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Abstract: It is known that drag coefficient varies in broad limits depending on wind velocity and wave
age as well as on wave spectrum and some other parameters. All those effects produce large scatter of
the drag coefficient, so, the data is plotted as a function of wind velocity forming a cloud of points with
no distinct regularities. Such uncertainty can be overcome by the implementation of the WBL model
instead of the calculations of drag with different formulas. The paper is devoted to the formulation of
the Wave Boundary Layer (WBL) model for the parameterization of the ocean-atmosphere interactions
in coupled ocean-atmosphere models and wave prediction models. The equations explicitly take into
account the vertical flux of momentum generated by the wave-produced fluctuations of pressure,
velocity and stresses (WPMF). Their surface values are calculated with the use of the spectral
beta-functions whose expression was obtained by means of the 2-D simulation of the WBL. Hence,
the model directly connects the properties of the WBL with an arbitrary wave spectrum. The spectral
and direct wave modeling should also take into account the momentum flux to a subgrid part of the
spectrum. The parameterization of this effect in the present paper is formulated in terms of wind and
cut-off frequency of the spectrum.

Keywords: wave boundary layer; structure of surface layer above the sea; wind-wave interaction;
drag coefficient; fluxes of momentum and energy to waves

1. Introduction

A theory of the surface layer for the case of the flat underlying surface is well developed and
confirmed by experimental data. The Monin-Obukhov similarity theory for the stratified surface layer
is used in all atmospheric models. The lowest layer of such numerical model is usually identified as the
surface layer. It is supposed that the surface layer is close to the state of local horizontal homogeneity
and stationarity and, consequently, the vertical divergence of momentum, energy and vapor is equal to
zero. It means that the vertical fluxes remain constant by height. As a rule, in the lowest layer all other
terms of equations are also taken into account, but their influence is small, so, the vertical structure of
layer can be described with the Monin-Obukhov similarity theory. Above the surface layer up to the
height of the order of one kilometer, extends the atmospheric boundary layer. Attempts were also
made to parameterize the effects of this layer (which is often called the ‘Ekman layer’), but generally
with no success. This was because in contrast to the surface layer, all terms of the equations, including
the Corioles force, are of the same order of value. Hence, the structure of the Ekman layer cannot be
in the least degree universal. The so called Ekman layer turns out to be more complicated than ‘free
atmosphere’ because of the strong influence of the vertical turbulent fluxes produced by velocity shear
and convective motions.
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The surface layer above the sea is generally similar to the surface layer above a solid surface, so
for the calculation of fluxes, the same methods are usually accepted. However, there is a significant
difference in the presence of a moving and curvilinear lower boundary. The most popular way to take
this property into account is the introduction of the Charnock relation for the roughness parameter of
sea surface z0:

z0 = mv2
∗/g (1)

where v∗ = |τ|1/2 is the friction velocity (τ is a vector of the vertical kinematic momentum flux at the
upper level of surface layer); m is an empirical coefficient of the order of 0.01, g is the gravity acceleration.
The length scale Ch = v2

∗/g was introduced in a famous one-page paper by Charnock [1]. This scale
always appears in a theory of wind-wave interaction, so it is reasonable to call it the ‘Charnock scale’.
Formula (1) can be used for estimation of the drag coefficient Ch at height z = H :

Ch =
κ2

ln2(H/z0)
(2)

where κ = 0.41 is von Karman constant.
Formula (1) does not include any characteristics of the wave field. It is implicitly assumed that

waves are fully developed and defined by wind velocity through v∗. Such a suggestion does not seem
senseless because on average stronger wind produce higher waves. This is why the Charnock’s scaling
slightly reduces the scatter of dependences on the sea surface roughness parameter. Such property
is a likely reason for the popularity of the Charnock formula (1). Uncertainty of such an approach,
however, is expressed in a large range of values for coefficient m, which according to different sources
varies within the interval 0.01–0.05. It can be expected that the value of this coefficient can influence a
wind forecast above sea. It looks like the Charnock scale can be replaced by the significant wave height
Hs:

Hs = 4


ωr∫

0

2π∫
0

S(ω,θ)dθdω


1/2

(3)

(where S(ω,θ)
(
m2s−1

)
is the wave spectrum in polar coordinates: θ (radians) is a direction counted

counterclockwise from east and ω (rad s−1) is frequency). Value of Hs characterizes wave energy
explicitly; however, such scaling turns out to be worse than the Charnock scale. As shown in this
paper, such an effect can be explained by the strong dependence of friction on high-frequency waves
which produce most of the drag but contribute little to Hs, while big waves define Hs but contribute a
much smaller part of the drag.

The results of this paper show that, for the same wind speed, the coefficient m increases with the
growth of wave age cp/U10 (cp is a phase velocity in a peak of the spectrum, U10 is a wind velocity at
height 10 m), which means that the connection between wind and roughness is not direct. It is evident
that the roughness of the sea surface depends on a specific shape of the wave spectrum S(ω,θ) (ω is
wave frequency, θ is wave direction). Many other factors can influence the value the of drag coefficient.

At present, many branches of geophysical fluid mechanics need a more detailed description
of air-sea interactions. The most important are the modeling of coupled circulation of ocean and
atmosphere (including climate models and the medium-range weather forecast models), and the
models for surface wave forecast. The coupled models require accurate formulations of the heat,
moisture and momentum exchanges between ocean and atmosphere. The models of wave forecast
are based on the equation of evolution of wave spectrum S(x, y, t,ω,θ) (x and y are coordinates, t is
time). Their task is calculations of the evolution of spectrum at space grid under the action of energy
input, dissipation and advection of wave energy. Energy input depends essentially on the structure of
boundary layer above waves.
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Investigation of the wind and wave coupling was initiated by Ursell [2] who made the only
conclusion that this process was not understood. His review stimulated two theories of the generation
of wind waves by Miles [3] and Phillips [4]. The first of those theories explained the role of the pressure
disturbances produced by waves in the air, while the second one explained the initial generation of
waves by turbulent fluctuations of air pressure in the wind.

All further models designed for the description of interaction of waves and wind were based
on Miles’ linear theory in which the finite amplitude waves were actually absent. Such models
considered the flow structure above the single mode while for calculation of the integral effect a linear
superposition was used. Hence, the model is constructed in the coordinates linked with the mean
level. However, the mean level is not a physical object contrary to the real physical interface where a
kinematic surface condition is valid. This condition assumes the absence of exchange by finite volumes
of fluid through the surface. The assumptions used in linear theory oversimplify the process. In reality
the fluctuating boundary layer rises above the moving interface which becomes a viscous sub-layer
close to the surface. Formally, the averaging of the Navier-Stokes equations in Cartesian coordinates
(which is possible to perform above sea crests) gives nothing except the turbulent fluxes of momentum,
i.e., the fluxes produced by wave fluctuations of velocity, pressure and stresses are absent.

2. Wave Boundary Layer (WBL)

The energy is transferred to waves by non-uniform distribution of the non-static pressure on
the surface. The formation of spatial pressure distribution occurs over the entire Wave Boundary
Layer (WBL). The WBL is defined as the lowest part of the atmospheric boundary layer where the
fluctuations produced by waves are clearly manifested [5–9]. The height of WBL is equal to several
significant wave heights Hs. A typical height of the WBL for medium waves is several meters, while
for big waves it can reach 20 meters [10]. At the bottom, the WBL contacts with the wave surface,
while on top it merges with the Monin-Obukhov stratified boundary layer [11]. In most cases the
WBL height does not exceed the dynamic sub-layer height; hence, a direct influence of stratification on
wind-wave interaction is small. Inside WBL the movement is influenced by surface waves. As waves
produce fluctuations in the WBL, its structure depends on the characteristics of a wave field.

The fully nonlinear modeling of wind and wave interactions, as well as the concept of WBL was
presented in papers [5,6,12]. A 2-D model of the WBL was used for the investigation of some problems
of wind-wave interaction (see review [8]) and for formulation of a first version of the input energy
in the WAVEWATCH model [13,14]. Later the approach was improved by the use of the conformal
coordinates and the Fourier-transform method and by the coupling of WBL with the conformal wave
model [15,16]. This approach is based on several important principles: (1) the model is formulated in
a curvilinear surface-following coordinate system; (2) the waves are the object of modeling, i.e., the
nonlinear equations of potential motion are solved simultaneously with the equation for the WBL and
with matching of the solutions on interface; (3) due to the periodicity condition the Fourier-transform
method is used; (4) the problem is formulated as a typical problem of statistical fluid mechanics, i.e.,
the model generates extended ensembles of 2-D fields of main variables which then are processed with
the many-way statistical processing. A coupled model was used for a detailed investigation of the 2-D
structure of the WBL and the development of a new scheme for the calculation of the energy input
([17], see also book [18]). Currently, a new version of the 2-D coupled model is underway.

