigate future
changes in specific regions (Figure 1).
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Table 1. Information of the 32 CMIP5 climate models used in this study.

No. Model Name Institution Name and Country Atmospheric
Resolution

1 ACCESS1.0
Commonwealth Scientific and Industrial Research
Organization (CSIRO), and Bureau of Meteorology

(BoM), Australia
1.875◦ × 1.25◦

2 ACCESS1.3 CSIRO and BoM, Australia 1.875◦ × 1.25◦

3 BCC_CSM1.1 Beijing Climate Center (BCC), China Meteorological
Administration (CMA), China 2.8125◦ × 2.8125◦

4 BCC_CSM1.1 (m) BCC and CMA, China 1.125◦ × 1.12◦

5 BNU-ESM College of Global Change and Earth System Science,
Beijing Normal University (GCESS), China 2.8◦ × 2.8◦

6 CanESM2 Canadian Center for Climate Modelling and Analysis
(CCCma), Canada 2.8◦ × 2.8◦

7 CCSM4 National Center for Atmospheric Research (NCAR),
USA 1.25◦ × 0.94◦

8 CESM1(BGC)
National Science Foundation (NSF), Department of

Energy (DOE), National Center for Atmospheric
Research (NCAR), USA

1.25◦ × 0.94◦

9 CESM1 (CAM5) NSF-DOE-NCAR, USA 1.25◦ × 0.94◦

10 CMCC-CM Centro Euro-Mediterraneo per I Cambiamenti
Climatici (CMCC), Italy 0.75◦ × 0.75◦

11 CMCC-CMS CMCC 1.875◦ × 1.875◦

12 CNRM-CM5

Centre National de Recherches
Météorologiques–Centre Européen de Recherche et de

Formation Avancée en Calcul Scientifique
(CNRM–CERFACS), France

1.4◦ × 1.4

13 CSIRO-Mk3.6.0
CSIRO Marine and Atmospheric Research (Melbourne)
in collaboration with the Queensland Climate Change

Centre of Excellence (QCCCE) (Brisbane), Australia
1.875◦ × 1.875◦

14 EC-EARTH EC-EARTH consortium 1.125◦ × 1.125◦

15 FGOALS-g2
LASG, Institute of Atmospheric Physics, Chinese

Academy of Sciences and Center for Earth System
Science (CESS), Tsinghua University, China

2.8◦ × 3◦

16 GFDL-CM3 NOAA/Geophysical Fluid Dynamics Laboratory
(GFDL), USA 2.5◦ × 2.0◦

17 GFDL-ESM2G NOAA/GFDL, USA 2.5◦ × 2.0◦

18 GFDL-ESM2M NOAA/GFDL, USA 2.5◦ × 2.0◦

19 HadGEM2-AO
National Institute of Meteorological Research

(NIMR)/Korea Meteorological Administration (KMA),
Korea and United Kingdom

1.875◦ × 1.25◦

20 HadGEM2-CC Met Office Hadley Centre (MOHC), United Kingdom 1.875◦ × 1.25◦

21 HadGEM2-ES MOHC, United Kingdom 1.875◦ × 1.25◦

22 INM-CM4 Institute for Numerical Mathematics (INM), Russia 2.0◦ × 1.5◦

23 IPSL-CM5A-LR Institute Pierre-Simon Laplace (IPSL), France 3.75◦ × 1.875◦

24 IPSL-CM5A-MR IPSL, France 2.5◦ × 1.27◦

25 IPSL-CM5B-LR IPSL, France 3.75◦ × 1.875◦

26 MIROC5 The University of Tokyo (MIROC), Japan 1.40625◦ × 1.40625◦
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Table 1. Cont.

No. Model Name Institution Name and Country Atmospheric
Resolution

27 MIROC-ESM MIROC 2.8125◦ × 2.8125◦

28 MIROC-ESM-CHEM MIROC 2.8125◦ × 2.8125◦

29 MPI-ESM-LR Max Planck Institute for Meteorology (MPI-M),
Germany 1.875◦ × 1.875◦

30 MPI-ESM-MR MPI-M, Germany 1.875◦ × 1.875◦

31 MRI-CGCM3 Meteorological Research Institute (MRI), Japan 1.125◦ × 1.125◦

32 NorESM1-M Norwegian Climate Center (NCC), Norway 1.8725◦ × 2.5
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Figure 1. Terrain elevations (m, shaded) over Northern China and three subregions including NEC
(Northeast China), NC (North China), and NWC (Northwest China).

