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Abstract: This paper investigates the temperature and precipitation extremes over the Arabian 
Peninsula using data from the regional climate model RegCM4 forced by three Coupled Model 
Intercomparison Project Phase 5 (CMIP5) models and ERA–Interim reanalysis data. Indices of 
extremes are calculated using daily temperature and precipitation data at 27 meteorological stations 
located across Saudi Arabia in line with the suggested procedure from the Expert Team on Climate 
Change Detection and Indices (ETCCDI) for the present climate (1986–2005) using 1981–2000 as the 
reference period. The results show that RegCM4 accurately captures the main features of 
temperature extremes found in surface observations. The results also show that RegCM4 with the 
CLM land–surface scheme performs better in the simulation of precipitation and minimum 
temperature, while the BATS scheme is better than CLM in simulating maximum temperature. 
Among the three CMIP5 models, the two best performing models are found to accurately reproduce 
the observations in calculating the extreme indices, while the other is not so successful. The reason 
for the good performance by these two models is that they successfully capture the circulation 
patterns and the humidity fields, which in turn influence the temperature and precipitation patterns 
that determine the extremes over the study region. 
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1. Introduction 

In the past two decades, the evidence of climate change has become more obvious and it is 
widely accepted that, besides natural variability, human activities are significantly enhancing the 
change in climate [1]. The Intergovernmental Panel on Climate Change (IPCC) fifth assessment report 
(AR5) highlights the increasing global mean temperature and the fact that it will continue to increase 
throughout the 21st century [2]. According to the IPCC fourth assessment report (AR4), for the period 
1956–2005, the global mean surface temperature (both land and ocean) increased by 0.13 °C/decade 
[3] which was updated in AR5 to 0.12 °C/decade for the period 1951–2012 [2]. The observations show 
that surface temperature over the Arabian Peninsula, in particular over Saudi Arabia (covering 80% 
of the peninsula), increased at a rate of 0.60 °C/decade for the last three decades [4]. This large rate of 
increase in surface temperature over the Peninsula causes many temperature extremes in the region 
and indicates the need for a disaster management program [5]. In a recent study Almazroui et al. [6] 
presented evidence that during the 21st century, temperature over the Peninsula will warm at a faster 
rate than over the larger COordinated Regional climate Downscaling Experiment (CORDEX) Middle-
East and North Africa (MENA) domain. In addition to this rise in temperature, changes in 
precipitation were also observed over the Peninsula. Observations show that in recent decades, 
precipitation over Saudi Arabia has followed a decreasing trend (a drop of 47.8 mm/decade for the 
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period 1978–2009 [4]), although the number of heavy precipitation events has increased in the last 
decade. Recently, Atif et al. [7] assessed extreme precipitation events over the Peninsula based on 
observations from 1984–2016. They reported a high number of extreme precipitation events over 
northeastern, central and southwestern coastal parts of Saudi Arabia. Saeed and Almazroui [8] 
reported on the relationship between largescale circulation and winter precipitation over the Arabian 
Peninsula using observations for the period 1948–2012. Based on observations for the period 1970–
1099, extreme precipitation contributes about 40% (70%) of the total amount of rainfall during the 
wet (dry) season in the Arabian Peninsula (Almazroui and Saeed 2020 [9]). These trends, the large 
rate of increase in temperature, the decrease in precipitation and the increase in heavy precipitation 
events, all amount to a timely call for an in–depth study of climate extremes in the region. 

Predicting climate extremes such as temperature and precipitation is important for assessing 
vulnerability on the local to regional scale. Moreover, climate extremes can have devastating 
socioeconomic and environmental impacts on a region [10]. Climate extremes have major impacts on 
sectors such as water resources, agriculture, food security, and energy production [11]. Climate 
extremes are also important in this era of climate change because a changing climate leads to changes 
in the frequency and intensity as well as the duration of extreme climate events [2]. In the AR4, 
reference is made to the fact that both minimum and maximum temperatures have shifted to higher 
values [3]. This shift is bringing about a warmer environment in which cold extremes are warming 
faster than the warm extremes.  

In general, temperature and precipitation extremes are calculated from daily data for point 
locations [12–15], for a region e.g., [1,16], or for the whole globe e.g., [17–19]. Daily data are used in 
the calculation of many temperature indices such as warm or cold days, and of precipitation indices 
such as wet or dry spells including heavy precipitation events. In the calculation of these indices of 
extremes, different thresholds and procedures may apply, depending on the focus of the researcher, 
which makes it difficult to define an index [20]. To overcome this problem and to focus on relevant 
climate aspects, a standard procedure to analyze such extremes and to define a number of climate 
extreme indices was proposed by the Expert Team on Climate Change Detection and Indices 
(ETCCDI) [20,21]. The ETCCDI–defined extremes indices have been used over the last decade by 
many researchers [13,14,18,19]. 

Over the Arabian Peninsula, several research studies on climate extremes using ETCCDI were 
conducted using surface temperature and precipitation data [13,15]. Some information on climate 
extremes over the Arabian Peninsula is also available from analysis using IPCC AR4 (CMIP3) and 
AR5 (CMIP5) multi-models data [18]. However, to the best of our knowledge, details on the analysis 
of extremes using CMIP5 multi–models downscaled by regional climate model and compared with 
the observations are not available for the region except for the work of Almazroui [6] who showed 
that threshold based warm days (Tmax  ≥  50 °C) will increase and cold nights (Tmin  ≤  5°C) will 
decrease faster over the Arabian Peninsula than over the wider region. Nevertheless, no climate 
model simulation is free from uncertainty and that in particular, the simulation of precipitation and 
temperature on a daily scale is a challenging task. Therefore, the comparison of extremes indices 
calculated from model data with data obtained from surface observations is essential. To this end, 
the focus of this study is to evaluate how well the regional climate model performs in downscaling 
CMIP5 data to calculate climate extreme indices by comparing them with the corresponding surface 
observations over the Arabian Peninsula for the present climate. The comparison will be extended 
into the projection period in a subsequent document. 

