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Abstract: Cloud detection for ground-based sky images has attracted much attention in cloud-related
fields. In this paper, we proposed a cloud detection algorithm that reduced the sunlight interference
in the image. The solar location method was introduced to track the sun in the image used for feature
calculation, which was suitable for the case where the camera could not be calibrated. Following
this, the adjustable red green difference (ARGD) feature using red and green channels was proposed.
The red weight in the feature was determined by the layering region division, which classified the
degree of sunlight interference in the image, and the sky state, which discriminated whether there
was sunlight interference in the image. Finally, a fixed zero threshold was applied to feature images in
order to obtain the cloud detection results. Experimental results showed that the proposed algorithm
performs better than the other algorithms and can effectively reduce the sunlight interference.

Keywords: clouds detection; sunlight interference; solar location; ground-based images;
image processing

1. Introduction

Clouds influencing the Earth’s radiation budget and the energy balance continue to contribute to
the largest uncertainty for climate models and climate predictions [1]. The analysis of cloud behaviors
based on total-sky imagery (TSI) cloud detection is of great significance for climate change research.
Reference [2] pointed out that the diurnal to seasonal variation research of the subtropical low clouds
over the northeast Atlantic has many important implications. The uncertainty of solar generation is
related to the movement of clouds that leads to ramp events [3]. Cloud research and characterization
are based on cloud detection, but sunlight interference is a major challenge improving the accuracy of
cloud detection.

The observation of clouds and clear skies has long relied on the use of different optical characteristics
and their combinations. Theoretically, many optical features originate from the fact that the short-wave
scattering makes clear skies appear blue, meaning that the blue component is greater than the red
component, while the uniform scattering of visible-light wavelengths makes the clouds appear white,
indicating the similar amounts of red and blue components [4]. Given that the red, green, and blue
(RGB) color space is closely related to the computer storage of images and the theoretical origin of
color, RGB has gradually become one of the most widely used characteristics.

The red blue ratio (RBR) was implemented for the first time in the cloud detection algorithm of
whole sky imagers, which has been widely used for decades [5,6]. Reference [7] originally proposed
the red-blue difference (RBD) that directly used the theoretical origin to create a difference between
the red and the blue channels of the images. The normalized B/R ratio (NRBR) enhances the image
contrast and exhibits robustness to noise in application to cloud detection [8,9]. A detailed comparison
analysis was performed for the above features. Reference [10] pointed out that RBR takes into account
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the chrominance and luminosity, while RBD cannot be considered to be a function of luminosity.
During image acquisition, the down-sampling caused by the JPEG format reduces the resolution of
chrominance, but the luminosity is not affected, resulting in the higher resolution of RBR. By the
equation transformation, NRBR can be shown to be a monotonic decrease of RBR. Thus, these two
features have different advantages and are widely used as classic features in cloud detection.

In addition to RGB, other color spaces are also used for cloud detection. An algorithm that
distinguished clouds with gray distribution from clear skies only used the saturation channel from the
hue, saturation, and value (HSV) color space [11]. This feature is not only suitable for high latitude
regions, but also shows excellent performance for cloud detection in general regions. To fully extract
the image information, a color model based on the RBR and channels of three color spaces, including
RGB, HSV, and luminance, blue-difference chroma, and red-difference chroma (YCbCr), was applied
to cloud detection using multiple classifiers [12]. Moreover, the application of multicolor spaces is a
popular trend in image recognition. Combinations of multiple methods have also been developed to
identify clouds. The Euclidean geometric distance, used to measure the difference between the RGB
vector and the space diagonal, was combined with the Bayesian method, used for classification in
order to identify cloud pixels [13].