2.2. Extreme Rainfall Indices

Three indices defined by ETCCDI have been chosen to quantify the model performance on
extreme rainfall events in this study (Table 2). The annual total precipitation exceeding the 95th
percentage (R95p) represents the extreme precipitation events. The maximum consecutive five days
of precipitation (RX5day) and number of wet days with larger than 10 mm of precipitation (R10mm)
denotes the wet part of the precipitation spectrum and heavy rainfall days, respectively. These indices
can describe the climatic characteristics of extreme rainfall and are sensitive to global warming, which
have been used in previous studies [22,23,26,30–32]. In order to evaluate the model performance with
the observations, the calculation results have been interpolated to the resolution with 0.5◦ × 0.5◦ using
a bilinear interpolation scheme.

Table 2. Information of extreme rainfall indices used in this study.

Label Definition Unit

R95p annual total precipitation when the daily precipitation exceeds the 95th
percentage of the wet-day precipitation (greater than 1 mm). mm

RX5day Maximum consecutive 5-day precipitation. mm

R10mm Number of wet days with daily precipitation greater than 10 mm. days

2.3. Analysis Methods

To evaluate the CMIP5 model performances of extreme rainfall over Northern China on spatial
distribution and interannual variation, three evaluation methods including the Taylor diagram, the
interannual variability score (IVS), and comprehensive metrics (MR) have been used in this research [25].
The Taylor diagram [33] containing a spatial correlation coefficient, centered pattern root mean square
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errors (RMSE), and a ratio of standard deviations provides a good tool to quantify the simulation
ability of spatial distribution. In order to assess the model performance on the time variation, a score
skill IVS [10,34,35] has been defined as follows.

IVS =

(
STDm

STDO
−

STDo

STDm

)2

(1)

where STDm and STDo denote the interannual standard deviation of model simulation and observation,
respectively. IVS is a symmetric variability statistic that can filter the interdecadal signal and the value
closer to 0 indicates the better performance of the model simulation in terms of interannual variations.
Based on three extreme rainfall indices, the comprehensive ranking index MR [25,36] is defined below.

MR = 1−
1

nm

∑n

i=1
ranki (2)

where m is the model number and n is the number of extreme rainfall indices. In this study, the MR
values for the Taylor diagram and IVS from the best performance model are both close to 1.

The signal-to-noise ratio (SNR) is used in this study to estimate the uncertainties from the CMIP5
multi-model ensemble. SNR is calculated below.

SNR =
X
σ

(3)

where X is a multi-model ensemble mean as the model signal and σ is the standard deviation of the
multi-model projection as the noise. The larger the SNR is, the more credible the projection of the
signal is, which is larger than the noise [37–39].

3. Evaluation of Models

Each climate model and the CMIP5 multi-model ensemble are evaluated over Northern China
during the reference period (1986–2005) in this section.

3.1. Spatial Distribution

Extreme rainfall indices (R95p, RX5d, and R10mm) from the CMIP5 multi-model ensemble and
observations are presented in Figure 2. Both the observations and model simulations of extreme rainfall
show the decreasing trend from east to west over Northern China and their correlations are over 0.85
with the significant values above a 95% level that indicate the CMIP5 multi-model ensemble simulates
the spatial distribution effectively. The maximum extreme rainfall center can be found in the east edge
of the Tibetan Plateau and the minimum rainfall center is in the border of three main basins (Tarim
Basin, Turpan Basin, and Qaidam Basin) over Northwest China where little rainfall happens every
year. However, the general overestimations in Northern China from the CMIP5 multi-model ensemble
are clear for three indices (Figure 3). The maximum wet bias is over 100 mm, 40 mm, and 10 days near
the east edge of the Tibetan Plateau for R95p, RX5d, and R10mm, respectively. The overestimation
in Northern China is consistent with previous findings that can be found widely in the GCM/RCM
simulations to the coarse resolutions [34–43]. Concerning the northern edge of the Tibetan Plateau,
uncertainties in observation should be considered due to the lack of observation stations in this region
that induces the underestimation of extreme rainfall [28].
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(1986–2005) with observations (left column), CMIP5 multi-model ensembles (middle column): (a,b) R95p
(units: mm), (c,d) RX5d (units: mm) (e,f), and R10mm (units: days).

