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Abstract: The evidence linking ozone and particulate matter with adverse health impacts is 
increasing. The goal of this study was to assess the impact of air pollution on the mortality rate from 
respiratory disease in Seoul, Korea, between 2008 and 2017. The analysis was conducted using a 
decision tree model in two ways: using 24-hour average concentrations and using 1-hour maximum 
values to compare any health impacts from the different times of exposure to pollution. Results 
show that in spring an elevated level of ozone is one of the most important factors, but in summer 
temperature has a greater impact than air pollution. Nitrogen dioxide is one of the most important 
factors in fall, while high levels of particles less than 2.5 μm (PM2.5) and 10 μm in size (PM10) and 
cooler temperatures are key factors in winter. We checked the accuracy of our results through a 10-
fold cross validation method. Error rates using 24-hour average and 1-hour maximum 
concentrations were in the ranges of 24.9%–42% and 27.6%–42%, respectively, indicating that 24-
hour average concentrations are slightly more directly related with mortality rate. These results 
could be useful for policy makers in determining the temporal scale of predicted pollutant 
concentrations for an air quality warning system to help minimize the adverse impacts of air 
pollution. 
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1. Introduction 

Air pollution reduces visibility and has an adverse impact on human health [1]. Relatively high 
pollutant levels are often observed in industrialized cities. As a representative example of air 
pollutants, the tropospheric ozone (O3) is a secondary pollutant produced naturally by photochemical 
decomposition. O3 maintains an equilibrium concentration between production and removal, but 
artificially emitted nitrogen dioxide (NO2) and volatile organic carbons (VOCs) accelerate the 
production of O3 through a photochemical reaction. Accordingly, high O3 concentrations are common 
in cities, which damage ecosystems [2–4]. Prolonged exposure to high O3 concentrations causes or 
exacerbates cardiovascular disease and respiratory diseases, such as pneumonia, chronic obstructive 
pulmonary disease, asthma, and allergic rhinitis. Cases leading to death have also been reported [5–
7].  

Particulate matter is also a representative air pollutant with direct effects on human health. 
Particles less than 2.5 μm in size are referred to as PM2.5, and particles less than 10 μm in size referred 
to as PM10. Because inhaled fine particles can penetrate deep into the capillary vessels, particulate 
matter is known as a direct cause of cardiovascular disease. There have been multiple reports 
showing that exposure to high particle concentrations leads to increased fetal mortality. According 
to the World Health Organization (2014), by 2012, the global toll of premature deaths related to air 
pollution had reached 7 million people annually. As such, numerous research results showing air 
pollution’s direct and indirect impacts on human health have been published [8].  
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Air pollution affects health in many ways [9–11]. The impact of air pollution on school students 
was studied for 3.5 years in Barcelona, Spain [12]. Results showed that an increase in ambient NO2 
and particulate matter concentrations by one interquartile range deteriorated memory development 
in students by around 20%. Ljungman et al. (2018) analyzed the relationship between air pollution 
and arterial stiffness. Although the result showed no linkage between arterial stiffness and PM2.5, a 
higher probability of arterial stiffness was found in roadside residents. In other words, although the 
impact of a single type of air pollution was not clear, the results demonstrated that several air 
pollutants have complex effects on health [13]. Therefore, the influence of multiple air pollutants on 
the human body should be analyzed to accurately identify the effect of air pollution. 

The impact of air pollution on human health also varies according to the analytical method used. 
Son et al. (2010) analyzed the impact of air pollution on pulmonary function by using PM10, O3, NO2, 
SO2, and CO obtained from 13 observatories in Ulsan, Korea, from 2003 to 2007 [11]. Four methods 
were used to calculate representative pollutant concentrations: simple averaging, nearest distance, 
inverse distance weighting, and kriging. Subsequent tests of the accuracy of the analysis determined 
that kriging was superior. As such, differences in research results may occur depending on the 
method selected. On the other hand, results may vary depending on the timescale of the observed air 
pollution. Lee et al. (2018) analyzed the impact of short-term exposure to air pollution (fewer than 8 
days) and long-term exposure to air pollution (annual) on key inflammatory markers by using linear 
mixed effects models [14]. The results showed that although short-term exposure was related to 
increased fibrinogen and ferritin levels, long-term exposure was related to fibrinogen and white 
blood cell counts. Likewise, the impact of air pollution may vary depending on the temporal scale of 
data, so it is meaningful to compare epidemiological study results using data of different timescales. 