The WBL model uses turbulent closure schemes based on the equation of the turbulent energy
balance and additional hypothesis. It means that such a model does not include a direct interaction
of turbulence with waves (Phillips mechanism). It does not mean that the energy of parameterized
turbulence is not influenced by waves since it is generated and transferred by the full velocity field
which includes the wave-produced components of velocity. Hence, it is assumed that the flow is
affected by strong viscosity, the characteristics of which depend on the mean velocity field. A much
more general approach is represented by three-dimensional models. Actually, the 3-D modeling of the
wind-wave interaction was launched with so-called direct (or turbulence-resolving) models (see [19–24].
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This type of model does not require any scheme for parameterization of turbulence, since it is assumed
that the fluctuations of all scales are simulated explicitly, while stabilization of the statistically stationary
regime occurs under the action of molecular viscosity. Naturally, this type of simulation can be applied
to very small volumes only. Such models can be useful for the investigation of capillary waves with air
flow, but mostly they are used for the development of a numerical scheme for the 3-D Euler equation
in the curvilinear coordinate system. The LES modeling assumes that motion can be separated into
two parts: the explicitly simulated and parameterized fluctuations. The better the resolution, the more
detailed the description of the statistical structure of flow. In practice the boundaries between the
simulated and subgrid ranges are set for reasons of the computational realism. It is desirable that the
energy of individually described turbulence would be much larger than the parameterized energy;
however, it is not always possible. The presence of multi-scale waves imposes additional troubles,
since the resolution of the LES model should be in compliance with the wave spectrum.

Unfortunately, the coupled LES modeling requires extremely large computer resources, so the
usual practice of geophysical computer modeling consisting of multiple runs with variation and
tuning of parameters is impossible. A most advanced LES model [21] is designed for the simulation
of turbulent flow in volume 3000× 3000× 500 m3. The effects of Coriolis force and stratification are
taken into account. The drag produced by wave breaking is described with a simple speculative
scheme. Waves are assigned as a superposition of linear waves with random phases and a prescribed
spectrum. The statistical properties of such wave field can be taken into account by joining with a 3-D
phase-resolving wave model (for example, the HOS model, or the model described in [18]). The aim of
this work is the creation of a ’piece of nature’ that can be investigated in its full complexity. It is a very
promising direction, but it should be combined with a detailed investigation of different sides of the
process using more specific models.

3. Wind and Wave Dynamic Interaction

Energy and momentum are transferred from the air to the water by the surface pressure field
and by tangent stress. The tangent stress cannot be assimilated in a potential wave model. Even in a
non-potential wave model the flux of energy to waves through the tangent stress is very small, since
the local stress is weakly correlated with the surface orbital velocities. Hence, such momentum is
transferred not to waves but to surface currents. When considering the formation of the tangent stress
it is necessary to take into account its spectral properties. If the resolution of wave spectrum is very
high, we can suggest that the momentum is transferred through molecular viscosity at very large local
gradients of a tangent component of velocity.

According to the linear theory [3], the Fourier components of surface pressure p are connected
with those of surface elevation through the following expression:

pk,l + ip−k,−l =
ρa

ρw

(
βk,l + iβ−k,−l

)(
ηk,l + iη−k,−l

)
, (4)

where hk,l, h−k,−l, βk,l, β−k,−l, are real and imaginary parts of elevation η and the so-called β-function
(k and l denote COSINE Fourier mode and −k and −l denote SINE mode; ρa/ρw is a ratio of the air
and water densities). Equation (4) is a standard presentation of pressure in a wave number space

above a multi-mode surface. It means that every wave mode with amplitude
(
h2

k,l + h2
−k,−l

)1/2
initiates

the pressure mode with amplitude
(
p2

k,l + p2
−k,−l

)1/2
shifted off the phase of wave mode by angle

α = atan
β−k,−l
βk,l

. Both β coefficients are the functions of the nondimensional frequency:

Ωk,l = ωk,l U/g (5)
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(ωk,l is a dimensional frequency, s−1 which characterizes a ratio of wind velocity at reference level to
phase velocity of ck,l = g/ωk,l:

Ωk,l = U/ck,l (6)

Since the supply of wave with energy and momentum occurs in the layer, the height of which is
proportional to the wave length, it is reasonable to suggest that a reference height for wind velocity
should be different for a different virtual wave length (distance λk,l/ cosθi between wave peaks in
wind direction, index i denotes a direction of mode). Wind velocity can be found by interpolation or
extrapolation to the reference level:

zi,k,l = 0.5λk,l/ cosθi (7)

The definition of Ω should take into account an angle θi between the wind vector U and the
direction of wave mode. Finally, the virtual nondimensional frequency takes the form:

Ωi,k,l = ωi,k,l cosθiU(zi,k,l)/g = cosθiU
(
zi,k,l

)
/ck,l (8)

The distribution of surface pressure and the spectral structure of momentum and energy exchange
depend on the shape of β-function. Spectral models use an imaginary part of β-function only, which
describes the pressure mode shifted by π/2 relatively wave mode. The nonlinear phase-resolving
models use both parts of β-function.

The concept of β-function was advanced by Miles [3,25,26]; its shape was investigated theoretically
in [27,28] and others. Such schemes qualitatively explained the mechanism of the wind-wave interaction,
but they were not able to provide a solid basis for the calculation of the momentum and energy
exchange between wind and waves. For the experimental derivation of the β-function shape it is
necessary to simultaneously measure the wave surface elevation and non-static pressure on the surface.
The measurement of surface pressure is a very difficult problem since it should be done very close to a
moving surface, preferably with a surface-following sensor. Such measurements are done quite seldom,
especially in the field. The measurements were carried out for the first time by a team of authors both in
the laboratory and field [29–33]. The data obtained in this way allowed them to construct an imaginary
part of the beta-function used in some versions of wave forecasting models [34,35]. Such measurements
and further data processing are quite complicated since the wave-produced pressure fluctuations are
masked by the turbulent pressure fluctuations.

Different versions of the experimental β-function are given in Figure 1. As seen, the values
differ by several times. The function calculated in [17] which is discussed below is very close to
a relatively old version [30]. Naturally, such an agreement does not confirm the trueness of both
approximations. Figure 1 demonstrates that the problem of wind-wave interaction is very far from
being resolved. However, it is not surprising that the wave prediction models using such different
recommendations generally give satisfactory results. The evolution of waves occurs under the influence
of two competing processes: input energy and its dissipation. Dissipation is even more complicated
than the input energy. Therefore, the parameters regulating dissipation as well as the entire scheme can
be modified in broad limits. Finally, the comparison of wave forecast with the available experimental
data gives the possibility to compensate inaccuracies in both schemes for obtaining an acceptable result.
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Figure 1. Shape of β as a function of nondimensional frequency Ω. The filled areas characterize
uncertainty of approximation. 1—Snyder [29] (red color in the interval (0–2.5); 2—Plant [36];
3—Hasselmann and Bösenberg [31]; 4—Donelan [32,33]; 5—Hsiao [30]; 6—Donelan [37]; 7—Chalikov,
Rainchik [17].

The second way of the β-function evaluation is based on the results of the numerical investigations
of the statistical structure of the boundary layer above waves with use of Reynolds equations and an
appropriate closure scheme. In general, this method works so well that many problems in the technical
fluid mechanics are often solved using numerical models, not experimentally [12,38]. This method
was being developed beginning from [6,8], followed by [9,39–41]. The results were implemented in
the WAVEWATCH model, i.e., a third-generation wave forecast model [13], and thoroughly validated
against the experimental data in the course of developing WAVEWATCH-III [14]. This method was
later improved on the basis of the more advanced coupled modeling of waves and boundary layer [17],
while the beta-function used in WAVEWATCH-III was corrected and extended up to high frequencies.

In our earlier works (see review [8]) the surface was assigned as a superposition of linear modes
with a prescribed spectrum. Actually, the shape of the real wave is influenced by nonlinearity: the
wave crests are high and sharp, and the probability distribution of elevation deviates considerably
from Raleigh distribution. Also, the waves demonstrate a tendency for nonlinear sharpening [42] and
breaking. All these features strongly modify the wave drag. A more realistic description was used in
a model [17] where the model of WBL was coupled with a nonlinear phase-resolving wave model.
Both models were written in the surface -following conformal coordinates. The 2-D WBL model was
based on Reynolds equations and the energy/dissipation closure scheme; the solutions were matched
at the interface. The initial conditions for waves were assigned as a random superposition of Stokes
waves which amplitudes corresponded to JONSWAP spectrum. The description of the models and the
numerical scheme can be found in [18].