The paper is organized as follows: the data and methodology including the regional climate 
model experimental setup are discussed in Section 2. The results and discussion are given in Section 
3 while the conclusions are drawn in Section 4. 

2. Data and Methodology 

2.1. Data 
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This study uses daily maximum and minimum temperatures and precipitation data from 27 
surface observations stations across Saudi Arabia (see Almazroui et al. [4] for meteorological station 
names and locations) collected by the General Authority of Meteorology and Environmental 
Protection (GAMEP) over the period 1978–2016. These data are processed through quality control 
and corrected by metadata where applicable. In case of missing metadata data from surrounding 
stations are used to fill the gap. Data from the weather underground database are also checked 
(Almazroui et al. [4]).  

The RegCM4–generated temperature and precipitation climatology for the Arabian Peninsula 
domain is compared with results obtained from the gridded observational dataset, namely, the 
updated Climatic Research Unit (CRU) TS3.23 data [22]. The CRU data encompasses surface 
observations over land throughout the world. However, in some regions, the data collection network 
is of low density, e.g., the distribution of stations used by CRU over the Sahara Desert is quite sparse 
(Tsikerdekis et al. [23]). 

2.2. Methodology 

2.2.1. Regional climate model and experimental setup 

In generating the daily temperature and precipitation data for the calculation of climate extremes 
indices over the Arabian Peninsula, the output from three CMIP5 models, namely ECHAM6 
(Atmospheric Global Climate Model of Max Planck Institute for Meteorology, Germany, resolution: 
1.80°×1.80°), GFDL (Geophysical Fluid Dynamics Laboratory, USA, resolution: 2.50° × 2.00°), and 
HadGEM (UK Met Office Hadley Centre Global Environment Model version 2, resolution: 
1.875°×1.25°), are downscaled using REGional Climate Model version 4 (RegCM4.7) for the current 
climate (1960–2005). The regional climate model data are generated with the input of three CMIP5 
multi–model databases used in the preparation of AR5. RegCM4, developed in the Abdus Salam 
International Centre for Theoretical Physics (ICTP), Trieste, Italy is one of the most widely used 
regional climate models. Details of the RegCM4 are available in [24]. Among its many physical and 
dynamical features, RegCM4 has two land surface schemes that are used in this study, namely (i) the 
Biosphere and Atmosphere Transfer Scheme (BATS version 1e, [25,26]) and (ii) the Community Land 
Model (CLM version 4.5, [27]). Some land surface types such as ice, glacier, bog/marsh, and irrigated 
crops are very sensitive to the land surface module used, but in the Arabian Peninsula analysis 
domain these types are almost entirely absent. In general, BATS is used to describe the role of soil 
moisture and vegetation in the model. The exchange of momentum, energy, and water vapor across 
the surface-atmosphere interface are calculated in the BATS module. For details, see Dickinson et al. 
[26]. The CLM uses a mosaic approach for capturing land surface heterogeneity at each grid in the 
model. The subgrid tiles approach used in CLM enables it to represent various surface parameters in 
a more detailed way than in BATS (Steiner et al. [28]). For detail about CLM, see Oleson et al. [27]. 
The main advantage of CLM is that it has a higher number of soil layers and vegetation fractions than 
in BATS. Following Fritsch et al. [29], the convective schemes of Grell with Fritsch–Chappell closure 
(GFC, [30,31]) are used. RegCM4 is forced with ERSST, the Extended Reconstructed Sea Surface 
Temperature data, obtained from the National Climate Data Centre (NCDC). Following Harris et al. 
[32], the effective domain used stretches from the Equator to 45 °N, and from 17 °E to 72 °E, covering 
the Arabian Peninsula and its surroundings. The following RegCM4 experiments were run: 

To evaluate the performance of RegCM4 in simulating the climate of the study region, the 
RegCM4 was forced with widely used ERA–Interim re–analysis (0.75° × 0.75°) gridded 6-hourly data 
(http://www.ecmwf.int/products/data/archive) using the BATS land–surface scheme for the available 
period 1979–2015 (with 1979 used as spin–up time).  

i. Step i) was repeated using the CLM land–surface scheme. 
ii. RegCM4 was forced with GFDL using BATS for the period 1970–2005 (with 1970 used as 

spin–up time). 
iii. Step iii) was repeated using the CLM land–surface scheme. 
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iv. RegCM4 was forced with HadGEM output using BATS for the period 1960–2005 (with 1960 
used as spin–up time). 

v. Step v) is repeated using the CLM land–surface scheme. 
vi. RegCM4 was forced with ECHAM6 output using BATS for the period 1960–2005 (with 1960 

used as spin–up time). 
vii. Step vii) was repeated using the CLM land–surface scheme. 

All RegCM4 runs were performed with 25km horizontal resolution and 18 vertical levels. 

2.2.2. Analysis Procedure 

The bias (model minus observation) for temperature (in °C) and precipitation (in percentage) 
was obtained from the model with respect to the CRU monthly data. Simulated temperature and 
precipitation daily data were used to calculate climate extremes indices for the study region. 