The purpose of this study is two-fold: one reason is to find pollutant levels that determine the 
high probability of mortality from respiratory disease, and the other is to compare the accuracy of 
the results using 1-hour maximum with that using 24-hour average pollutant concentrations. In order 
to achieve these goals, we classified the dependent variable as days with high and low probability of 
mortality. In addition, the effect of temperature on health was also analyzed because temperature is 
known to have a direct influence on health [6,10]. The statistical model used was a decision tree 
algorithm. Among various statistical models, the decision tree algorithm was especially useful for 
finding factors with which to classify the dependent variable [15]. A brief description of the model is 
provided in the next section.  

2. Research Methods  

2.1. Analytical Data 

Hourly air pollutant concentrations, temperature, and daily number of deaths in Seoul from 2008 
to 2017 were used for this study. Air pollution data for SO2, CO, O3, NO2, PM10, and PM2.5 were 
measured from 25 monitoring stations operated by the Korea Environment Corporation (KECO) 
(Figure 1) [16]. Temperatures were collected from the Korea Meteorological Administration’s (KMA) 
National Climate Data Center (NCDC) [17]. The number of deaths was based on the public microdata 
of the National Statistical Office (NSO) [18]. The number of deaths from respiratory disease was in 
the “J00–J99” category of the 10th International Classification of Diseases (ICD-10). 

 
Figure 1. Air pollution monitoring stations in Seoul, Korea. 



Atmosphere 2019, 10, 685 3 of 18 

 

2.2. Decision Tree Model 

Decision tree models can efficiently accommodate any data formats that are non-normal, a mix 
of continuous, discrete, and categorical formats, and cross- or auto-correlated formats. Moreover, the 
decision trees facilitate the interpretation of the final model because their output is a hierarchical 
structure that consists of a series of “if–then” rules to predict the outcome of the dependent variable 
[19]. This cannot be easily achieved using other time series regression models, such as distributed lag 
non-linear function. A decision tree model expresses rules appropriate for classifying or predicting 
dependent variables (i.e., number of deaths caused from respiratory disease) based on independent 
variables (i.e., air pollutant concentration, etc.). Here, independent variables were the 1-hour 
maximum and 24-hour average air pollutant concentrations and 24-hour average temperatures. 
Dependent variables were the categorical values of days with high numbers of deaths (H) or days 
with low numbers of deaths (L) and were classified based on the median number of deaths from 
respiratory disease (Table 1).  

A classification and regression tree (CART) was used to apply the decision tree model. Because 
detailed descriptions of CART models can be found in other literature, only a brief description is 
outlined in this paper [15]. First, CART makes classifications based on the most important 
independent variable (Figure 2). For example, let us assume independent variables are X, Y, and Z. 
Here, the first basis for classifying dependent variables as A or B is “X ≤ x”. The second basis is “Y ≤ 
y” or “Z ≤ z”. Under “X ≤ x”, the dependent variable is classified as A if “Y ≤ y”, and it is classified as 
B if “Y > y”. Under “X > x”, the dependent variable is classified as B if “Z ≤ z”, and it is classified as 
A if “Z > z”. Among the independent variables, only appropriate variables are used for the 
classification.  

The classification criteria in CART maximize similarity and dissimilarity among groups based 
on the Gini index [15]. Because the branch divides repeatedly based on this method, a tree-shaped 
structure is hierarchically constructed. the visual expression is helpful in understanding and 
interpreting the results. The model has been widely used in many areas, including environmental 
sciences and epidemiological studies linking air pollution and human health [20–26]. 

 
Figure 2. Schematic diagram of classification. Independent variables are X, Y, and Z, and dependent 
variables are classified as A and B. 

The dependent variable in the model was categorized as days with relatively high (H) and low 
(L) numbers of daily deaths compared with the median number of daily deaths from respiratory 
disease. The median number of daily deaths during the analysis period was seven deaths. Thus, “H” 
indicates days where the number of deaths from respiratory disease is higher than seven, and “L” 
indicates days where the number of deaths is equal to or lower than seven.  