One of the aims of the above investigation was the evaluation of function β in a wide range of
nondimensional frequency Ω. For such purposes, 47 long-term (up to several hundred peak wave
periods) numerical runs with the different wind velocity and spectral resolution were performed
using the coupled wind-wave model. Wind velocity was assigned through the different values of
wind stress τ = v∗|v∗| at the upper level directed along and against the general direction of waves.
The non-dimensional peak wave number Ωp = U/cp was in a range (−28, 16), while the non-dimension
wave numbers were in a range (−50, 50). The total number of Fourier amplitudes for the surface
pressure and surface elevation falling in this interval was equal to 1,390,100. For the estimation of β
values, the above interval was separated into 100 bins with width ∆Ω = 0.1. The number of points
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falling within each interval was roughly the same, i.e., around 1400. Generation of such large ensemble
was necessary because together with the wave-produced pressure fluctuations the signal included a
wide range of the pressure fluctuation caused by nonlinearity.

The structure of flow in WBL is illustrated by tracers that were initially placed in the cells of the
regular conformal grid. The trajectories of tracers are not affected directly by turbulence, otherwise
they would be less regular, and so, they are carried by the averaged flow. It is seen that separation of
flow is a frequent phenomenon; it often happens behind more or less steep waves, but not necessarily
after the breaking. We believe that the overflow of breaking waves is very similar to that of steep
non-breaking waves. The events of breaking essentially modify the distribution of pressure and all
these cases are, in fact, taken into account in the parameterization of the surface pressure distribution
described below. Not that a picture in Figure 2 is remarkably similar to the pictures with tracers
obtained in a laboratory wind-wave channel (described in [43]).
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Figure 2. A typical snapshot of tracers in the WBL above waves. The picture is seven times stretched in
a vertical direction.

We found that the processing of the signal done in a paper [17] was not accurate enough and
was repeated here with some improvements. Note that the data described above were obtained with
an undirected model. It is why in the equations below, the index l is omitted. Before calculating of
β values we performed filtration of the data excluding the points with an excessive deviation of a
mean value. In one-dimensional wave field the one-point values of real βi

k and imaginary βi
−k parts of

β-function can be calculated through the Fourier coefficients for p0 and η for each bin ∆Ωi:

βl
−k =

∣∣∣ηi
k

∣∣∣2(pi
−kη

i
k − pi

kη
i
−k

)
, βi

k =
∣∣∣ηi

k

∣∣∣−2(
pi

kη
i
k + pi

−kη
i
−k

)
, (9)

while the averaged values of βk and β−k were calculated in each bin with i number using rms method:

βk =

Ni∑
i=1

(∣∣∣ηi
k

∣∣∣−2(
pi

kη
i
k − pi

−kη
i
−k

)) Ni∑
i=1

∣∣∣ηi
k

∣∣∣4
−1

(10)

β−k =

Ni∑
i=1

(∣∣∣ηi
k

∣∣∣−2(
pi
−kη

i
k − pi

kη
i
−k

)) Ni∑
i=1

∣∣∣ηi
k

∣∣∣4
−1

(11)

where Ni is the number of points falling in each ∆Ωi bin.
The data marked by dots and by the + sign show the imaginary and real part of function β.

A fragment in the middle of Figure 3 shows an imaginary part of function β.
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The data obtained in [17] fall in the interval (−50 < Ω < 50). However, the scatter of the data
outside this interval (−20 < Ω < 20) is large, hence, the approximation of β-function may not be
accurate (though, in our opinion, it is still acceptable). Usually, such high values seldom occur.
The imaginary part of function β is negative in the interval (0 < Ω < 0.7) where the phase velocity
of waves is larger than the wind velocity; hence, the momentum and energy are transferred from
waves to wind. It means that the pressure at the upwind slope of waves is less than the pressure at the
downwind slope; hence, waves accelerate wind and lose their momentum and energy in a vicinity
of Ω = 0.

In all other intervals of Ω the flux of energy and momentum is directed from wind to waves, i.e.,
the pressure at the upwind slope of a wave is larger than at the downwind slope what decreases the
absolute value of wind velocity. The flux of momentum is directed to waves, but the wave momentum
is negative, hence, the waves decelerate, and the energy dissipates. In the cases when wind blows
against waves, the function is larger than in the opposite case with the same value of |Ω|, so the function
β is not symmetric regarding Ω = 0. The processing of the large volume of data generated in [17]
based on Equations (9)–(11) gave the approximation:

βi =

β0 + a0(Ω −Ω0) + a1(Ω −Ω0)
2 Ω > Ω0

β0 − a0(Ω −Ω0) + a1(Ω −Ω0)
2 Ω < Ω0

(12)

βr =


β1 + a3(Ω −Ω2) Ω < Ω2

a2(Ω −Ω1)
2 Ω2 < Ω < Ω3

β1 − a3(Ω −Ω3) Ω > Ω3

(13)

where Ω0 = 0.355, Ω1 = 1.2, Ω2 = −18.8, a0 = 0.0228, a1 = 0.0948, a2 = −0.0372, a3 = 14.8, β0 = −0.02,
β1 = −148.0.

The β-function can be represented as a dependence of time scale for energy input Tinp for the
modes with nondimensional wave number Ω, normalized by period of mode Tk:

T̃ =
Tinp

Tk
=

ρw

2ρaπβi
(14)

(here the imaginary part of β is included; ρa and ρw are densities of air and water). The Equation (14)
gives an estimation of the timescale for the rate of wave growth in terms of wave period Tp as a



Atmosphere 2019, 10, 686 9 of 30

function of Ω. This function varies by orders and has both positive and negative values. Therefore, it
is convenient to use the following transformation:

R =

lg10

(
1 + T̃

)
T̃ > 0

−lg10

(
1− T̃

)
T̃ ≤ 0

(15)

For estimations, formula
∣∣∣T̃∣∣∣ ≈ 10R can be used. Vertical lines at Ω = 0 and Ω = 0.7 correspond to

the zero values of β (see inset in Figure 3) and infinite time scale. Timescale is everywhere positive,
which means that energy goes to waves. It is negative (an inverse flux of energy) in a narrow interval
(0 < Ω < 0.7) where waves give their energy to air at the timescale of the order of 104Tk.

The same order of value has a positive timescale for small frequencies. For |Ω| ≈ 10 the timescale
for input is of the order of 10, while for |Ω| ≈ 20 the timescale is as small as few periods of mode.
It means that only low-frequency waves, typically in the peak of the spectrum, are conservative, but
high-frequency modes in the tail of the wave spectrum are short-living. Because the shape of the tail is
more or less steady, the rate of dissipation in the spectral tail is also high. Consequently, the suggestion
that the spectral tail is mostly formed of the nonlinear cascade of energy cannot be confirmed. Note that
the approximation suggested in [33], (Figure 1) gives unrealistic small-time scales, i.e., by orders
smaller than in Figure 4.
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The non-stationarity of wave modes as well as the non-linearity of wave field as a whole (e.g., the
tendency for being a superposition of Stokes-like modes), variability of phase velocities (see [44]) and
the presence of the broad spectrum of pressure fluctuations of non-wave nature all indicate that the
connection between η and p is not deterministic. This is why the calculations, (10), (11) based on the
results of many runs with different initial conditions and wind velocities give an effective shape of
β-function, which, in fact, implicitly takes into account most of the complicating factors mentioned
above, including the effects of random flow separation. The time scales of these processes are much
smaller than those for energy growth [44]. This is why we tend to treat Equation (4) not as a connection
between instantaneous amplitudes of pressure and elevation but rather as a connection between the
quantities averaged over time and over some frequency intervals.

4. Wave-Produced Momentum Flux

The existence of interface η(x, y) dictates to use the surface-following coordinate system where the
vertical coordinate ζ = 0 at z = η(x, y). Above the flat surface η = 0 the natural boundary condition is
a zero vertical velocity, i.e., w = 0. In the conformal coordinates the role of vertical velocity is played
by the contravariant component of velocity W ([15,18]). The kinematic condition on surface W = 0
suggests the absence of exchange through the surface by finite volumes.
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An equation of evolution of horizontal momentum can be obtained by averaging of equation for
u component of velocity along the coordinate lines ζ = const. Brackets 〈〉 denote the averaging (see
details in [18])

∂〈u〉
∂t = ∂

∂z (−〈uW〉 +
〈
ηxp

〉
+

〈
−ηxu′u′ + u′w′

〉)
〈1〉 〈2〉 〈3〉 〈4〉

(16)

Since 〈ς〉 = z, and 〈∂/∂ς〉 = d/dz 〈∂/∂ζ〉 = ∂/∂z, Equation (16) can be considered as written in
the Cartesian coordinate system.

According to (16) the rate of evolution of horizontal momentum 〈1〉 depends on vertical divergence
of vertical momentum flux generated by wave-produced components of velocity 〈2〉, by pressure 〈3〉
and by the averaged turbulent flux 〈4〉.

Equation (16) is analogous to the equation of momentum balance above flat surface

∂u
∂τ

=
∂〈u′w′〉
∂z

, (17)

which, in fact, is used in linear theories and can be obtained by averaging in the Cartesian coordinate
system above sea crests. Equation (17) is useless since it does not include wave effects. Note that the
averaging in a surface-following coordinate system is physically performable both in the laboratory [32]
and the field [33].