There is a core set of 27 extremes indices recommended by the ETCCDI [18]. The definition of 
these extremes indices can be seen in the literature [13–15,18]. The threshold of each station is 
different from the threshold of the other stations, as defined in RClimDex, a software package 
recommended by ETCCDI. All of these 27 indices are first calculated using surface observations from 
27 stations located across Saudi Arabia for the period 1978–2016 (Table 1). The description of station 
characteristics and the methodology of the homogeneity test including data quality control and 
control for missing data from these stations are available in Donat et al. [13] and Islam et al. [14]. 
Some indices such as ice days (the number of days when the daily minimum temperature falls below 
zero) and warm days (the number of days when the daily maximum temperature is above 25 °C) are 
not useful for this study area because they are not relevant to this sub-tropical semi–arid and arid 
region. Using ETCCDI, Donat et al. [13] calculated 11 temperature indices for Saudi Arabia, while 
You et al. [15] calculated 13 with 11 of them in common, using surface observations for the period 
1981–2010. Almazroui et al. [33] also calculated 11 temperature indices over South Asia using surface 
observations for the period 1971–2000 while Alexander et al. [16] analyzed five temperature indices 
using data from 303 meteorological stations in China for the period 1961–2003. For the sake of brevity, 
this analysis focused on the calculation of nine climate extremes indices, namely,  
1. Warm days (TX90p, a percentile index calculated from daily maximum temperature),  
2. Warm nights (TN90p, a percentile index calculated from daily minimum temperature),  
3. Cold days (TX10p, a percentile index calculated from daily maximum temperature), 
4. Cold nights (TN10p, a percentile index calculated from daily minimum temperatures),  
5. Warm spell duration (WSDI, an index is calculated from daily maximum temperatures),  
6. Cold spell duration (CSDI, an index calculated from daily minimum temperature),  
7. Number of wet days (R1mm, number of wet days is a threshold index calculated from daily 

precipitation), 
8. Consecutive wet days (CWD, a threshold index calculated from daily precipitation), 
9. Consecutive dry days (CDD, a threshold index calculated from daily precipitation) from the 

climate model data for the study region.  
The reason for selecting these indices was to see how well the model simulated daily data for 

the calculation of extremes indices over the study region. Spatial distribution of the above-mentioned 
extremes indices, obtained from RegCM4 forced by three CMIP5 models with two land–surface 
schemes, is compared with the spatial distribution obtained from RegCM4 forced with ERA–Int data 
for the same period 1986–2005. The period 1986–2005 was selected because surface observation data 
were available for all 27 stations. Another reason for selecting 1986–2005 is that in extremes indices 
calculation using ETCCDI, a reference period is required, which is taken as 1981–2000. Also, Sillmann et 
al. [17] used this period, 1981–2000, as a reference period. The extreme indices calculated from model 
data were extracted at the nearest grid point to the station locations and then compared with those 
calculated from surface observations. The climate extreme index trends were calculated using linear 
regression for each index at all 27 locations. The significance of the climate extreme indices trends is 
obtained using the F–test. Surface observations were used to assess the RegCM4 performance as well 
as the land–surface process and CMIP5 models. A normal quantile plot was used to see how well the 
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daily data values fit a normal distribution for temperatures (maximum and minimum) and for 
precipitation, as obtained from CMIP5 models downscaled by RegCM4, from ERA–Int reanalysis, 
and from surface observations. 

3. Results and discussion 

This section describes the extremes indices results obtained from surface observations and 
model simulations. 

3.1. Temperature and Precipitation Simulations 

Before proceeding to the calculation of extremes indices using model simulations, the 
temperature (maximum and minimum) and precipitation climatology was investigated over the 
study area. Note that the performance of RegCM4 was not evaluated with different CMIP5 forced 
data because a RegCM4 evaluation has already performed by Almazroui et al. [34]. 

3.1.1. Temperature Simulation 

Daily maximum and minimum temperatures are the key parameters in the calculation of 
temperature extremes. Therefore, the climatology of these parameters from model simulations is 
displayed, along with CRU data, in Figures 1 and 2. In general, the patterns of simulated maximum 
and minimum temperatures follow the patterns of the CRU data with some variations such as the 
highest maximum temperature simulated in the southeast Peninsula in all experiments not appearing 
in the observations. Very close scrutiny indicates that there is a difference between the observation 
and simulations, which reflects the limitation of climate models in capturing climatic information at 
the local level. Simulated temperatures are higher than the observations in the southeast and lower 
in the northwest parts of the peninsula. This temperature pattern was also reported by Almazroui et al. 
[35], and Ehsan et al. [36] for the CORDEX-MENA/Arab domain, for the simulation of mean 
temperature using RegCM4. The maximum temperature is overestimated by the model in most 
simulations, particularly in the southwestern and coastal areas (Figure 1). However, the bull’s eye–
shaped overestimation over Oman in the BATS case is slightly reduced in the CLM simulation. The 
simulated maximum temperature is overestimated compared to the CRU reanalysis data, by over 5.5 °C 
in the southeastern and coastal areas of the peninsula (Supplementary 1). For the case of GFDL, a 
slight underestimation of maximum temperature is observed in the central to western areas. The 
simulated minimum temperature is overestimated in the southeast and coastal areas of the peninsula, 
although it is underestimated in the western and northern areas of the peninsula (Figure 2). These 
over–and underestimations are clearly seen in the bias pattern shown in Supplementary 2, and the 
underestimation is more prominent in BATS than CLM, reaching a difference of −5.5 °C. In the GFDL 
case, the underestimation of minimum temperature is observed all over the peninsula. Overall, the 
patterns of maximum and minimum temperature climatology follow the patterns of the CRU 
reanalysis data, although magnitudes vary from model to model and between the different land–
surface schemes. 
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(a) CRU 1980–2005 

  
(b) BATS ERA-Int (c) CLM ERA-Int 

  
(d) BATS ECHAM (e) CLM ECHAM 
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(f) BATS GFDL (g) LM GFDL 

  
(h) BATS HadGEM (i) CLM HadGEM 

Figure 1. Spatial distribution of maximum temperature (°C) for (a) CRU, (b) ERA–Int BATS, (c) ERA–
Int CLM, (d) ECHAM6 BATS, (e) ECHAM6 CLM, (f) GFDL BATS, (g) GFDL CLM, (h) HadGEM 
BATS, and (i) HadGEM CLM averaged over the period 1980–2005. 