The Taylor diagrams are used to evaluate each model performance on the spatial pattern of
extreme rainfall (Figure 3). The majority of models have good correlations with observations above 0.6
for R95p and R10mm and all the models are over 0.6 for Rx5d, which is consistent with the results
in Figure 2. In term of the amplitude of biases, the ratio of the standard deviation is between 0.75
and 1.2 for R95p and RX5d. However, the value increases to between 1.0 and 1.65 for R10mm with
loosely scattered distribution in the Taylor diagrams. This indicates climate models differ widely
for their simulations and increase uncertainty for the days of heavy rainfall. In addition, the CMIP5
multi-model ensemble has better performance than most of CMIP5 climate models, but it is not the
best one. The five best models for spatial distribution of heavy rainfall over Northern China are
CNRM-CM5, CSIRO-Mk3.6.0, EC-EARTH, IPSL-CM5A-LR, and MRI-CGCM3, which are all better
than the CMIP5 multi-model ensemble.
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Figure 3. Taylor diagrams of three extreme rainfall indices including R95p (red dot), RX5d (blue dot),
and R10mm (purple dot) over Northern China. Small dots represent 32 CMIP5 climate models (Table 1)
and large dots denote the CMIP5 multi-model ensemble mean.

3.2. Interannual Variability

Besides the spatial distribution, the temporal variation is also a key factor for validating the model
skills. Figure 4 shows the IVS defined in Section 2.3 for three extreme rainfall indices. As mentioned
above, when IVS is closer to 0, the model has better simulation ability. The climate models have lager
differences for simulating extreme rainfall on temporal variation. For R95p and RX5d, the range of
IVS is 0.9–5.2 and 0.6–4.6, respectively, and most models have the value of IVS below 3 that implies
the climate models can reproduce interannual variation of total heavy rainfall. However, the IVS
of R10mm is between 3.1 and 13.1, which is clearly larger than other extreme rainfall indexes that
indicate climate models have poor simulation ability on days of large rain. Over all, the five models
IPSL-CM5A-LR, EC-EARTH, CSIRO-Mk3.6.0, CMCC-CMS, and MRI-CGCM3 have best performance
on temporal variation of heavy rainfall events.
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3.3. Optimal Models

Previous studies have selected the most skillful climate models on spatial distribution and
temporal variation, respectively. The comprehensive evaluation considering both spatial and temporal
factors has been taken using the MR rank. Figure 5 shows the scatter diagrams of MR based on
Taylor diagrams and IVS for heavy rainfall. The correlation between Taylor diagrams and IVS for
extreme precipitation is 0.8 with the significant value at 95% levels implying the consistency of model
simulation on spatial and temporal patterns. Hence, the best models are in the upper right quadrant
of the scatter diagram where both the Taylor diagram MR and IVS MR are close to 1. Based on the
scatter diagrams of MR, the five optimal models for extreme rainfall are EC-EARTH, IPSL-CM5A-LR,
CSIRO-Mk3-6-0, MRI-CGCM3, and IPSL-CM5A-MR (Group 1). The MR ranks of the Taylor diagram
and IVS are both more than 0.7 for optimal models.
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In order to evaluate the simulation performance from optimal models, the five worst models
including MIROC-ESM-CHEM, MIROC-ESM, BNU-ESM, ACCESS1-3, and HadGEM2-CC (Group 2)
have been selected for comparison. The model biases of three extreme rainfall indices from Group 1,
Group 2, and all multi-model ensembles (AMME) have been shown in Figure 6. The results show the
typical model wet biases for R95p and RX5d have been slowed from Group 1. The dry biases can be
found in the North China Plain. In contrast, the wet biases have increased significantly from Group
2 especially for the Tibetan Plateau because the resolutions of models are too coarse to simulate the
rainfall with complex terrain. Comparison with AMME, Group1 simulation skill has increased by
42%, 34%, and 37% for R95p, RX5d, and R10mm, respectively. In terms of R95p, the model biases
averaged for Northern China are 31.8 mm, 54.7 mm, and 84.2 mm from Group 1, AMME, and Group 2,
respectively. However, these values decrease to 12.0 mm, 18.2 mm, and 24.8 mm for Rx5d. Moreover,
the biases of extreme rainfall days are 3.4 days, 5.4 days, and 8.5 days for Rx10 mm. In a word,
simulations from Group 1 with high resolution significantly improve the performance in an extreme
rainfall situation.Atmosphere 2019, 10, x FOR PEER REVIEW 10 of 21 
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Figure 6. Model biases of three extreme rainfall indices including (a–c) R95p, (d–f) RX5d, and (g–i)
R10mm form Group 1, AMME, and Group 2.