Let us represent Equation (16) in the form

∂U
∂t

=
∂
∂z

(τ+ τw) (18)

where U = 〈u〉 is a wind profile, τ =
〈
u′w′

〉
is a turbulent momentum flux, and τw =〈

ηxp + −ηxu′u′ + u′w′
〉

is the Wave Produced Momentum Flux (WPMF). Vectors U, τ and τw are
directed along x axis.

The vertical profiles of WPMF were investigated in detail in [17], where the numerical experiments
with the coupled wind/wave model were described. A wave boundary layer (WBL) model is based on
Reynolds equations with the K − ε closure scheme. The solutions for air and water matched through
the interface. The structure of the WBL and vertical profiles of the wave-produced momentum flux
(WPMF) in a long-term simulation of the coupled dynamics are investigated and parameterized.
The averaged profiles of spectral components of WPMF calculated in [17] are shown in the top panel of
Figure 5 reproduced from [17]. As seen, the shape of those profiles depends on the wavenumber. These
data can be arranged by normalizing each profile by its surface τk

w0 value and representing them as a
function of nondimensional height. After that transformation the profiles converge. The convergence
can be even closer when by introducing the following relation:

τk
w = τk

w0 exp(Gkz), (19)

where G is a function of ω̃ = Ω/Ωp = ω/ωp :

G = 0.985 + 0.4ω̃0.81 (20)

Note that at the moderate spectral resolution the introduction of function G in (19) changes
the result insignificantly, hence, in such cases it is possible to put G = 1. The profiles of spectral
components of (τω/τw0)k are given in the bottom panel of Figure 5 as a function of Gkz(20). As seen,
Formula (19) demonstrates a good approximation of vertical profiles of WPMF.
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5. One-Dimensional Model of the Boundary Layer above Waves

The WBL is defined as the lowest part of the atmospheric boundary layer where a considerable
part of momentum and energy is transferred by fluctuations of velocity and pressure produced by
waves. The WBL height is of the order of several significant wave heights, typically of the order of 10 m.
In the bottom, WBL adjoins the wave surface and in top it merges with the stratified Monin-Obukhov
boundary layer. In the majority of cases the WBL height does not exceed the height of the dynamic
sub-layer, so it is not necessary to take into account the effects of stratification, though these effects can
be easily included in the model below. The equations of non-dimensional WBL were derived in [17]
with an averaging of two-dimensional equations in the conformal coordinates along the coordinate lines.
Here we present a more general case considering velocity as a vector velocity u with components (u, v):

∂u
∂t = ∂

∂z

(
K ∂u
∂z + τwx

)
∂v
∂t = ∂

∂z

(
K ∂v
∂z + τwy

) (21)

∂e
∂t

=
∂
∂z

Ke
∂e
∂z

+ P− ε, (22)

where
(
τwx, τwy

)
is a vector of vertical WPMF; e is kinetic energy of turbulence; K = κze1/2 is the

coefficient of turbulent viscosity (κ is Karman constant); τw—wave-produced momentum flux; P—a
rate of turbulent energy generation:

P =
∂u
∂z

(
K
∂u
∂z

+ τwx

)
+
∂v
∂z

(
K
∂v
∂z

+ τwy

)
(23)

In a previous version of the model the system of equations included an equation of evolution of the
dissipation rate ε together with the formula written with dimension consideration. Fortunately enough
for the current problem this equation is not required as it does not change the results noticeably. In
fact, this equation does not seem to be physical, and in complicated problems it often gives unrealistic
values removed with the use of the so-called ‘limiters’.

In the current work the averaged over horizontal domain structure of the wave boundary
layer above wave surface assigned by a two-dimensional wave spectrum S(ωi,θ j)(m2s) is under
consideration. Axis x is directed to East, while axis y—to North. The frequency ωi varies in the
interval (0,ωM), the wave direction θ changes counterclockwise in a range (0,θM). The frequency grid
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is set with the three parameters: number of intervals M, top value of frequency ωM and stretching
coefficient γω.

At the upper bound of domain z = H the components of wind velocity are assigned:

uz=H = Uh cosψ, vz=H = Uh sinψ, (24)

where Uh is wind velocity; ψ is direction. In the description of wind-wave interaction in Section 2
it was accepted that direction of wind coincides with k-axis. It is assumed that WPMF attenuates at
z = H and the value of turbulent energy at z = H is proportional to the turbulent stress τtH :

ez=H = c1
(
τ2

tx + τ2
ty

)
z=H

, (25)

where τtx and τty are the components of horizontal stress; c1 is a constant. The same rule is used for
calculation of the energy of turbulence at the lowest level z = z1:

ez=z1 = c1
(
τ2

tx + τ2
ty

)
z=z1

. (26)

The equations of the WBL model are approximated at the irregular stretched grid ∆z j+1 = γz∆ j
where γz is a stretching coefficient. In a research version of the model considered here, the height of the
domain was 10 m, the number of levels L in the air was equal to 50 and the stretching coefficient was
taken as γz = 1.10. The variables u, v and e were placed to the middle of the layers; their fluxes and
wave-produced momentum flux were placed in accordance to the intermediate levels. A high value of
γz was used for setting a high resolution close to the surface so that the thickness of the lowest level
was of the order of height of the viscous sub-layer zν = 60ν/v∗0 (ν = 0.15 · 10−4m2/s is a molecular air
viscosity and v∗0 is the local friction velocity). In this case an effective roughness parameter can be
calculated with Formula [11].

z00 = 0.11ν/v∗0 (27)

The local surface drag coefficient C0, surface tangent stress τt0 and local friction v∗0 are calculated
by a formula:

C0 =

 κ

ln z1
z00

2

, τt0 = C0u2
1, v∗0 = τ1/2

t0 ; (28)

The method of WPMF profile calculation requires more detailed consideration.
Typically, the wave spectrum S(ω,θ) contains thousands of values of wave energy. For calculation

of the energy input to each interval ∆ωi∆θ j it is necessary to calculate the wind velocity value at level
λi/2. Since the vertical grid is irregular, this simple operation procedure turns into a big problem,
especially, if the WBL model is used for the coupling of the atmosphere with the wave model or ocean
model. A simple way to overcome this problem is the approximation of wind profile U = (u2 + v2)

1/2,
for example by a relation:

U(z) = W −A ln
( H

2z

)
, (29)

where

W = Uh
ln

(
z
z0

)
ln

(
H
z0

) , Uh =
(
u2

h + v2
h

)1/2
, (30)
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where coefficient A is calculated by the root mean square method:

A =

L∑
1

Wi ln(H/2./zi)

L∑
1
(ln(H/2./zi))

2
(31)

where the summation is performed over the vertical coordinate. Formula (29) with coefficient A is
used for calculation of the interpolated and extrapolated values of wind velocity Uk:

Uk = Uh
ln(zk/z0)

ln(H/z0)
−A ln(H/2/zk), (32)

at height:
zk = λk

∣∣∣sec(θ−ψ)
∣∣∣/2, (33)

where ψ = arctan(uh/vh), and θ−ψ is an angle between the wind direction and the direction of kth
mode. The function sec(θ−ψ) is included in a reference level zk because waves moving at angle θ−ψ
to the wind direction have a corresponding longer virtual length. Note that Equation (32) can give
unnaturally high values of zk, especially for the low-frequency waves. We restricted this quantity by
limit zk = 100, which did not influence the results.

The nondimensional frequency Ω is calculated by a formula:

Ωk, j = ω jUk cos(θ−ψ)/g (34)

These values of Ωk, j are used for the calculation of an imaginary part of β-function (12).
The components of surface momentum fluxes from air to waves m2s−1 are calculated with the
formulae:

τwx0(k, j) = ω2
kSk, jβk, j cosψ, (35)

τwy0(k, j) = ω2
kSk, jβk, j sinψ (36)

The flux of energy to waves in the spectral cell ∆ωk∆θ j
(
m3s−2

)
is calculated by formula:

Fk, j =
ρw

ρa
gωkSk, jβk, j (37)

Here, in Equations (35)–(37) βk, j is the imaginary part of β-function of Ωk, j (34) calculated by
(12). The 1-D spectra of the surface wave flux of momentum τwx0(k) and τwy0(k) can be calculated by
summation over angle θ

τwx0(k) =
M∑

j=1

τwx0(k, j), τwy0(k) =
M∑

j=1

τwy0(k, j) (38)

while the components of total wave flux—by summation over frequencies:

τwx0 =
N∑

k=1

τwx0(k)∆ωk, τwy0 =
N∑

k=1

τwy0(k)∆ωk. (39)

The total flux of energy to waves is calculated by summation over angles θ and frequencies ω
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F =
N∑

k=1

M∑
j=1

Fk, j∆ωk. (40)

The vertical profiles of WPMF components are calculated taking into account the exponential
attenuation (19), (20):

τwx(zi) =
N∑

k=1

M∑
j=1

τwx0(k, j)∆ωk exp
(
−Kk, jGkzi

)
, (41)

τwx(zi) =
N∑

k=1

M∑
j=1

τwy0(k, j)∆ωk exp
(
−Kk, jGkzi

)
. (42)

where Kk, j is the virtual wavenumber (i.e., taking into account the direction ψ):

Kk, j = ω2
k g−1

∣∣∣sec(ψ)
∣∣∣ (43)

and Gk is the function (19).
Note that in the above equations, a variable with two indexes denotes matrix; with one index it

denotes the same variable but vector obtained by summation over angle; and with no indexes–the
variable denotes scalar obtained by summation over angles and frequencies.