  

(a) CRU  
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(b) BATS ERA-Int (c) CLM ERA-Int 

  

(d) BATS ECHAM (e) CLM ECHAM 

  
(f) BATS GFDL (g) CLM GFDL 
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(h) BATS HadGEM (i) CLM HadGEM 

Figure 2. Spatial distribution of minimum temperature (°C) for (a) CRU, (b) ERA–Int BATS, (c) ERA–
Int CLM, (d) ECHAM6 BATS, (e) ECHAM6 CLM, (f) GFDL BATS, (g) GFDL CLM, (h) HadGEM 
BATS, and (i) HadGEM CLM averaged over the period 1980–2005. 

3.1.2. Precipitation Simulation 

In the calculation of precipitation extremes indices, daily precipitation is the key parameter. The 
climatology of precipitation from the model and CRU data is shown in Figure 3. The pattern of 
simulated precipitation closely follows the observed pattern obtained from CRU data, particularly 
the small amount of rainfall in the southeast and the heavy rainfall in the central to northern areas. 
These precipitation patterns are similar to the RegCM4 output for the CORDEX–MENA/Arab domain 
[35]. Comparing the two land–surface schemes, the BATS simulated enhanced precipitation is 
generally higher than in the simulation using CLM. The rainfall bias clearly shows that the ECHAM 
and GFDL–forced–simulations overestimate precipitation over the Arabian Peninsula, although the 
HadGEM and ERA–Int–forced simulations show underestimation in the south and overestimation 
in the north (Supplementary 3). Again, for precipitation, the patterns of simulated climatology are 
similar to the observations, although values vary depending on the different model setups, boundary 
conditions, and land–surface schemes. 

 

(a) CRU 1980–2005 
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(b) ERA-Int BATS (c) ERA-Int CLM 

  
(d) ECHAM BATS (e) ECHAM CLM 

  

(f) GFDL BATS (g) GFDL CLM 
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(h) HadGEM BATS (i) HadGEM CLM 

Figure 3. Spatial distribution of annual precipitation (mm) for (a) CRU, (b) ERA–Int BATS, (c) ERA–
Int CLM, (d) ECHAM6 BATS, (e) ECHAM6 CLM, (f) GFDL BATS, (g) GFDL CLM, (h) HadGEM 
BATS, and (i) HadGEM CLM averaged over the period 1980–2005. 
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3.2. Climate Extremes Indices 

3.2.1. Observation-Based Climate Extremes 

Daily temperature and precipitation data from 27 surface observational stations across Saudi 
Arabia are used in the calculation of ETCCDI-defined extremes indices (Table 1). The trend of each 
index presented on a decadal scale shows that some are increasing while others are decreasing over 
the entire observational data period 1978–2016. The direction of all of the trends is similar to those 
found by AlSarmi et al. [11] except for CDD and R95p. The difference in direction for these two 
indices might be due to the use of a large number of updated station data in the current study. Only 
four of the trends are significant. It is important to note that the study region warmed because the 
number of warm days/nights increased significantly while the number of cold nights decreased 
significantly. Though not statistically significant, the number of wet days and total wet–day 
precipitation are showing decreasing trends. Since the aim of this paper is to explore the potential to 
use climate model output in the calculation of climate extremes, some of the simulation–based climate 
extreme indices are summarized in the next Section. 

Table 1. Observation based ETCCDI defined 27 climate extremes trends for the period 1978–2016. 

Index Name  Index Label Trend/decade P-value 
Summer days su25 65.1 0.13 

Max TX TXx 5.7 0.13 
Min TX TXn 2.1 0.45 
Max TN TNx 7.2 0.07 
Min TN TNn 3.0 0.35 

Cold days TX10p −5.9 0.11 
Warm days TX90p 18.0 0.03 
Cold nights TN10p −7.5 0.05 

Warm nights TN90p 22.8 0.00 
Warm spell duration WSDI 75.8 0.06 
Cold spell duration CSDI −18.1 0.22 

Diurnal temperature range DTR −0.5 0.16 
Max 1 day precipitation RX1day 21.8 0.51 
Max 5 day precipitation RX5day 36.0 0.49 

Simple day intensity SDII 5.0 0.41 
Heavy precipitation days R10mm −2.0 0.40 

Very heavy precipitation days R20mm −0.1 0.45 
Number of wet days R1mm* −3.2 0.39 

Consecutive wet days CWD −0.4 0.52 
Consecutive dry days CDD −15.4 0.54 

Very wet days R95p 40.3 0.44 
Extremely wet days R99p 35.3 0.53 

Total wet-day precipitation PRCPTOT −18.9 0.46 
Note: If the P–value less than or equal to the significance level α = 0.05, the null hypothesis is rejected 
and the significance is at the 95% confidence level. The * symbol with R1mm indicates the user defined 
threshold which is 1mm for this study. 

3.2.2. Simulation-Based Climate Extremes 

Using climate model data in the calculation of climate extremes is a challenging task because 
state-of-the-art climate models are not free from uncertainties, with the simulated daily data, in 
particular, showing large biases (see Supplementary 1, 2, and 3) and the simulation of more 
precipitation days than are observed. This section discusses the simulation-based climate extremes 
and compares them with the same obtained from observations over the same period. 
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3.2.3. Temperature Extremes 

There are 16 temperature extreme indices on the ETCCDI recommended list (from the top in 
Table 1) of which six are discussed here. 

Warm days (TX90p): This index is calculated from daily maximum temperature that varies from 
region to region over the study area (Figure 4). The BATS simulations show a higher number of warm 
days compared to the CLM simulations for the period 1986–2005. The number of warm days also 
varies from the CMIP5 model to model. All the CMIP5 models show a large number of warm days 
compared to the reanalysis ERA–Int data. Hence, the annual count of warm days ranges from about 
30 days to 45 days with reference to the period 1981–2000 over the peninsula. 

  
(a) ERA-Int BATS (b) ERA-Int CLM 

  
(c) ECHAM6 BATS (d) ECHAM6 CLM 

  
(e) GFDL BATS (f) GFDL CLM 
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(g) HadGEM BATS (h) HadGEM CLM 

Figure 4. Spatial distribution of annual warm days (TX90p) for (a) ERA–Int BATS, (b) ERA–Int CLM, 
(c) ECHAM6 BATS, (d) ECHAM6 CLM, (e) GFDL BATS, (f) GFDL CLM, (g) HadGEM BATS, and (h) 
HadGEM CLM averaged over the period 1986–2005 with reference period 1981–2000. 