Independent variables included the 1-hour maximum pollutant concentrations (SO2, CO, O3, 
PM10, PM2.5, and NO2) and the 24-hour average temperature. Air pollutant concentrations one to three 
days before the deaths were included in the independent variables to observe the influence from 
pollution prior to death. Temperature is known to have a relatively long-term effect compared with 
air pollution [10]. Therefore, temperatures from four to 20 days before the deaths were also included 
in the independent variables. To decrease the number of independent variables, average 
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temperatures from four to 10 days and from 11 to 20 days were used instead of using temperatures 
on each day. A CART model’s accuracy does not increase even though the number of independent 
variables is increased if there is correlation between the independent variables [15]. The 1-hour air 
pollutant concentration n days before the deaths is abbreviated as “Pollutant name”_max(n d) 
hereafter. For example, “O3_max(1 d)” indicates the 1-hour maximum O3 concentration, one day 
before death. The average temperatures from 4 to 10 days and from 11 to 20 days are represented as 
“T(4–10 d)” and “T(11–20 d)”, respectively.    

Taking into account the annual changes in air pollutant concentrations, an analysis was 
conducted for each month. For example, O3 concentration was especially high in May and June, and 
prolonged exposures to high ozone concentrations could be a direct cause of respiratory and eye 
diseases. On the other hand, particle concentrations were relatively high in winter. As such, it was 
difficult to accurately identify the factors causing mortality without adding seasonal distinctions into 
the analysis. Previous studies that used decision tree models to conduct studies related to air 
pollution also limited the analyses periods to several weeks and separate analyses were conducted 
for each season. For example, Chu et al. (2012) limited the analysis period to spring (from April 28 to 
May 13, 2009) to find factors that influenced ozone concentrations [24]. Park (2018) constructed 
independent models for each season to assess factors linked with cardiovascular disease [27]. 

3. Status of Air Pollution, Temperature, and the Number of Deaths Caused by Air Pollutants 

3.1. Air Pollution and Temperature 

Basic statistics of hourly SO2, CO, O3, NO2, PM10, and PM2.5 concentrations in Seoul, Korea, from 
2008 and 2017 are illustrated as box plots in Appendix A (Figure A1). The plots show that SO2 and 
CO met the air quality standard at all times. Unsurprisingly, O3 exceeded the air quality standard 
from April to September; because strong sunlight accelerates O3 generation; as such, O3 generally 
increases in spring and summer [28–30]. The 24-hour average NO2 exceeded the air quality standard 
from January to May and from October to December. Moreover, the 1-hour average NO2 exceeded 
the standard regardless of the season. Much like NO2, the 24-hour PM10 also exceeded the standard 
during the relatively cold seasons. One of the important causes of the higher PM10 concentrations 
during the cold seasons was the relatively low atmospheric mixing height because of a low ground 
temperature [31]. The year-round exceedance of PM2.5 shows how imperative it is to reduce PM2.5. 
Daily average temperatures showed clear seasonal changes; the highest temperature was 33.7 °C in 
August and the lowest value was –14.8 °C in January.  

3.2. Number of Deaths Caused by Respiratory Disease 

The number of deaths in Korea from 2008 to 2017 was around 2.6 million, so the annual average 
number of deaths was approximately 260,000. Differences in the number of deaths varied up to 15%, 
depending on the months. The mortality rate was relatively high in summer and winter, and 
relatively low in the spring and fall. Causes of death were cancers (28%), cardiovascular disease 
(22%), traffic accidents and suicides (11%), diabetes and liver disease (9%), respiratory disease (28%), 
and others (22%). DeLeon and Thruston (2003) found that the influence of air pollution on deaths 
was clear for the elderly, but less clear for others [32]. Accordingly, this study also focuses on persons 
aged 65 or older at time of death from respiratory disease (Table 1).  

Table 1. Basic statistics of the daily number of deaths from respiratory disease for persons aged 65 or 
older at time of death from 2008 to 2017 in Seoul, Korea. 

Mean Standard Deviation Median Maximum Minimum 
7.6 3.5 7 23 1 
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4. Results and Discussion  

4.1. Linkage of Air Pollution and Temperature with Mortality from Respiratory Disease 

Monthly average pollutant concentrations on days with a higher probability of deaths from 
respiratory disease were compared with those with lower probability of deaths to find the linkage 
between air pollution and deaths (Figures 3-7). Differences in O3 concentrations were relatively large 
from May to August when high O3 concentrations were observed (Figure 3). Studies have shown that 
the adverse health effects from O3 are often found in industrialized cities, in which the production of 
O3 is accelerated by NOx and VOCs emissions [4–7]. Because strong sunlight is crucial for O3 
production, high O3 levels are often found in spring, as was true in this case (Figure 3).  