The box-and-whisker plot for relative error from Group 1, AMME, and Group 2 has been used to
quantify the relative errors between model simulations and observations (Figure 7). The upper and
lower bounds of the box indicate the 75th and 25th percentile of multi-model simulations and the
middle horizontal line in the box indicates the multi-model median. Meanwhile, the whiskers imply
the maximum and minimum values of the relative errors of the ensemble. The results show the wet
biases exist in Northern China from all three ensembles while Group 1 has significant improvement.
Compared with AMME, the model’s median of relative error of R95p, RX5d, and R10mm decreased by
18%, 12%, and 23% from Group 1, respectively. All ensembles have better simulation ability for R95p
and RX5d, but worse performance for R10mm, which coincides with spatial distribution of model
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biases (Figure 6). It is also notable that the interquartile model ranges (boxes) of three indices are
clearly smaller in Group 1 when compared with AMME and Group 2. This implies that the variability
of individual model simulation is small in Group 1 and the results are more believable. In other words,
Group 2 has not only lager relative errors, but also increased uncertainties of the individual model.Atmosphere 2019, 10, x FOR PEER REVIEW 11 of 21 
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4. Projected Future Changes in Precipitation Extremes

4.1. Spatial Patterns

The projected changes of three extreme rainfall indices for the medium (2046–2065) and the end of
the 21st century (2080–2099) under RCP4.5 and RCP8.5 were displayed in Figure 8. As mentioned in
Section 2, Northern China has been divided into three sub-regions. For R95p, the changes of three
multi-model ensemble means are all about 22% over WNC, NEC, and NC under RCP4.5 in the middle
of the 21st century (Figure 8a). However, the differences can be found in NWC. The change of Group 2
is clearly larger than Group 1 and AMME. In addition, there is no significant difference in the spatial
pattern among three multi-model ensembles (Figure 9a–c). Under RCP8.5, the projected change of
Group 2 has a significant rise than the other two model ensembles, which indicates the climate models
of Group 2 are more sensitive to high emission. Meanwhile, the maximum projected change can be
found in different parts over NWC from three multi-model ensembles. This implies the enhanced
uncertainties in this region (Figure 9d–f). By the end of the 21st century, there is a similar pattern to the
middle term, but the projected changes from Group 1 and Group 2 increase to 58% over NEC greater
than the mean value from AMME under RCP8.5 because of the projected longer extreme rainfall days
(Figure 8c). Moreover, the increase of extreme events is more pronounced in the basins over NWC
compared to the mountains nearby (Figure 9i,j).

In term of RX5d, in the middle of the 21st century, there is no clear difference between various
multi-model ensembles over Northern China except NEC under RCP4.5 (Figure 10a–c). Under higher
emission RCP8.5, the variations of projections are focused on the NWC and NEC (Figures 8b and 10d–f).
By the end of the century, the projected change from Group 2 rises to about 3% than the value from
Group 1 and AMME under RCP4.5. As the performance in the historical period, the change from
Group 1 is the smallest when compared with Group 2 and AMME, especially for NWC under RCP8.5
(Figure 10i,j).