Sunlight with non-uniform brightness increases misclassification and hinders the optimization
of algorithms. To reduce the negative effects of sunlight, [14] proposed that half of the sun circle
area cloudiness should be reduced when the cloudiness in the sun circle area was overestimated.
This method corrects erroneous sky coverage, but a flexible approach is more suitable for the changing
sky. This led to the development of the differencing method, in which a clear sky library is established
and then a feature image is compared to the feature image of the corresponding clear sky from
the library [10]. Better results were obtained using this method compared to those obtained by the
traditional methods, particularly in the circumsolar and near-horizon regions in the case of the sunlight
affecting the image [15]. Since the clear sky images are affected by sunlight, the effect in the original
image is eliminated after the contrast. However, if images do not have sunlight interference, detection
errors will be obtained. Therefore, [16] attempted to extract cloud pixels using the single threshold
strategy in the sun-invisible cases or the differencing method in the sun-visible cases, obtaining better
detection results.

Statistical analysis methods have been used to obtain good detection results in the circumsolar
and near-horizon region without creating a clear sky library. Reference [17] divided the sky into three
categories of cloudless, partially cloudy, and overcast, and constructed a separate model for each
category. Channels and channel combinations from RGB and HSV color spaces were studied in detail,
and then the criteria of these characteristics were incorporated into the model in order to determine
the distribution of the clouds. Analogously, a multicolor criterion was proposed to estimate cloud
coverage, obtaining improved results for broken and overcast cloudiness [18].

The image is transformed by a certain feature, and then one or several thresholds are set to
segment the feature image into binary images. In an early thresholding method, the fixed threshold
was obtained based on experience or image statistics and the segmentation employed a logical
operation with a very small computational cost to distinguish the cloud pixels. Another method
adopted the adaptive threshold suitable for the case where the image histogram exhibits double peaks,
that is, both cloud pixels and clear sky pixels exist and differ strongly [19–21]. Adaptive thresholding
showed better performance than fixed thresholding for images with cumuliform and cirriform clouds.
Reference [22] proposed a hybrid thresholding algorithm (HYTA) that combined the advantages of the
fixed thresholding and the adaptive thresholding.

The paper proposed a cloud detection algorithm that reduced the sunlight interference in the
image. Section 2 describes the image acquisition equipment, the image set, and the preprocessing.
Section 3 describes the cloud detection algorithm in detail. Section 4 presents the results and discussion,
and Section 5 provides concluding remarks.
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2. Data

The images used in this study were collected from the Total Sky Imagery model 440 (TSI-440)
instrument manufactured by Yankee Environmental Systems (Turners Falls, MA, USA). The charged-
couple device (CCD) camera, embedded at the top of the TSI, overlooked the hemispherical mirror to
capture the reflected sky conditions. The shadow band on the mirror prevented strong solar radiation
from damaging the imaging system. The parameter settings for sampling and image processing were
configured in the TSI software, which was installed on the user’s computer. The size of the sky images
used was 640 × 480, and the image format was JPEG. Sky images had high temporal and spatial
resolution, providing more accurate regional sky conditions. The images used in this work were
provided by the Atmospheric Radiation Measurement (ARM) Climate Research Facility, and the image
acquisition device was located at 39.0916◦ N, 28.0257◦ W: Eastern North Atlantic (ENA) Graciosa
Island, Azores, Portugal.

The images were selected from 2015 to 2016 to cover the entire year in order to test the universality
of the algorithms for the four seasons and different times. According to the standard of two images
per day, 730 images were randomly selected by generating uniform random numbers corresponding
to the running time of the machine. Figure 1 shows the time distribution of the selected images.
The horizontal axis indicates the date of image generation, while the vertical axis represents the time
of image acquisition. The blue curve consists of many blue circles representing the start time of the
device, and the red curve consists of red circles indicating the end of the device operation. The samples
are shown by green circles demonstrating the uniform distribution of the samples. The scattered
and fixedly positioned 18 image patches in each image were selected. These patches were manually
labeled as clouds or clear skies by specialists, which were regarded as the ground truth to evaluate the
detection performance.
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Figure 1. Time distribution of selected images.