6. Examples of the Calculations for Idealized Spectrum

A model formulated above is designed for the calculation of the drag coefficient that can be used
for estimation of fluxes specific feature of the model is that it links the structure of WBL with the upper
boundary condition and any arbitrary wave spectrum.

Below are the results of the calculations performed for the cases when surface waves are assigned
by JONSWAP spectrum S(ω,θ) [45] for different wind velocities and inverse wave age Ωp = U10/cp

(U10 is a wind velocity at height H = 10 m , cp is a phase velocity in spectral peak).

S(ω,θ) = S1(ω)D(ω̃,θ). (44)

Here S1(ω) is a one-dimensional spectrum and D(θ) is a function describing the angle distribution
of the potential energy density.

SJ(ω) = αg2ω−5 exp
(
−1.25ω̃−4

)
γΓ (45)

where ω̃ = ω/ωp (ωp is frequency in spectral peak), α is a coefficient depending on Ω [46]

α = 0.01Ω0.66, (46)

and Γ is a function of ω̃:

Γ = exp

( ω̃− 1
√

2σ

)2, where σ =

0.7 ω̃ < 1

0.9 ω̃ ≥ 1
(47)

The angle spreading is taken in a form suggested by Donelan (1999).
The shape of spectrum depends on Ωp and on the frequency in spectral peak

ωp = Ω0g/U10. (48)

A wave spectrum was assigned at grid
(
ωk,θ j

)
, k = 1, 2, 3 . . .N, N = 100 at stretched grid with a

stretching coefficient γω = 1.03; j = 1, 2, 3 . . .M, M = 90 in the interval (0 < θ < 2π) with a constant
step over angle ∆θ = 2π/M. The WBL model was approximated at grid with a number of levels
L = 100 at H = 10 m with a stretching coefficient γz = 1.10. Such a high number of level and value γs



Atmosphere 2019, 10, 686 15 of 30

provided a high resolution close to the surface which justified a use of the roughness parameter for
smooth surface (27).

A steady numerical solution of Equations (21) and (22) was obtained with a second order scheme
over z and an explicit time integration scheme. Such a scheme requires a very small time step ∆t
estimated by condition:

∆t < 0.25min
(
(∆z)2/K

)
, (49)

For steady conditions the total flux of momentum τ should be constant over height

τ = K
∂u
∂z

+ τw. (50)

Note that a term K∂u/∂z in Equation (50) at z = 0 should be replaced by the term τt0 = C0u2
1 (see

Equation (28)). The criterion of steadiness was chosen is a form:

(max(τ) −min(τ))/τH < 0.001

where τH is the total flux of momentum at z = H. An explicit scheme was used here because the
solution was very fast. However, when the model is used for massive calculations together with
another model (for example, with a wave forecast model), it is reasonable to use the TDMA method [47].

The structure of WBL is illustrated in the cases shown in Figure 6. The area of unrealistic value of
the significant wave height Hs = 11 m corresponding to the wave height about 33 m is separated by a
dotted line. This area will be shown for other characteristics of WBL.
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Figure 6. Dependence of the significant wave height on wind velocity U10 and inverse wave age Ωp:
1—Ωp = 1, 2—1.3; 3—1.6; 4—1.9; 5—2.2; 6—2.5 7—2.8. A horizontal dotted line separates the area of
unrealistic values of Hs.

The wind profiles shown in Figure 7 demonstrate a considerable deviation of the logarithmic
behavior (described by the second term in Equation (29)). For a smaller wave age (larger Ωp) the
deviation is larger and can be as big as 10 m/s for U10 = 30 m/s .

The specific property of WBL is that the mechanism of momentum transfer to wave develops very
close to the surface. Figure 7 shows that deviations of the logarithmic wave profile are concentrated
below the height of 1 m. It proves that the main part of momentum is transferred by small waves at
high frequencies. The main advantage of a one-dimensional approach is that it allows a broad range
of frequencies to be taken into account and most part of the wave produced flux. Contrary to the
turbulent stress, the wave produced flux of momentum is generated directly by an external factor, i.e.,
by curvilinearity of a moving surface. In a steady boundary layer the vertical flux of momentum should
be constant over height; hence, the turbulent momentum flux should decrease when approaching the
surface, and the connection between the stress and wind profile is modified (Figure 8).
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Figure 8. The vertical profiles of turbulent momentum flux τt (solid curves) and WPMF τw (dashed
curves), normalized by external momentum flux τH. Curves 1, 2 and 3 refer to τw for the wind velocity
14, 22 and 30 m/s, respectively; curves 4, 5 and 6 refer to τt for the same wind velocities. Thick curves
correspond to Ωp = 1, while thin curves to Ωp = 2.8.

As can be seen, a decrease of turbulent momentum flux is completely compensated by the increase
of WPMF that when close to the surface, can reach values as high as 0.7τH. For the wind that is less
than 20 m/s, the WPMF turns into 0 at the upper level. For higher winds, the WPMF can reach a value
of 0.1τH, which means that the total height of WBL is higher than z = 10 m . The calculations with the
increased height of domain up H = 20 m showed that the results in the layer 0 − 10 m obtained at
complete attenuation of WPMF to the upper level are very close to the current results. Since z = 10 m
is a standard reference level, we keep to this value for all variants of calculations.

The role of surface tangent stress τt0 calculated with Equation (28) is illustrated in Figure 9.
The contribution of tangent stress in the total surface stress is large for small wind and increases with
growth of inverse wave Ωp.

The dependence of these quantities on nondimensional frequency ω/ωp is shown in
Figures 10 and 11. As seen, both pictures demonstrate a great contribution of high-frequency modes to
the fluxes. The spectral composition of the surface momentum τw0 and energy fluxes Fw0 is convenient
to consider their integrated values τk

w0 and Fk
w0 as a function of the upper limit ω/ωp:
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Figure 9. The dependence of surface tangent stress τt0 (Equation (28)) normalized by the external value
of stress τ on wind velocity and inverse wave age Ωp. Only edge values Ωp = 1 and Ωp = 2.8 are
marked. The intermediate values of Ωp are indicated in a caption to Figure 5. On the right of a dotted
curve is the area of unrealistic values of U10.

τk
w0 = τ−1

H

k∑
k=1

τk
w0∆ωk, (51)

Fk
w0 = F−1

H

k∑
k=1

Fk
w0∆ωk, (52)

where FH = uhτh is the total vertical flux of energy at z = H.
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Figure 10. The integral WPMF τw0 normalized by external stress τH as a function of ω/ωp, and Ωp:
1—UH = 14 m/s; 2—22 m/s ; 3—30 m/s. Solid curves correspond to Ωp = 1; dotted curve to Ωp = 1.9,
dashed curves to Ωp = 2.8.
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Figure 11. The integral energy flux to waves Fw0 normalized by the external energy flux τHUH at
height z = H as a function of ω/ωp and Ωp: 1—UH = 14 m/s; 2—22 m/s ; 3—30 m/c. Solid curves
correspond to Ωp = 1, a dotted curve correspond to Ωp = 1.9, dashed curves correspond to Ωp = 2.8.

The flux of energy comes to the saturation level at ω/ωp ≈ 100 while the flux of momentum
remains growing up to ω/ωp ∼ 100. It can be explained just by dimensional consideration:
Equations (35) and (36) contain ω2, while an expression (37) contains ω. The tendency for the
tangent stress to drop at high frequencies in Figure 9 and the tendency of fluxes to increase in
Figures 10 and 11 can be explained by an insufficient resolution. This effect could be reduced by
introducing a higher resolution in frequency, but a shape of the β-function for high frequencies is not
well known. However, the total stress as a sum of and τt0 τw0 is calculated correctly.

The stationary solution for WBL can be obtained without separation of subgrid stress into a
tangent and WPMF part by assuming that a total stress on surface is equal to the outer stress τH.