Warm nights (TN90p): This index is calculated from daily minimum temperatures (Figure 5). 
The TN90p has a similar nature to TX90p in the sense that both vary depending on the place, the 
model, the land–surface scheme, they show a range of a number of days, and they indicate the 
warming of the climate of the region. The number of simulated warm nights ranges from about 35 to 
45 with reference to the period 1981–2000 over the Arabian Peninsula which is a bit lower than for 
the ERA–Int. This number of warm nights is somewhat higher than the annual global average of 25 
warm nights (Sillmann et al. [17]). 

  
(a) ERA-Int BATS (b) ERA-Int CLM 
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(c) ECHAM6 BATS (d) ECHAM6 CLM 

  
(e) GFDL BATS (f) GFDL CLM 

  
(g) HadGEM BATS (h) HadGEM CLM 

Figure 5. Spatial distribution of annual warm nights (TN90p) for (a) ERA–Int BATS, (b) ERA–Int 
CLM, (c) ECHAM6 BATS, (d) ECHAM6 CLM, (e) GFDL BATS, (f) GFDL CLM, (g) HadGEM BATS, 
and (h) HadGEM CLM averaged over the period 1986–2005 with reference period 1981–2000. 

Cold days (TX10p): This index is calculated from the daily maximum temperature from the 
ERA–Int and CMIP5 models downscaled by RegCM4 (Figure 6). All CMIP5 simulations show the 
number of TX10p in the range from about 25 to 35 days, which is similar to the ERA–Int result, 
although ECHAM6 shows the study region to be colder, particularly in the northern part of the 
peninsula. 
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(a) ERA-Int BATS (b) ERA-Int CLM 

  

(c) ECHAM6 BATS (d) ECHAM6 CLM 

  

(e) GFDL BATS (f) GFDL CLM 
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(g) HadGEM BATS (h) HadGEM CLM 

Figure 6. Spatial distribution of annual cold days (TX10p) for (a) ERA–Int BATS, (b) ERA–Int CLM, 
(c) ECHAM6 BATS, (d) ECHAM6 CLM, (e) GFDL BATS, (f) GFDL CLM, (g) HadGEM BATS, and (h) 
HadGEM CLM averaged over the period 1986–2005 with reference period 1981–2000. 

Cold nights (TN10p): This index is calculated from daily minimum temperatures in the same 
way as TX10p (Figure 7). The number of cold nights is slightly lower in CLM simulations than in 
BATS simulations. Overall, the simulated distribution of cold nights is very similar to the distribution 
obtained from ERA–Int which is mostly below 38 days. This count is larger than the global annual 
average of 20 days (Sillmann et al. [17]). 
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(a) ERA-Int BATS (b) ERA-Int CLM 

  

(c) ECHAM6 BATS (d) ECHAM6 CLM 

  

(e) GFDL BATS (f) GFDL CLM 
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(g) HadGEM BATS (h) HadGEM CLM 

Figure 7. Spatial distribution of annual cold nights (TN10p) for (a) ERA–Int BATS, (b) ERA–Int CLM, 
(c) ECHAM6 BATS, (d) ECHAM6 CLM, (e) GFDL BATS, (f) GFDL CLM, (g) HadGEM BATS, and (h) 
HadGEM CLM averaged over the period 1986–2005 with reference period 1981–2000. 

Warm spell duration index (WSDI): This index is calculated from daily maximum temperatures 
using percentile thresholds relative to the 1981–2000 base period, for the ERA–Int and CMIP5 models 
(Figure 8). This index varies greatly in space, and RegCM4 with CLM simulated a lower number of 
WSDI compared to BATS. However, the distribution patterns of the CMIP5 models are very similar 
to ERA–Int, with a large number of WSDI in the north and a smaller number in the southern part of 
the study region.  

  

(a) ERA-Int BATS (b) ERA-Int CLM 
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(c) ECHAM6 BATS (d) ECHAM6 CLM 

  

(e) GFDL BATS (f) GFDL CLM 

  

(g) HadGEM BATS (h) HadGEM CLM 

Figure 8. Spatial distribution of annual warm spell duration index (WSDI) for (a) ERA–Int BATS, (b) 
ERA–Int CLM, (c) ECHAM6 BATS, (d) ECHAM6 CLM, (e) GFDL BATS, (f) GFDL CLM, (g) HadGEM 
BATS, and (h) HadGEM CLM averaged over the period 1986–2005 with reference period 1981–2000. 

Cold spell duration index (CSDI): This index is calculated from daily minimum temperatures 
using percentile thresholds relative to the 1981–2000 base period, for the ERA–Int and CMIP5 models 
(Figure 9). In this case, a large number of CSDI is observed in the south compared to the north of the 
study region. This lends support to the pattern of WSDI. 
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(g) HadGEM BATS (h) HadGEM CLM 

Figure 9. Spatial distribution of annual cold spell duration index (CSDI) for (a) ERA–Int BATS, (b) 
ERA–Int CLM, (c) ECHAM6 BATS, (d) ECHAM6 CLM, (e) GFDL BATS, (f) GFDL CLM, (g) HadGEM 
BATS, and (h) HadGEM CLM averaged over the period 1986–2005 with reference period 1981–2000. 