The health impact of air pollution may appear within a few hours after exposure to pollution or 
several days afterward [5]. Consequently, a time delay may exist between the occurrence of high air 
pollution and death. To take this possibility into account, O3 concentrations up to five days before the 
day of death were analyzed; data in February, May, August, and November are presented as an 
example (Figure 3).  

The O3 concentrations up to five days before recorded deaths were obviously higher than on 
days with lower numbers in May (Figure 3). The 1-hour maximum O3 values in May on the days with 
high and low numbers of deaths were 86 ppb and 78.3 ppb, respectively, with a difference of 7.7 ppb 
(Figure 3a). Differences at 1, 2, 3, 4, and 5 days before death were 8.2 ppb, 8.9 ppb, 4.3 ppb, 6.8 ppb, 
and 5.6 ppb, respectively, indicating that the difference at 1–2 days before death was greater than that 
on the day of death. The 8-hour average O3 values in May on days with high and low numbers of 
deaths were 72.9 ppb and 66.4 ppb, respectively, with a difference of 6.4 ppb (Figure 3b). Differences 
at 1, 2, 3, 4, and 5 days before death were 6.5 ppb, 6.6 ppb, 3.1 ppb, 5.0 ppb, and 4.1 ppb, respectively. 
The results indicated that O3 concentrations 1–2 days before death had a direct association with death, 
whereas O3 concentration 3–5 days before death had relatively less impact.  

(a)  

 
(b)  

  
Figure 3. Ozone (O3) concentrations on days with a higher or lower probability of deaths from 
respiratory disease, and those from zero to 5 days before death in February, May, August, and 
November between 2008 and 2017: (a) 1-hour and (b) 8-hour maximum O3 concentrations. 

PM2.5 concentrations did not show clear differences between the days with high and low 
numbers of deaths (Figure 4). Differences in PM2.5 concentrations in August did not consistently 
increase or decrease on days before death. However, differences 1 day and 2 days before death 
increased in February, May, and November, while differences decreased 3, 4, and 5 days before death. 
These results imply that high PM2.5 1 day or 2 days before death is associated with deaths from 
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respiratory disease, which is consistent with an existing study showing that deaths from 
cardiovascular disease occur a few days after high PM2.5 concentrations [33].  
 

(a)  

 
(b)  

 
Figure 4. Concentrations of particles less than 2.5 μm in size (PM2.5) on days with a higher or lower 
probability of deaths from respiratory disease, and those from zero to 5 days before deaths in 
February, May, August, and November between 2008 and 2017: (a) 1-h maximum and (b) 24-hour 
average PM2.5 concentrations. 

PM10 concentrations were relatively higher in winter and in spring (Figure 5). The high PM10 
concentrations during relatively cold seasons are also related to the relatively low mixing height 
during the cold season, because pollutants can accumulate in the lower troposphere if the mixing 
height is low [34]. The period in which maximum PM10 concentrations were observed was consistent 
with days with an inflow of yellow dust from the west of Korea [35]. Differences in PM10 
concentrations 1 day and 2 days before death were obvious in February, May, and November, which 
implied that PM10 concentrations one or two days before death had a large impact.  

(a)  

 
(b)  

 
Figure 5. PM10 concentrations on days with a higher or lower probability of deaths from respiratory 
disease, and those from zero to 5 days before deaths in February, May, August, and November 
between 2008 and 2017: (a) 1-hour maximum and (b) 24-hour average PM10 concentrations. 
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Monthly average NO2 concentrations on days with high numbers of deaths did not show a big 
difference to those with low numbers of deaths (Figure 6). NO2 concentrations from one to five days 
before days with high numbers of deaths differed little from those with low numbers of deaths. Such 
results do not necessarily mean that NO2 concentration was not a direct cause of death from 
respiratory disease, because the recorded monthly average concentration alone is insufficient for a 
thorough analysis of its effects. Accordingly, a decision tree model was introduced to permit closer 
observations of the health impacts of air pollution.  

(a)  

  
(b)  

  
Figure 6. Nitrogen dioxide (NO2) concentrations on days with a higher or lower probability of death 
from respiratory disease and those from zero to 5 days before deaths in February, May, August, and 
November between 2008 and 2017: (a) 1-hour maximum and (b) 24-hour average NO2 concentrations. 