Atmosphere 2019, 10, 691 11 of 19

The biggest variation of R10mm from three multi-model ensembles can also be found in NWC in
the middle of the 21st century both under RCP4.5 and 8.5 scenarios. The extreme rainfall events are four
days longer than the present day over the north edge of the Tibetan Plateau from Group 2 due to the
poor simulation with huge terrain differences. It is also notable that the days of R10mm prolongs in NEC
at the end of the century both under RCP4.5 and 8.5 scenarios from Group 1 (Figures 8c and 11) that is
consistent with the projected increase of R95P (Figure 9). The differences of R10mm from multi-model
ensembles are significant over Northern China with higher emission because the variability of the
climate model simulation is large in the historical period mentioned above.
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Figure 8. Box-and-whisker plot for projected changes (%) of three extreme rainfall indices including (a)
R95p, (b) RX5d, and (c) R10mm form AMME during the middle of the century (2046–2065) and the end
of the 21st century (2080–2099) relative to the reference period (1986–2005) under RCP 4.5 (blue) and
RCP8.5 (red). The Group 1, Group 2, and AMME multi-model ensemble means are indicated by the
purple, black, and blue dots.
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It should be noted that the impact of higher emission on the extreme rainfall indices is not clear by
the middle of the century but significant by the end of the century. In a word, the most sensitive region
with high emission is NWC especially for the basins where the change of R95P and Rx5d reaches 80%
and 40%, respectively, by the end of the century based on the simulations from Group 1, AMME, and
Group 2. However, there is no clear increase for R10mm in NWC from Group 1 and AMME, which
shows the change in NWC may be due to the increase in enhanced rainfall intensity. In addition,
overestimation of total extreme rainfall from Group 2 is related with the longer extreme rainfall days.
Another sensitive region is NEC, which has a significant rise from Group 1 and Group 2 combined with
the six longer days of extreme precipitation events. Thus, these results indicate the danger of flood
events in Northern China specifically for NWC and NEC in the future, which deserves more attention.Atmosphere 2019, 10, x FOR PEER REVIEW 13 of 21 
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Figure 9. Projection change (%) of R95P from Group 1 (left column), AMME (middle column), and Group
2 (right column) under RCP4.5 and RCP 8.5 during the middle of the century (2046–2065) (a–f) and the
end of the 21st century (2080–2099) (g–l).
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4.2. Uncertainties of Projections

The uncertainties of projection from multi-model ensemble simulations should be considered
important for policy-makers. Figure 12 shows the spatial pattern of SNR for three extreme rainfall
indices from Group 1, AMME, and Group 2 at the end of the 21st century under RCP8.5. The SNR
distribution shows the eastern parts especially for NEC are more credible than the western part of
Northern China [12,25]. Group 1 has the highest SNR while the value is lowest in AMME, which
indicates the optimal model projections are at a higher confidence level. These results certify that
selection of the best performance model ensembles is appropriate for future projection. The SNR values
for changes of R95P and RX5d are relatively higher than those for R10mm, which imply simulation of
the extreme rainfall day is difficult for climate models. Compared with the results for the middle term
(Figure not shown), the SNR of three extreme rainfall indices increases with time, which shows a more
clear climate signal at the end of the century.Atmosphere 2019, 10, x FOR PEER REVIEW 16 of 21 
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4.3. Temporal Evolution

Figure 13 shows the temporal evolution of projected changes of three extreme precipitation indices.
The change of Group 1 is smaller than observations during the historical period, while there is a
significant increasing trend for precipitation indices in the 21st century. At the end of the 21st century,
the projected change of P95p, RX5d, and R10mm increases by 30% and 13% and, after 1.6 days under
RCP4.5, increases by 54%, and increases by 23% for 2.7 days under RCP8.5, respectively. The results
show different emission scenarios have little influence on extreme rainfall indices in the middle of the
century but the impacts become significant after the middle of the 21st century especially for R95p
because the natural variability may play a larger role before the mid-21st century, according to IPCC
AR5 [2]. Moreover, the change of R10mm is not clear, which indicates the increase of P95p is mainly
due to the enhanced precipitation intensity. Hence, the high emission may result in the increase of
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extreme total precipitation and intensity in Northern China at the end of the century that is consistent
with other studies [13,44].Atmosphere 2019, 10, x FOR PEER REVIEW 17 of 21 
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more extreme rainfall events. In contrast, the enhanced subtropical high associated with stronger 
southwest winds lead to the northward extension of the East Asian summer monsoon with 
overestimation rainfall over Northern China from Group 2 [25,45,46]. The simulation of atmospheric 
circulation from AMME is similar with JRA55 but the weak intensified south winds can still be found 
over Eastern China, which results in the wet biases over Northern China. 