3.2.4. Annual Time Series for the Extreme Indices Averaged over the Observational Grids 

All the simulation–based temperature extreme indices are summarized in Figure 10 along with 
the observation–based indices for each dataset over the entire period. The trends of the simulation–
based temperature extremes closely follow the trends of the observation–based indices although in 
some cases the magnitudes are slightly different. Irrespective of the different CMIP5 models forcing 
and land–surface schemes, the warm days/nights show an increasing trend while cold days/nights 
show a decreasing trend. Moreover, the warm spell duration index is increasing while the cold spell 
duration index is decreasing. The direction of these increasing and decreasing trends for warm 
days/nights, cold days/nights and WSDI/CSDI match exactly the global trends (Sillmann et al. [18]). 
In most cases, the trends are significant (Table 2). Hence, the trends are clear indicators that the 
climate of the study region is warming and that the CMIP5 data downscaled by RegCM4 captures 
well the warming trends through the extremes indices calculation. Notably, the average simulation–
based temperature extremes trend is in phase with the observation–based temperature extremes 
trend (columns 12 and 13, Table 2). This statement is also true for the BATS and CLM simulations 
averaged separately. However, the individual simulations have the same phase as the observed 
trend, except for ERA–Int reanalysis for TX90p, and ERA–CLM for WSDI. This indicates that the 
ERA–Int reanalysis does not produce the temperature extreme index (i.e., warm days) correctly in 
phase with observations. One reason for this might be that the strong positive trend in the 
observations after 1995 is not well produced by ERA–Int data. Therefore, the overall trend in the 
observations, and negative in ERA–Int (see Table 2 and Figure 10a). Figure 10 shows that RegCM4 
and observation have large differences in temperature indices after 2000. Overall, we can conclude 
that RegCM4 simulations are able to capture few temperature extremes such as warm days, warm 
spell duration, and cold nights before 2000 and the RegCM4 simulations do not capture the observed 
temperature extremes for the entire present climate over the study region. 
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Figure 10. Comparison of simulation based temperature indices (a) warm days, (b) warm nights, (c) 
cold days, (d) cold nights, (e) warm spell duration index, and (f) cold spell duration index, with the 
same obtained from observations for entire period of data available corresponding to each dataset. 

3.2.5. Precipitation Extremes 

Among the 11 precipitation extreme indices obtained from the surface observational data (from 
the bottom in Table 1), three of them are calculated from RegCM4 simulations as discussed here.  

Number of wet days (R1mm): This index is calculated from daily precipitation from the RegCM4 
simulations using ERA–Int and CMIP5 data (Figure 11). The absolute value of the R1mm indicates 
that the number of wet days above 1 mm/day is relatively large (about 45 days per year) over the 
whole Peninsula except the southeast region, in particular over Oman, UAE, eastern Yemen, and the 
Rub Al–Khali desert areas where the number of wet days is less than 10. This pattern including the 
largest number of wet days (about 100) in the southwest region represents the characteristic rainfall 
distribution over the peninsula. The number of R1mm days is relatively large for the BATS simulation 
compared to the CLM simulation. Among the simulations, the GFDL case shows a larger number of 
wet days than the other simulations and a large number than ERA–Int. Overall, the pattern of 
simulation–based R1mm is similar to that obtained from the ERA–Int forced dataset. 
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(g) HadGEM BATS (h) HadGEM CLM 

Figure 11. Spatial distribution of the number of annual wet days (R1mm) for (a) ERA–Int BATS, (b) 
ERA–Int CLM, (c) ECHAM6 BATS, (d) ECHAM6 CLM, (e) GFDL BATS, (f) GFDL CLM, (g) HadGEM 
BATS, and (h) HadGEM CLM averaged over the period 1986–2005. 

Consecutive wet days (CWD): This index is calculated from daily precipitation amounts from 
the ERA–Int and CMIP5 models (Figure 12). In general, the number of CWD is low over the peninsula 
and is lowest in the southeastern area at less than five days. The CWD is highest in the southwestern 
region of the peninsula. The distribution of CWD absolute values is similar to the distribution of 
precipitation over the region. 

 

  
(a) ERA-Int BATS (b) ERA-Int CLM 

  



Atmosphere 2019, 10, 675 26 of 37 

 

(c) ECHAM6 BATS (d) ECHAM6 CLM 

  
(e) GFDL BATS (f) GFDL CLM 

  
(g) HadGEM BATS (h) HadGEM CLM 

Figure 12. Spatial distribution of the annual number of annual consecutive wet days (CWD) for (a) 
ERA–Int BATS, (b) ERA–Int CLM, (c) ECHAM6 BATS, (d) ECHAM6 CLM, (e) GFDL BATS, (f) GFDL 
CLM, (g) HadGEM BATS, and (h) HadGEM CLM averaged over the period 1986–2005. 

Consecutive dry days (CDD): This index is calculated from daily precipitation amounts from the 
ERA–Int and CMIP5 models (Figure 13). The absolute value of CDD can reach about 350 days over 
the Arabian Peninsula, reflecting the arid condition of the region. The CLM simulations produce 
more consecutive dry days than the BATS simulations, and GFDL produces the fewest CDD 
compared to other simulations and ERA–Int. The distribution of CDD is similar to the distribution of 
CWD over the peninsula. 



Atmosphere 2019, 10, 675 27 of 37 

 

  

(a) ERA-Int BATS (b) ERA-Int CLM 

  

(c) ECHAM6 BATS (d) ECHAM6 CLM 

  

(e) GFDL BATS (f) GFDL CLM 



Atmosphere 2019, 10, 675 28 of 37 

 

  

(g) HadGEM BATS (h) HadGEM CLM 

Figure 13. Spatial distribution of the annual number of annual consecutive dry days (CDD) for (a) 
ERA–Int BATS, (b) ERA–Int CLM, (c) ECHAM6 BATS, (d) ECHAM6 CLM, (e) GFDL BATS, (f) GFDL 
CLM, (g) HadGEM BATS, and (h) HadGEM CLM averaged over the period 1986–2005. 