τt0 + τw0 = τH (53)

Such formulation of the WBL problem does not require the use of high resolution in z and ω.
However, this scheme cannot be recommended for the precise calculation of wind-wave interaction,
since WBL is not always fully adjusted to waves, and the sum of turbulent momentum flux and WPMF is
not constant over height (see Section 5). In general cases, the WBL can be unsteady. The nondimensional
roughness parameter z0n = z0g/v2

∗ is calculated by relation

z0 = H exp
(
−
κUH

v∗

)
, (54)

here v∗ = τ1/2
H is plotted in Figure 12. As seen, z0 is not a constant but significantly depends on wind

velocity and inverse wave age Ωp.
The JONSWAP wave spectrum depends on the two parameters, i.e., wind velocity and inverse

wave age Ωp. Hence, the drag coefficient also depends on these parameters: the dependence on U10 is
direct, while on inverse wave age Ωp it depends because the larger Ωp, the larger the steepness of the
wave field which can be defined as follows:

St =

ωN∫
0

2π∫
0

k2S(ω,θ)dωdθ, (55)

where k = ω2/g is a wavenumber. Naturally, St is nondimensional, but for S ∝ ω−5 its value depends
logarithmically on cut-frequency ωN. This is why St cannot serve as an absolute characteristic of wave
field, but it is useful for the comparison of the wave fields with the same spectral resolution. In our
case for Ωp = 1 it equals 0.25 and for Ωp = 0.22 it is 0.3. This difference is large enough to consider that
the dependence on Ωp might be significant. The dependence of C10 on U10 turns out to be quadratic
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(Figure 13). For the developed sea (Ωp = 1) it does not exceed 2 · 10−3, while for the young sea it
reaches the value 3.5 · 10−3. A comparison of these results with the experimental data is easy, as the
existing data due to a large scatter can confirm any reasonable results.
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Figure 12. Dependence of the total roughness parameter z0 (Equation (1)) normalized by the Charnock
scale as a function of wind velocity and inverse wave age Ωp. Only the edge values Ωp = 1 and
Ωp = 2.8 are marked (see capture to Figure 8).
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Figure 13. Dependence of a drag coefficient C10 as a function of wind velocity and inverse wave age
Ωp. Only the edge values Ωp = 1 and Ωp = 2.8 are marked (see capture to Figure 9). A dashed curve
separates the area of unrealistic waves.

The dependence of drag coefficient on wind was studied in laboratory ([48,49]) and field ([50–53]).
In general, these data show that at least up to U10 = 30 m/s the drag coefficient grows (see the data
collected in [54]). The values C10 at wind velocity 25− 30 m/c fall in the interval (1.5− 3)10−3. Above
the value U10 = 30 m the drag coefficient in compliance with the majority of recent data starts to drop.
According to [54,55] the drag coefficient can be influenced by swell. Different functions C10(U10) were
tested being implemented in coupled models [56–61]. Those studies showed that introduction of a
drag coefficient decreased at strong wind improves the forecast results.

The data from different sources being plotted together (see [54]) look chaotic. The data can
equally prove and disprove any reasonable theoretical scheme. A reason for this is an absence of ideal
conditions when the theory is applicable. There are many reasons why the vertical flux of momentum
is not a constant over height. For example, in a specially selected area for conducting a study of the
Monin-Obukhov boundary layer the conditions during the vertical flux of momentum changing twice
over the distance of 10 m, was not unusual. The cause of such a phenomenon was a forest at a distance
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of 2 km from the point of observations, which violated the condition of horizontal homogeneity
(A.M. Obukhov, private communication). Finally, it looked as if the drag coefficient depended on
wind direction. Sea conditions are usually closer to homogeneity, but the deviation can be created
by meso-scale wind and sea surface temperature disturbances as well as by secondary circulations in
the planetary boundary layer and upper ocean, and for many other reasons. If the wind profile is not
logarithmic, the value of drag coefficient can change unpredictably in a broad range.

If the sea surface is flat at the conditions of stationarity and homogeneity, the structure of the
boundary layer is very simple and can be described by the well-known formulae. Hence, even at
ideal conditions in the presence of waves the drag coefficient is a product of waves. Wave spectrum is
seldom described by the JONSWAP approximation [45]; it often contains more than one peak. Also, a
general direction of waves can deviate from the wind direction. The angle distribution even for the
JONSWAP approximation is not well known. The drag coefficient depends on many factors:

1. A specific shape of the spectrum. The spectrum can have more than one maximum; it contains
swell and high-frequency tail. The spectrum can be asymmetric about wind direction, and the general
direction of energy-containing waves can deviate from the wind direction. The data on time scales
for the energy input (Figure 4) show that high-frequency waves should be adjusted to the local wind
conditions and are most likely generated by the local in time and space wind.

2. The local non-stationarity and non-homogeneity are caused by change of wave spectra and
wind velocity. In this case wind profile is not adjusted to the local wave spectra and can considerably
deviate from the structure shown in Figure 7. At the time scales of a governing model the WBL can be
also nonstationary, hence, we cannot rely on stationary solution.

Great variations of drag coefficient can be observed in the complicated processes such as tropical
storms where waves are not directly connected with local wind, and the conditions are very far from
being homogeneous and stationary. In this case, the characteristics of ocean-atmosphere interaction
are the product of local wind and waves as well as of the prehistory of the process. Definitely, drag
coefficient should be different in the different phases of storm. It means that this process should be
described not by the selected formulae and rules, but by a system of the equations describing a dynamic
interaction between the atmospheric boundary layer and upper ocean taking into account sea waves.

7. Pragmatic Model of the WBL

A one-dimensional WBL model described above is not convenient for regular use in a frame of
the ocean-atmosphere-sea wave models because it is based on direct calculations of high-frequency
waves and tangent stress in a viscous sub-layer. Hence, the formulation of such a model suggests
a high resolution for wave spectrum and for vertical coordinate. Such a model is well suited for
research. The spectral wave models usually do not include high-frequency waves. Besides, the high
resolution WBL model being included in a large model takes considerable time, which can slow down
the entire process. The straight way to avoid such a problem is to assume the stationarity of WBL. In
this case WPMF τw(z) for the wave modes included in wave spectrum are calculated directly with
Equations (41) and (42), while a surface boundary condition for turbulent stress is taken in a form:

τtx0 = τHx − τwx0, τty0 = τHy − τwy0 (56)

following from the assumption of the homogeneity and stationarity of the WBL. With such formulation
the WBL model can use a poor resolution by vertical (about 10–20 levels). This approach is too simple to
be universal, because the real process is seldom close to the conditions assumed, hence Equation (56) is,
in general, inapplicable. However, the ocean-atmosphere and wave modeling require the formulation
of a simplified approach, what we call here a ‘pragmatic’ model.

Let us consider a model of the WBL (21)–(23) for the calculation of the WBL structure above waves
assigned by an arbitrary wave spectrum S(ω,θ). The upper boundary conditions (24) and (25) remain
unchanged. The principal difference between the research model and pragmatic model is that wave
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spectrum is assigned up to the relatively low frequencies, of the order of 1 Hz, i.e., the smallest wave
has the length of the order of 10 m. We should admit that such spectral resolution is too poor for a
good description of the WBL structure, because even the smallest wave with the frequency of 1Hz, is
supplied by energy from a layer with the thickness of the order of WBL height. In fact, wave prediction
models are the models of big waves. However, we hope that the resolution of wave models will be
gradually improving, at least for research purposes.

Let us suppose that the wave model uses a grid with the maximum frequency ωm. It means
that the influence of waves with smaller frequencies is described individually in terms of the spectral
components of momentum flux calculated with a use of β-function. The influence of the subgrid modes
with ω > ωm should be taken into account parametrically. Let us suggest that above frequency ωm

waves are generated by current wind; the spectrum is with respect to wind direction and the energy is
falling down to ω−5. Such assumptions are not voluntary, since according to Figure 4, high-frequency
waves have a small timescale, i.e., it would be reasonable to suggest that they are generated by local
wind. Such situation can happen, for example, in a tropical storm τ0w when the wind quickly changes
direction and starts to generate new waves. The problem is describing the total momentum flux τ0m to
waves in the interval ω > ωm:

τ0m = τ0w + τ0t, (57)

where

τ0w =
N∑
km

τk
0w∆ωk, (58)

km is an index of frequency ωm and N is a number of frequencies in the research model. The data
on τ0w and τ0t were generated in a series of calculations with a high-resolution model for the JONSWAP
spectrum. The parameterization means that the values of τ0m and τ0t should be represented in terms
of the individually calculated variables of pragmatic model. There are several ways of obtaining such
an approximation, and we chose a version that gives the smallest errors. We found that the stress
produced by subgrid waves can be approximated by relation:

τwa = 0.4v2
∗

A0ω̃+ A1

ω̃+ A2
, (59)

where ω̃ = ω/ωp (ωp is peak frequency), v∗ is the external friction velocity, while A0, A1 and A2 are the
functions of v∗(m/s):

A0 = −0.0440 + 0.0175v0.760
∗

A1 = −11.203 + 14.056v0.0543
∗

A3 = −0.319 + 2.649v0.2389
∗

(60)

The tangent stress τt0 is approximated by relation:

τta = v2
s

(
B0 + B1L∗ + B2L2

∗

)
, (61)

where L∗ = ln(v∗) and
B0 = 0.3953− 0.1706Ωp + 0.0301Ω2

p
B1 = −0.1043 + 0.0133Ωp − 0.0026Ω2

p
B2 = 0.0392− 0.0037Ωp + 0.0007Ω2

p

(62)

The approximations (59)–(62) are valid in a range
(
0.9 < Ωp < 3.