The average temperature on days from February to April with high numbers of deaths was 
lower than on days with a low number of deaths (Figure 7). This result is consistent with a previous 
study showing that high numbers of deaths by respiratory disease occurred on days with low 
temperatures in winter [36,37]. However, average temperatures on the days with high numbers of 
deaths were slightly higher in most cases than on the days with low numbers of deaths. This was 
partly because of the relatively low particle concentrations observed on cold days.  

Air pollutant concentrations, especially those of secondary pollutants such as O3, are affected by 
meteorological conditions [29]. Moreover, when cold air masses move in from the relatively clean air 
of the northern polar area, particle concentrations tend to be low. Similar phenomena are observed 
in Vietnam as well. Hien et al. (2011) observed a reduced PM10 concentration from October to 
February in Hanoi, Vietnam, immediately before a cold surge occurred [38]. Similarly, temperature 
and air pollution are related. As a result, it is necessary to simultaneously analyze the effect of both 
air pollution and temperature on health to isolate the factors exacerbating respiratory disease.   

 
Figure 7. Temperatures on days with a higher or lower probability of deaths from respiratory disease, 
and temperatures from zero to 5 days before deaths in May between 2008 and 2017. 
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4.2. Factors that Impact the Number of Deaths Caused by Respiratory Disease 

4.2.1. Influence of 1-Hour Maximum Pollutant Concentrations on the Number of Deaths from 
Respiratory Disease 

The decision tree model was used to observe the effect of pollutant concentrations on the number 
of deaths caused by respiratory disease. Originally, the model was constructed using all data, and 
the accuracy of the model was checked by the 10-fold cross validation error. Results showed that the 
error rate was 45%, indicating that the model did not accurately classify factors affecting high and 
low probability of death from respiratory disease, partly due to seasonal variations of pollutant 
concentrations. Thus, the analyses were conducted separately for each month. 

The impact of air pollution and temperature on respiratory disease as analyzed with a CART 
model could be interpreted as follows (Figure 8). Here, “T(11–20 d)” became the basis for the first 
branch in January. This signified that the most important factor that impacted the risk of death was 
“T(11–20 d)”. Results showed that the risk of death was relatively low when “T(11–20 d)” was higher 
than 2.4 °C. When “T(11–20 d)” was 2.4 °C or lower, “PM2.5_max(1 d)”, the basis of the next branch, 
was checked to determine the risk of death. When “T(11–20 d)” was less than 2.4 °C and “PM2.5_max(1 
d)” was higher than 95.5 μg∙m-3, the risk of death was relatively high. If the “PM2.5_max(1 d)” was 
95.5 μg∙m-3 or less, “PM10_max(1 d)” was checked. If “PM10_max(1 d)” exceeded 125.5 μg∙m-3, the risk 
of death was relatively high. Assuming that “PM10_max(1 d)” was 125.5 μg∙m-3 or less, if the risk of 
death was relatively high when ”NO2_max(1 d)” was higher than 83 ppb, the risk of death was 
relatively low if “NO2_max(1 d)” was 83 ppb or less. Based on this, it was possible to analyze the 
linkage between temperature, PM10, PM2.5, and NO2 concentrations with the risk of death.   

Here, “T(4–10 d)” was the most important factor in February. When “T(4–10 d)” exceeded 3.8 
°C, the risk of death was relatively low. On the other hand, when “T(4–10 d)” was 3.8 °C or less, “T(3 
d)” was checked to ascertain the risk of death. Even if “T(4–10 d)” was less than 3.8 °C, the risk of 
death was relatively low when “T(3 d)” was higher than 5.7 °C. However, when “T(4–10 d)” was less 
than 3.8 °C and “T(3 d)” was less than 5.7 °C, the risk of death differed depending on “PM10_max(1 
d)”. Although the risk of death also increased when “PM10_max(1 d)” was higher than 143 μg∙m-3, it 
was relatively low when “PM10_max(1 d)” was 143 μg∙m-3 or below. Such results showed that “T(4–
10 d)” was the most direct factor and that it was also important in February.  