All the simulation–based precipitation extreme indices along with the observation–based indices 
are summarized in Figure 14. For R1mm, simulation–based extremes indices are overestimated 
compared to the observations (Figure 14a). The same situation is obtained for the CWD (Figure 14b). 
In the case of CDD, the simulation–based indices are comparable to observations, although the sharp 
rise and fall in the observed annual variations are absent in the simulations. The reason is that the 
number of rainy days is very small and the number of dry days is very large in this study region. 
Most of the models overestimate precipitation, with consequent false detection of precipitation days. 
The influence of CDD on a very long dry spell is also mentioned in Sillmann et al. [17]. The magnitude 
of R1mm, CWD, and CDD also vary greatly from model to model. Overall, the CLM simulations are 
better able to capture precipitation extremes indices than the BATS simulations, with GFDL–BATS, 
in particular, being unsuitable. 
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Figure 14. Comparison of simulation based precipitation indices (a) number of wet days, (b) 
consecutive wet days, and (c) consecutive dry days, with the same obtained from observations for the 
entire period of data available corresponding to each dataset. 

The summary of the simulation-based precipitation indices indicates that for R1mm, the average 
trend of the models overall, as well as BATS and CLM individually, is an increasing one, while 
observations show a decreasing trend (Table 2). The trend of the ERA–Int forced to run with BATS is 
also in opposition to the observed trend. This also indicates that the ERA–Int reanalysis forced run is 
not able to provide a precipitation index correctly in phase with the observations. Also [14] 
mentioned the limitation of reanalysis data in the calculation of precipitation extreme indices. Most 
of the individual simulations show an opposite trend compared to the observed trend with the 
exception of the HadGEM–CLM run which shows the same phase and magnitude of the R1mm trend 
as was measured by observation. ERA–Int with CLM also produces a result in phase with the 
observed trend. In the case of CDD, all of the simulations and their averages show trends in incorrect 
phase with the observations. For the CWD, all simulations and their averages show trends in phase 
with the observed trend. However, HadGEM–CLM, and ERA–Int with CLM produce opposing 
trends. In most cases, the precipitation trends are insignificant with the exception of a significant 

0

10

20

30

40

50

60

19
60

19
63

19
66

19
69

19
72

19
75

19
78

19
81

19
84

19
87

19
90

19
93

19
96

19
99

20
02

20
05

20
08

20
11

20
14

Co
se

cu
tiv

e 
w

et
 d

ay
s (

da
ys

)
(b) CWD ERA-BATS ERA-CLM GFDL-BATS

GFDL-CLM HadGEM-BATS HadGEM-CLM
ECHAM-BATS ECHAM-CLM Models

0

50

100

150

200

250

300

350

19
60

19
63

19
66

19
69

19
72

19
75

19
78

19
81

19
84

19
87

19
90

19
93

19
96

19
99

20
02

20
05

20
08

20
11

20
14

Co
ns

ec
ut

iv
e 

dr
y 

da
ys

 (d
ay

s)

(c) CDD

ERA-BATS ERA-CLM GFDL-BATS
GFDL-CLM HadGEM-BATS HadGEM-CLM
ECHAM-BATS ECHAM-CLM Models



Atmosphere 2019, 10, 675 30 of 37 

 

trend for CDD (Table 2). Therefore, the use of climate model data when calculating precipitation 
extreme indices should be done with caution. 

Table 2. Comparison of simulation-based trends with the same obtained from the observations for 
the common period 1980–2005. 

 
ERA-
BAT

S 

ERA
-

CLM 

GFDL
-

BATS 

GFD
L-

CLM 

HadGE
M-

BATS 

HadGE
M-

CLM 

ECHA
M-

BATS 

ECHA
M-

CLM 

All-
BAT

S 

All-
CL
M 

All-
Mod
els 

Obs
erve

d 
TX90p −1.2 −2.5 5.9c 6.4c 10.0c 7.9c 5.4a 4.6a 5.1c 4.1c 4.6c 32.3c 
TN90

p 
3.9 3.2 10.0c 8.0c 12.3c 11.6c 9.0c 9.8c 8.8c 8.2c 8.5c 12.1c 

TX10p −2.2 −2.2 −3.7 −0.3 −2.6 −3.7a −3.5 −1.3 −3.0b −1.9 −2.5 −9.6c 
TN10

p 
−3.1 −5.6a −5.8a −4.9a −3.4 −3.8a −6.4b −6.6b −4.7c −5.2c −5.0c −7.7c 

WSDI 0.1 −0.2 1.3c 1.2c 2.5c 1.7c 1.1 0.9a 1.2c 0.9c 1.1c 5.6c 
CSDI −0.9 −1.2 −1.9b −1.7b −0.9 −0.9 −1.5b −1.6b −1.3c −1.4c −1.3c −1.6c 

R1mm 1.1 −0.1 0.6 2.0 1.3 −0.3 2.1 2.1 1.3 0.9 1.1 −0.3 

CDD −0.5 −0.9 −1.1 −7.4 −5.7a −5.4a −9.4a −9.4a −4.2 −5.8
b 

−5.0a −12.
2 

CWD 0.7 −0.1 1.0 1.2 1.1 −0.1 0.5 0.9 0.8 0.5 0.7 0.1 

Note: The superscript a, b and c represents a significant level 90%, 95%, and 99% respectively. 