)
and for the wind velocity

(3 < U10 < 35). The accuracy of the approximations (59)–(62) is demonstrated in Figure 14 where
the values calculated with (55)–(58) are compared with the model calculated with high resolution.
It should be underlined that parameterization (59)–(62) is based on the assumption that parameterized
high-frequency stress is produced by local wind.
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8. Dependence of Drag Coefficient on Wind Direction

The model described above was used for illustration of dependence of drag coefficient on wind
direction. It seldom occurs that wave spectrum is symmetrical and is produced by constant wind.
In reality, wind often rotates and starts to generate its own wave system and provide by energy the
existing waves. In a most clear form it happens in tropical storms where waves are a product of a
rapidly changing wind system.

For the calculations a simplified model with modest resolution was used: the number of frequencies
N = 50; maximum frequency is ωm = 6ωp; the stretching coefficient γω = 1.03; the angle resolution
∆θ = 2π/M, M = 90. The WBL model was approximated at a grid with L = 20 levels; the time step
was estimated with Equation (48). The surface boundary conditions for the subgrid wave-produced
momentum flux τw0 and τto were calculated by Equations (58)–(62). The wave spectrum in a range
0 < ω < ωm was assigned by the JONSWAP approximation. It was assumed that at higher frequencies
ω > ωm the wave spectrum is also described by the JONSWAP asymptotic, but a general direction
of such high-frequency waves coincides with the wind direction. The calculations were made for
three values of inverse wave age: Ωp = 1, Ω = 1.5 and Ωp = 2; for three directions of wind: Ψ = 0
(the directions of wind and waves are the same, curves 1 in Figure 15); Ψ = π/2 (vector of wind is
perpendicular to waves which are treated as a multi-mode swell); merging curves 2; Ωp = π (wind
is directed against swell, curves 3). Curves from Group 1 are close to the same curves in Figure 13.
Case 3 corresponds to the waves moving mostly perpendicular to wind. In this case the drag coefficient
is supported by subgrid stress only. This is why the drag coefficient is small and it is the same for
different wave ages. The curves in Group 3 relate to the case of opposite wind (high-frequency waves
are still directed along the wind). In this case, in calculation of Ω the overflow is a sum of wind and
phase velocities (the values of an imaginary part of β for Ω < 0 are larger than β for |Ω|). As seen, the
drag coefficient for opposite wind can reach very high values.

Figure 15 confirms that the instantaneous value of drag coefficient for any wind velocity is a
product of wave spectrum. Another example of the strong influence of wave spectrum on drag
coefficient is given in Figure 16. The calculations were done with a set of parameters used for the
calculations shown in Figure 15.



Atmosphere 2019, 10, 686 23 of 30

9 
 

8. Dependence of Drag Coefficient on Wind Direction 

The model described above was used for illustration of dependence of drag coefficient on wind 
direction. It seldom occurs that wave spectrum is symmetrical and is produced by constant wind. In 
reality, wind often rotates and starts to generate its own wave system and provide by energy the 
existing waves. In a most clear form it happens in tropical storms where waves are a product of a 
rapidly changing wind system.  

 

Figure 15. Dependence of drag coefficient 10C  on wind velocity 10U  for different angles between a 

general direction of waves and the wind direction Ψ : 1— 0Ψ = ; 2— / 2πΨ =  3— πΨ = ; In 
each group thick curves correspond to 1pΩ = , while a thinner curve to 1.5pΩ = , and thin 

curves to 2pΩ = . 

 

Figure 16. Dependence of drag coefficient DC  on the angle between wind direction and general 

direction of waves for 10 20 /U m s= : 1— 1pΩ = ; 2— 1.5pΩ = ; 3— 2pΩ = . 

As seen, drag coefficient can change significantly above a variable wave spectrum. All of the 
calculations in this Section were done up to the state of momentum balance (Equation (50)). In 
general case, it is incorrect, since the boundary layer can remain in nonstationary conditions. In our 
opinion, the time step should be comparable with the time steps for the wave and atmospheric 

Figure 15. Dependence of drag coefficient C10 on wind velocity U10 for different angles between a
general direction of waves and the wind direction Ψ: 1—Ψ = 0; 2—Ψ = π/2; 3—Ψ = π; In each group
thick curves correspond to Ωp = 1, while a thinner curve to Ωp = 1.5, and thin curves to Ωp = 2.

9 
 

8. Dependence of Drag Coefficient on Wind Direction 

The model described above was used for illustration of dependence of drag coefficient on wind 
direction. It seldom occurs that wave spectrum is symmetrical and is produced by constant wind. In 
reality, wind often rotates and starts to generate its own wave system and provide by energy the 
existing waves. In a most clear form it happens in tropical storms where waves are a product of a 
rapidly changing wind system.  

 

Figure 15. Dependence of drag coefficient 10C  on wind velocity 10U  for different angles between a 

general direction of waves and the wind direction Ψ : 1— 0Ψ = ; 2— / 2πΨ =  3— πΨ = ; In 
each group thick curves correspond to 1pΩ = , while a thinner curve to 1.5pΩ = , and thin 

curves to 2pΩ = . 

 

Figure 16. Dependence of drag coefficient DC  on the angle between wind direction and general 

direction of waves for 10 20 /U m s= : 1— 1pΩ = ; 2— 1.5pΩ = ; 3— 2pΩ = . 

As seen, drag coefficient can change significantly above a variable wave spectrum. All of the 
calculations in this Section were done up to the state of momentum balance (Equation (50)). In 
general case, it is incorrect, since the boundary layer can remain in nonstationary conditions. In our 
opinion, the time step should be comparable with the time steps for the wave and atmospheric 

Figure 16. Dependence of drag coefficient CD on the angle between wind direction and general direction
of waves for U10 = 20 m/s: 1—Ωp = 1; 2—Ωp = 1.5; 3—Ωp = 2.

As seen, drag coefficient can change significantly above a variable wave spectrum. All of the
calculations in this Section were done up to the state of momentum balance (Equation (50)). In general
case, it is incorrect, since the boundary layer can remain in nonstationary conditions. In our opinion,
the time step should be comparable with the time steps for the wave and atmospheric model. In our
calculations the explicit time scheme was used, since the rate of calculations did not matter. When a
model is intended as a link between the atmosphere and ocean, it is reasonable to use an implicit time
step. In such a mode the time spent for the WBL modeling is very small compared with the time for the
calculation of atmospheric physics. Note that in the nonstationary WBL above complicated wavefield
the connection between wind velocity and drag coefficient can vary in broad ranges.

9. Thoughts on Drag Coefficient at Strong Wind

As demonstrated in Figure 12, the current theory predicts a monotonic growth of drag coefficient
with an increase of wind speed. However, there exist some data revealing that for a wind speed
exceeding 25–30 m s−1, the drag coefficient reaches an upper limit (Powell et al. 2003, Donelan et al.
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2004), while as the wind speed increases further, the drag coefficient can decrease. Earlier such an
effect was also noted when analyzing the tropical cyclone development (Emanuel, 1995). Currently,
some attempts are made to explain such behavior of drag coefficient on the basis of a ‘droplet
theory’ [43,62–64]. According to this theory, the drops generated as a result of the splitting of falling
water volumes intensify the dissipation of turbulence, which causes reduction of drag coefficient.
Such scheme looks reasonable, although a model of drop generation (as well as the mechanism of
drops-turbulence interaction) uses too many arbitrary assumptions and ‘constants’, leaving a great
possibility for fitting the theory to the observation data. In fact, this mechanics was suggested by
Barenblatt and Golitsyn [65] for explanation of a dust storm phenomenon (and for liquid fuel droplets
in rocket engines before that). According to their theory, sand particles increase the dissipation of
turbulence and decrease friction, which accelerates the flow. The difference between the sea condition
and desert is that the specific weight of sand particles is 3—4 times larger than that of water, and the
concentration of sand particles is very high (visibility in dust storms is usually zero). It is easy to
estimate that the density of sand fraction in a dust storm is by orders of magnitude higher than the
density of water in a flow above sea waves.

According to our data, an effect of the wave-drag reduction at high wind speeds can be easily
explained through the influence of high-frequency waves. As seen in Figure 10, about 50–70% of WPMF
is transferred to waves at frequencies ω/ωp > 10. Hence, the variation of stress in a high-frequency
part of the spectrum can modify the drag coefficient. It would be appropriate to suggest that the
energy of short waves at high winds decreases due to two factors: the presence of bubble foam that
suppresses short waves, and the flow deceleration in troughs due to the flow separation. The latter
can be investigated using the coupled wind-wave model directly, though the model must take into
account a broad range of wave spectrum from peak waves to capillary waves. A high wind speed and
the necessity to use a high vertical resolution in the WBL make this problem quite time-consuming;
however, such calculations are possible from a technical point of view. Note that the reduction of drag
can also be caused by ‘blowing away’ sharp crests: high winds can smooth the surface and remove
the elements responsible for stress. This effect was directly observed in the wind-wave tunnel (J.
Troitskaya—private communication).