High PM10 concentrations were frequently observed, partly because of yellow dust in March 
(Figure A1e) [39,40]. “T(2 d)”, “PM10_max(1 d)”, and “NO2_max(1 d)” were among the important 
factors in March. “NO2_max(1 d)”, “PM2.5_max(1 d)”, and “PM10_max(1 d)" were related to the risk 
of death. Those results were consistent with previous studies that showed NO2 and particulate matter 
were directly related to deaths from respiratory disease. Dong et al. (2012) confirmed through a study 
in Shenyang, China, that the risk of death from respiratory disease increased when PM10 and NO2 
concentrations were relatively high [41].   

The 1-hour maximum O3 concentrations before the deaths under study were the most important 
factors in May and in June. Burnet et al. (1997) illustrated the association between O3 concentrations 
one day before hospitalization and the number of hospitalized patients by analyzing patients in 16 
cities in Canada from April 1981 to December 1991 [42]. Although “T(2 d)” was the most important 
factor in July, “O3_max(1 d)” was also closely related with the deaths. Reid et al. (2012) found that 
the risk of death increased when both O3 concentrations and temperatures were high [6].   

The temperatures 1, 2, and 3 days before the deaths were linked with the cause of death in 
August (Figure 8). This result was consistent with a previous study that showed that the risk of death 
increased with higher temperatures in August [43]. “NO2_max(1 d)” was the most important factor 
relating to risk of death in September and in October. High PM10 and PM2.5 concentrations were 
frequently observed in November and in December, and “T(11–20 d)”, “PM10_max(1 d)”, and 
“PM2.5_max(1 d)” were important factors that determined the risk of death from respiratory disease. 

The accuracy of results was ascertained through 10-fold cross validation of errors [44,45] (Table 
2). Error rates were 27.6%–42%, with the highest value in August. Errors were also relatively higher 
than for a similar study that analyzed factors influencing the number of deaths caused by 



Atmosphere 2019, 10, 685 9 of 18 

 

cardiovascular disease [27]. The risk of death from respiratory disease was determined by only the 
temperature before deaths in August because pollutant levels were relatively low (Figure A1). One 
of the causes of the low pollutant concentrations in summer was the dilution of air pollution by the 
elevated mixing height [31]. In addition, the relatively high precipitation in summer inhibited the 
photochemical formation of O3 and accelerated the wet deposition of particles [46,47]. Accordingly, 
the risk of death was determined by only temperature in August, so the accuracy of the decision tree 
model may have been reduced. 
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(L) probability of death from respiratory disease. 
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high if “PM10_avg(2 d)” was higher than 36.5 μg∙m-3. When “PM10_avg(2 d)” was less than 36.5 μg∙m-

3, the risk of death was relatively high if “PM2.5_avg(2 d)” exceeded 29.4 μg∙m-3. When “PM2.5_avg(2 
d)” was less than 29.4 μg∙m-3, the risk of death was relatively high if “NO2_avg(2d)” was higher than 
52 ppb.  

“T(4–10 d)” was directly related in February with the risk of death because of respiratory disease. 
When “T(4–10 d)” exceeded 3.8 °C, the risk of death was relatively low. When “T(4–10 d)” was less 
than 3.8 °C, the risk of death was relatively low only if “PM10_avg(2 d)” exceeded 52.8 μg∙m-3. When 
“PM10_avg(2 d)” was less than 52.8 μg∙m-3, the risk of death was classified as relatively high if 
“PM2.5_avg(2 d)” exceeded 25 μg∙m-3, but the risk was relatively low if “PM2.5_avg(2 d)” was lower 
than 25 μg∙m-3. Likewise, “T(4–10 d)”, “PM10_avg(2 d)”, and “PM2.5_avg(2 d)” were major factors in 
February.  

“T(2 d)”, “PM10_avg(2 d)”, and “PM2.5_avg(2 d)” were factors in March that influenced the 
number of deaths from respiratory disease. Factors associated with the risk of death in April included 
“NO2_avg(2 d)”, ”PM10_avg(1 d)”, and “PM2.5_avg(1 d)”. High O3 concentrations were often observed 
in May. “O3_avg(1 d)” and temperatures before death were among the important factors. “O3_avg(2 
d)” and “T(1 d)” were important in determining the risk of death.  

Although “T(2d)” was the most important factor in July, “T(1 d)” and “O3_avg(1 d)” were also 
associated with deaths as well. The risk of death increased along with the higher temperatures in 
August. “NO2_avg(2 d)” was the most important factor related to the risk of death in September and 
in October. However, “T(11–20 d)” and “PM10_avg(1 d)” were the important risk factors in 
November and in December.  