Figure 13. Three extreme rainfall indices including R95p (a), RX5d (b), and R10mm (c) change relative
to the reference period (1986–2005) for observation (black), historical simulation (yellow), projection
under RCP4.5 (blue), and RCP8.5 (red) from Group 1. Solid lines show the Group 1 average and the
shading indicates interquartile AMME spread (25th and 75th quantiles).

4.4. Possible Causes

The atmospheric circulation during the summer from three multi-model ensembles has been
shown in Figure 14 to investigate the possible causes of the differences of extreme rainfall indices.
The southwest winds from the Arabian sea combined with southeast winds over the eastern edge of
the subtropical high bring the high moisture transport to Northern China in the summer (Figure 14a).
However, the weak subtropical high and southwesterlies from Group 1 lead to less moisture transport
to Northern China especially for NWC (Figure 14c) so that the wet biases decease significantly (Figure 6).
Moreover, the cyclonic anomalies can be found over NEC, which results in more extreme rainfall
events. In contrast, the enhanced subtropical high associated with stronger southwest winds lead
to the northward extension of the East Asian summer monsoon with overestimation rainfall over
Northern China from Group 2 [25,45,46]. The simulation of atmospheric circulation from AMME is
similar with JRA55 but the weak intensified south winds can still be found over Eastern China, which
results in the wet biases over Northern China.
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5. Discussion and Conclusions

In this study, 32 CMIP5 climate models have been assessed for extreme rainfall indices over
Northern China in terms of spatial distribution using Taylor diagrams and temporal variations based
on IVS during the historical period from 1986 to 2005. Based on MR rank considering both spatial
and temporal factors, five optimal models have been selected for extreme precipitation events. Then
the projections of future changes and the possible reasons from Group 1, AMME, and Group 2 have
been analyzed under RCP 4.5 and RCP 8.5 scenarios during the middle and end of the 21st century.
The main conclusions can be summarized as follows.

(1) CMIP5 models show good performance on spatial patterns but overestimate the amplitude of
extreme rainfall over Northern China especially for the east edge of the Tibetan Plateau. The spatial
distributions of R95p and RX5d are simulated better than R10mm. The performance of temporal
variation is not as good as spatial distribution but most of models still capture interannual variation of
R95p and RX5d. For R10mm, most of the models show poor simulation abilities on days of large rain.

(2) The good correlations of Taylor diagrams and IVS indicate the consistency of the model
simulation on spatial and temporal patterns. The five best models for extreme rainfall are EC-EARTH,
IPSL-CM5A-LR, CSIRO-Mk3-6-0, MRI-CGCM3, and IPSL-CM5A-MR. As a comparison with AMME,
the performance of Group 1 has improved by 42%, 34%, and 37% for R95p, RX5d, and R10mm,
respectively. Moreover, the small variations of the five best models imply the reduction of uncertainties
from Group 1.

(3) In the middle of the 21st century, the higher emission has no clear influence on extreme rainfall
indices. However, the impacts of different greenhouse gas emissions become significant and there is a
clear rising trend for R95p and RX5d under RCP8.5 at the end of the century. The fastest-rising region
can be found in NWC from three multi-model ensembles due to the increase of enhanced rainfall
intensity. Moreover, the overestimation of total extreme rainfall from Group 2 in NWC is related with
the longer heavy rainfall days. However, the uncertainties analysis shows the increase of extreme
rainfall over NWC reached the low confidence level. On the other hand, the increases of R95p and
RX5d are higher over NEC from Group 1 because of the longer extreme rainfall days. The SNR results
show the projection from Group 1 are more credible especially for NEC, which should be focused on in
the future.

(4) The improvement of Group1 simulation is related to the weak subtropical high and the
southwest winds from the Arabian sea lead to a decrease in moisture transport into Northern China.
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However, the cyclonic anomalies over NEC result in more extreme rainfall. In contrast, the situation
is completely opposite from Group 2. The stronger subtropical high and southwesterlies cause the
overestimation of extreme rainfall over Northern china, especially for NWC.

The present study gives the performance of the individual CMIP5 model and the projection of
extreme rainfall over Northern China, which provides references for future scientific research and
policy decision-making. The future analysis of the upcoming CMIP6 model and application of the
(multi-ensemble) high resolution RCMs over this region with complex topography is worthy for further
investigations [47,48].
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