To prove that the reduction of drag coefficient is caused by the suppression of small waves, the
additional calculations of drag coefficient were performed with a use of a non simplified WBL model
described in Section 3 for the modified JONSWAP spectrum. A somewhat arbitrary assumption
suggests that waves, whose frequency exceeds some value of ω f , are absent. In other words, we just
cut the spectral tail in small pieces starting from ω = ωN and calculated the stationary structure of the
WBL and drag coefficient. The calculations were started from U10 = 25 m/s when a drag coefficient
was equal to 2.6 · 10−3. Then the calculations were repeated for the next wind value, with cutting a new
portion of wave tail. The sizes of cuts were chosen for good qualitative approximation of data obtained
on [51,55,66]. The final dependence C10(U10) is shown by dots in the lower panel of Figure 17. In the
upper panel a relative decline of total wave energy ∆Ep/Ep(%) is shown. It is seen that a considerable
decrease of drag can be reached by a very small reduction of energy in a high-frequency part of the
spectrum. Note that the form of reduction does not influence general results: essentially the same
dependence C10(U10) can be obtained by increase of the rate of energy drop in the spectral tail.

It should be emphasized that the result presented in Figure 17 is purely qualitative, since the exact
shape of spectrum at high wind speeds is unknown. Figure 17 just illustrates a simple explanation of
the drag coefficient reduction at high wind speeds on the basis of the high-frequency wave spectrum
modification. To take into account this effect, it is necessary to study the exact shape of spectrum
tail, i.e., to find a connection between the wind velocity and energy in a high-frequency part of
spectrum. This problem seems to be simpler than defining a set of ‘constants’ in the equations of the
‘droplet’ theory.
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Figure 17. The influence of energy of the high-frequency part of spectrum on drag coefficient. In upper
panel the reduction of wave energy (%) due to truncation of the spectral tail is shown. The bottom panel
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the truncated spectrum (dots).

10. Conclusions

Contrary to the turbulent transfer, the wave-produced momentum flux (WPMF) is not an internal
factor of the wave boundary layer (WBL), since the structure and magnitude of the WPMF are controlled
by the wave field. Only the stationary and horizontally homogeneous flow above smooth or rough
surface has the universal structure. Even above land such conditions are seldom, because in reality the
surface is inhomogeneous, and the external flow is nonstationary. Above sea the variable wind and
advection of wave energy produce infinite diversity of wave spectra. The dynamic structure of wave
boundary layer considered in this paper is completely defined by upper boundary conditions (i.e.,
wind velocity or turbulent stress) and wave field properties. This is true if the wind or wave spectrum
does not change; otherwise the structure of the WBL depends on a relatively short prehistory. All these
processes can be well simulated by coupling the WBL 2-D model or 3-D model with turbulence closure
or LES schemes [67]—with the phase resolving model of waves (like the HOS model [68] or the finite
difference model [69] or model [70].

Spectral wave models [14], as well as 2-D [17] and 3-D LES [21] modeling [67], or modeling with
a turbulent closure scheme [17] require the parameterization of tangent stress and subgrid waves
effects. The scheme (59–62) was developed specifically for these purposes. A more practical approach,
such as wave prediction modeling [14] or coupled ocean-waves-atmosphere modeling [71] is based
on a spectral presentation of wave fields. Parameterizations of the dynamic WBL should solve two
main tasks: (1) calculate the flux of momentum lost by the atmosphere model and obtained by the
ocean; (2) calculate the flux of energy to waves. Both of these problems are far from being resolved.
Until recently numerous attempts have been made to find the best approximation for dependence of
surface stress on wind velocity (see [72]). However, it became clear many years ago that such a unique
dependence cannot exist (e.g., [73]). The drag coefficient at any given wind velocity is a product of the
wave spectrum which can be quite different. For example, let us consider an ideal wave field consisting
of one single mode. If wind direction coincides with the direction of wave propagation, the wave will
produce some wave drag which is superimposed upon tangent drag. If the wave front is parallel to the
wind direction, the wave-produced drag is equal to zero, and friction is supported by the tangent stress
only. If the direction of the wind is the opposite to wave propagation, the drag will be larger than in
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the first case, because the rate of overflow is a sum of wind and phase velocities. In a multimode wave
field, waves of different directions are present, but the effect of deviation of wave direction from the
wind direction remains important (see Figure 16). Naturally, the magnitude and direction of wave
drag strongly depends on thea shape of the two-dimensional wave spectrum S(ω,θ).

Unfortunately, the data on wind vector and spectral shape cannot be converted directly into the
magnitude of drag coefficient. For such purposes it is necessary to use a model of WBL that calculates
the structure of the WBL and the rate of exchange by momentum and energy between wind and
waves. The construction of the WBL model became possible following the investigation of β function
performed in [17] and the recent new post-processing of their results. For approximation (12), (13) of
β-function 1,400,000 individual values in the range of−50 < Ω < 50 were used. The data on β at |Ω| > 20
had a large scatter and were considered as not quite reliable. Such values of Ω are used infrequently.
β-function was defined by the processing of the simultaneous local values of elevation and surface
pressure. The pressure was calculated by a standard method based on the Poisson equation, and to
some degree can be considered as exact. However, the results depend on the vertical and horizontal
resolution of WBL, and the significance of this dependence is not clear enough. We were not able check
the effect of this resolution because the calculations similar to those described in [17] normally take
several months. Note that the entire approach demonstrated in the current paper requires further
investigation of β-function calculated with a high-resolution coupled model. This problem is far from
being solved; the current paper is just a first step in this direction.

The simplest way of derivation of the 1-D WBL model (Equations (21) and (23)) should be based
on the complete Euler equations extended by an appropriate closure scheme. The averaging of the
equation for horizontal momentum gives a 1-D equation that contains the components of WPMF.
The vertical profiles of these components can be represented in a convenient form as a sum of fluxes
produced by separate wave modes (see Figure 5). Finally, we obtain the equations which directly
connect the structure of the WBL with an arbitrary wave spectrum. To avoid uncertainty with a
lower boundary condition we used a very high resolution for frequency and height, which allowed us
placing the lowest layer in a viscous sub-layer and calculate the tangent stress in the near-surface layer
with the usage of molecular viscosity. The calculations showed that the results are not too sensitive
to resolution. As an example, the solution of equations was done for the symmetrical JONSWAP
spectrum. The structure of the WBL was illustrated by profiles of wind velocity and WPMF, as well
as by energy of turbulence and some other characteristics. It is shown that the Charnock’s scaling
decreases the dependence on wind velocity, but the coefficient in this formula still remains dependent
on wind velocity and wave age. Finally, the dependence of drag coefficient on wind velocity and
wave age was presented. Naturally, this result is valid only for the situations which are similar to the
idealized conditions of the JONSWAP experiment. In reality, the general direction of the wind wave
spectrum deviates from wind direction, and the spectrum can contain the waves not generated by local
wind. Each spectrum at given velocity generates its own drag coefficient. If the conditions change
quickly, the structure of WBL is not stationary, and the drag coefficient is not fully defined by the local
spectrum and wind.

A detailed model that uses high resolution over wave frequency and elevation above the water
surface cannot be used as an element of a complicated system similar to the wave prediction model
or coupled ocean-atmosphere model. However, this model can be used for the development of a
simplified approach which does not require considerable computational resources. The simplification
of the model can be done by the sharp reduction of frequency range (engineering models like WAM
or WAVEWATCH do not consider high-frequency waves). Parameterization is based on the evident
properties of small waves: they are mostly generated by current wind; hence, their structure is more or
less universal. We assume that an asymptotic form of wave spectrum at high frequencies is similar to
that of the JONSWAP spectrum. It was shown before that the friction generated by subgrid waves
and tangent stress can be parameterized in terms of cut-frequency, external friction velocity and wave
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age. The calculations of the WBL structure with a simplified model proved that such parameterization
is acceptable.

The 1-D model of WBL is useful for the investigation of a broad range of problems. The main
advantage of the model is a direct connection of the WBL structure with an arbitrary wave spectrum.
In general cases, the WBL problem is nonstationary: the boundary layer is all the time adjusting to the
changing wave field and wind velocity. If the model is used as a link in the atmosphere-waves-upper
ocean system, the stationary solution is not always reachable, since the boundary conditions are
typically unsteady.

This paper is devoted to the purely-dynamic interaction. The model will be generalized by
including stratification effects and the equations for temperature and vapor transfer.
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