The 10-fold cross validation errors resulted in 24.1%–42% of errors, depending on the month 
(Table 2). The errors were greater than those in a similar study that analyzed the relation between air 
pollution and cardiovascular disease [27]. We also conducted the analysis using a 3-day 
cumulative pollutant. Factors linked with the death from respiratory disease using a 3-day 
cumulative pollutant were similar to those using separate data on each day. However, the 
accuracy of the model using a 3-day cumulative pollutant was slightly worse than that using 
daily pollutant concentrations. 

Errors analyzed using the 24-hour average concentrations were slightly less than those analyzed 
using the 1-hour maximum concentrations. The result indicated that the 24-hour average 
concentrations were more directly related to the risk of death than 1-hour maximum concentrations. 
Jerrett et al. (2004) confirmed differences in degrees of exposure leading to differences in mortality 
through research conducted in Hamilton, Canada [49]. If the subject of the analysis did not engage in 
outdoor activities during the period in which the 1-hour maximum concentration was observed, a 
direct association between high pollutant concentrations and the risk of death did not occur, even 
though the 1-hour maximum concentration was directly associated with health. Therefore, the results 
of this study alone should not be interpreted as proving that short-term exposure to extreme levels 
of pollution was relatively less hazardous to health than long-term exposure to elevated levels of air 
pollution. 
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Figure 9. Daily average pollutant concentrations and temperatures affecting the high (H) and low (L) 
probability of deaths from respiratory disease. 

Table 2. Ten-fold cross validation errors from using a decision tree model to predict higher or lower 
probability of death from respiratory disease. 
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September 38.8% (41.1%)1 36.3% (40.8%)1 2.5% 
October 36.0% (36.3%)1 34.1% (35.6%)1 1.9% 

November 34.0% (35.2%)1 29.5% (34.0%)1 4.5% 
December 30.5% (33.1%)1 28.4% (32.2%)1 2.1% 

1Values in parenthesis are errors using 3-day cumulative data instead of using data on each day. 

5. Conclusions 

The impact of air pollution on the risk of death from respiratory disease was analyzed. The 
analysis was conducted separately for each month to take into account the seasonal variability of air 
pollutant concentrations. The independent variables were 1-hour maximum and 24-hour average O3, 
PM2.5, PM10, NO2, SO2, and CO concentrations and temperatures. The dependent variables were 
classified into days with high (H) and low (L) numbers of deaths caused by respiratory disease. The 
results showed that a higher risk of mortality was observed on days from November to March, in 
which PM10/PM2.5 concentrations were relatively high and temperatures were low. NO2 was a crucial 
factor that influenced deaths from April to October. O3 was the most important factor in May and in 
June. The risk of death increased with the high temperatures in July and August. 

The accuracy of results was validated through 10-fold cross validation errors. Although error 
rates using the 1-hour maximum pollutant concentrations were 27.6%–42%, those using the 24-hour 
average pollutant concentrations slightly decreased to 24.9%–42%. Thus, the 24-hour average 
pollutant concentrations were found to be more directly related with mortality from respiratory 
disease.  

The results obtained from this study may be used to establish policies to minimize the adverse 
health effects of air pollution. For example, when pollutant concentrations are forecast and are 
communicated to the public, daily average concentrations should be emphasized more than the 
hourly maximum concentrations. In addition, the results could be used to guide the public to refrain 
from outdoor activities when pollutant levels are elevated. 

Conflicts of Interest: The author declares no conflict of interest. 

Appendix A. 

Basic statistics of hourly SO2, CO, O3, NO2, PM10, and PM2.5 concentrations in Seoul, Korea, from 
2008 and 2017 are illustrated as a box plot (Appendix A1). The top and bottom of the box represented 
the 75th percentile (Q3) and 25th percentile (Q1), respectively. The tail’s upper most value expressed 
the smaller one between the maximum value and Qଷ + 1.5 × (𝑄ଷ − 𝑄ଵ). On the other hand, the tail’s 
lower most value is the larger one between the minimum value and Qଵ − 1.5 × (𝑄ଷ − 𝑄ଵ).  
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Figure A1. Box plot of 1-hour maximum, 8-hour maximum, and 24-hour average pollutant 
concentrations, and 24-hour average temperatures between 2008 and 2017. (a) SO2, (b) CO, (c) O3, (d) 
NO2, (e) PM10 and (f) PM2.5, and (g) temperature.  
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