3.3. Selection of CMIP5 Models 

RegCM4 with CLM reproduces relatively weak wind speed and low relative humidity when 
forced with ERA–Int boundary conditions (Figure 15). The weak wind with low relative humidity is 
associated with the low precipitation in CLM simulations compared to BATS (Figure 15). The same 
pattern is noted for all other simulations with CLM and BATS. Among the simulations, the GFDL 
and HadGEM–forced runs to produce weaker wind field and less humidity than the ERA–Int–forced 
simulations, while the GFDL–forced run reproduces high humidity. This is one of the reasons that 
the GFDL-forced simulation overestimates precipitation in the analysis domain. On the other hand, 
the wind and humidity distribution of the HadGEM forced run is almost identical to the ERA–Int–
forced run which simulates similar precipitation from both datasets. The detailed comparison of 
model performance in simulating temperature and precipitation is obtained through Normal 
Quantile Plots (Figure 16). Figure 16a clearly shows that for the lower values of maximum 
temperature, all CMIP5, and ERA–Int reanalysis forced simulations are in line with surface 
observations with the exception of the GFDL–forced run which largely underestimates the 
temperature values. The outcome is different for the higher values of maximum temperature, as most 
of the simulations and ERA–Int overestimate this, with GFDL–BATS the exception in this case 
reproducing values closer to the observations. The overestimation is evident mainly for summer 
high-temperature values. Overall, for the low to high values of maximum temperature, ECHAM-
BATS, and HadGEM–BATS runs follow a distribution close to the observed one. In the case of 
minimum temperature, the ERA–Int forced run with CLM reproduces a distribution similar to the 
observed one, while the HadGEM–CLM, and ECHAM–CLM runs are also close to the observations 
(Figure 16b). The GFDL-BATS simulation is far from the observations while the GFDL-CLM 
simulation also significantly deviates from observations far for the lower winter values. It is crucial 
for any climate model to be able to simulate precipitation on a daily scale. However, the GFDL forced 
run reproduces values that are too high compared to the observations (Figure 16c). All the other 
simulations reproduce good distributions compared to observations, although the very high values 
(about 30 mm/day) are not well captured by any simulation. These results indicate that GFDL is not 
suitable for present purposes, while HadGEM and ECHAM6 reproduce good simulations of both 
temperature and precipitation compared to observations on a daily scale. It is interesting to note that 
these two models are the best performing while GFDL is not the best performing model for the 
Arabian Peninsula [36]. Hence, better performing models overall also provide better results in climate 
extremes calculation. For better understanding, a combination of two best-performing models and a 
weak-performing model are used in this study. Since daily-scale temperature and precipitation data 
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are used in the calculation of extremes indices, the HadGEM and ECHAM6–forced runs are 
recommended for further use particularly in the calculation of extremes indices in climate projections. 
The newly developed Saudi-KAU coupled global climate model [30,31] is also a candidate for 
calculating climate extremes over the study area. 

  
(a) ERA-Int BATS  (b) ERA-Int CLM  

  

(c) ECHAM BATS  (d) ECHAM CLM  
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(e) GFDL BATS  (f) GFDL CLM  

  
(g) HadGEM BATS  (h) HadGEM CLM  

 

Figure 15. Spatial distribution of the wind vector (m/s) and relative humidity (%) for (a) ERA–Int 
BATS, (b) ERA–Int CLM, (c) ECHAM6 BATS, (d) ECHAM6 CLM, (e) GFDL BATS, (f) GFDL CLM, 
(g) HadGEM BATS, and (h) HadGEM CLM averaged over the period 1980–2005. 
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Figure 16. Normal Quantile Plot for daily data of (a) maximum temperature (Tmax), (b) minimum 
temperature (Tmin), and (c) Precipitation for three CMIP5 models, reanalysis ERA-Int and surface 
observations for the period 1980–2005. 

4. Conclusions 

In this analysis, the output of three CMIP5 models namely, ECHAM6, GFDL and HadGEM are 
used as initial and boundary conditions in RegCM4 simulations with the BATS and CLM land–
surface schemes in order to calculate climate extremes indices over the Arabian Peninsula for the 
current period. In an additional simulation, RegCM4 was also forced with the ERA–Int reanalysis 
data as boundary conditions for the same purpose. The simulation-based extremes indices are 
compared with the same from an observational dataset obtained from 27 meteorological stations over 
Saudi Arabia which covers about 85% of the peninsula. First, ETCCDI defined 27 climate extremes 
indices calculated from observed daily temperature and precipitation data. Among the 27 ETCCDI-
based extremes indices, six temperature and three precipitation extremes were calculated using 
CMIP5 and ERA–Int downscaled data, and were analyzed in detail. Results show that irrespective of 
the model or land–surface scheme, the temperature extremes are well-captured while, precipitation 
extreme indices are largely overestimated. All the models can reproduce the trends of temperature 
extremes in phase with the observations. However, precipitations trends show a mix of results both 
in phase and out of phase. Only the HadGEM–CLM is able to capture the exact phase and trend of 
wet days (R1mm). All simulations capture well the phase of CDD trends compared to observations 
while CWD-simulated trends are captured by most of the simulations with the exceptions of Had-
CLM and ERA–Int CLM. Therefore, the model-simulated daily data can be used to calculate 
temperature extremes indices for the future climate while the use of this daily data in the calculation 
of precipitation extremes indices should be done with more precaution. Of the three CMIP5 models 
outputs downscaled by RegCM4 in this analysis, the best performing are HadGEM and ECHAM6-
based simulations. These provide data that are recommended in the examination of extremes indices 
for the projection period, while the less-well performing GFDL model is not recommended.  

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4433/10/11/675/s1, 
Figure S1: Spatial distribution of maximum temperature bias (C°) with reference to the CRU data for (a) ERA-
Int BATS, (b) ERA-Int CLM, (c) ECHAM6 BATS, (d) ECHAM6 CLM, (e) GFDL BATS, (f) GFDL CLM, (g) 
HadGEM BATS, and (h) HadGEM CLM averaged over the period 1980-2005, Figure S2: Spatial distribution of 
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minimum temperature bias (C°) with reference to the CRU data for (a) ERA-Int BATS, (b) ERA-Int CLM, (c) 
ECHAM6 BATS, (d) ECHAM6 CLM, (e) GFDL BATS, (f) GFDL CLM, (g) HadGEM BATS, and (h) HadGEM 
CLM averaged over the period 1980-2005, Figure S3: Spatial distribution of precipitation bias (%) with reference 
to the CRU data for (a) ERA-Int BATS, (b) ERA-Int CLM, (c) ECHAM6 BATS, (d) ECHAM6 CLM, (e) GFDL 
BATS, (f) GFDL CLM, (g) HadGEM BATS, and (h) HadGEM CLM averaged over the period 1980-2005. 
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