The sky images were preprocessed. An image consists of the sky region and the rest of the image.
The sky region is the region of interest of the image, while the rest of the image is redundant. The rest
of the image, including the surroundings, the low altitude angle area in the sky, and occlusions caused
by the device itself, were removed for more accurate and rapid cloud detection (see Figure 2a). First,
the region located in the available field of view was intercepted, eliminating the first two redundancies.
Then, the occlusions were positioned and repaired by algorithms, which was done by other members
of the team. After the preprocessing, only the sky region used for cloud detection remained, as shown
in Figure 2b.
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preprocessing result.

3. Methodology

The cloud detection algorithm is illustrated in detail in Figure 3. First, the solar location method
is described to track the sun in the image used for feature calculation, which was suitable for the
case where the images were taken from the platform and camera calibration using the OcamCalib
software toolbox was not possible [23]. Then, the layering region division and the sky state used to
determine the red weight in the feature are presented. Next, the ARGD feature used to reduce sunlight
interference is introduced. Finally, the pixel identification, based on a zero threshold, is described.
To illustrate the performance of the proposed feature, ARGD was compared with classical features
such as NRBR and RBR. We noted that the three features use RGB channels. Fixed thresholding and
adaptive thresholding are popular methods of images segmentation, while zero threshold is applied to
ARGD feature images.
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3.1. Solar Location

Limited to the conditions in which the camera cannot be calibrated, a solar location method
was proposed that did not use any calibration object. First, some images in which the sun can
be clearly identified were selected. Then, the coordinates of the sun in the horizontal coordinate
system, the solar zenith angle (SZA), and the solar azimuth angle (SAA) were calculated from the
astronomical formula. Next, the coordinates of the sun in the pixel coordinate system, namely the row
and column of the pixel, were determined. Finally, the coordinate transformation from the horizontal
coordinate to the pixel coordinate was established. In this way, the position of the sun in the image
was determined by performing the coordinate transformation on the horizontal coordinates obtained
by real-time calculation.

In this work, a total of 1323 images were selected in which the sun can be clearly identified.
The images were randomly selected for universality and contained complete information, such as date,
time, latitude, and longitude.

The celestial coordinate system divides the sky into two hemispheres: The upper hemisphere,
where the objects above the horizon are visible, and the lower hemisphere, where the objects below the
horizon cannot be seen. The pole of the upper hemisphere is called the zenith. A celestial coordinate
system is a horizontal coordinate system that uses the observer’s local horizon as the fundamental
plane. The spatial position of an object is expressed in terms of horizontal coordinates including SZA
and SAA. Figure 4 visually shows the position of the sun in the horizontal coordinate system, where α
is the SZA representing the angle between the zenith and the center of the solar disk, and β is the SAA
meaning the angle of relative direction of the sun along the local horizon. The units of SZA and SAA,
expressed as floating-point numbers retaining 15 significant digits, are degrees. The SZA with the
range of (0◦, 180◦) was measured toward the ground with the zenith as the reference, and the SAA
with the range of (0◦, 360◦) was increased clockwise from the south. The SZA was calculated from the
date (year, month, day), time (hour, minute, and second), and the latitude and longitude:

α = arccos(sin δ sinϕ+ cos δ cosϕ cos τ), (1)

where δ is the sun declination angle calculated based on the date, φ is the local geographic latitude,
and τ is the solar hour angle computed based on the date, time and longitude. The SAA is calculated
as follows:

β = arccos(
sinα sinϕ− sin δ

cosα cosϕ
). (2)
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Figure 4. Spatial position of the sun.

Thus, the horizontal coordinate of the sun can be derived from the date, time, longitude, and
latitude in real time.

After obtaining the horizontal coordinate of the sun, the pixel coordinate must also be determined.
The pixel coordinates are the specific locations of pixels in the image, namely the row and column in
pixels. Both row and column are integers in the range of (0, 255). The sun in the image was manually
signed and the pixel coordinates of the sun were extracted.
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To illustrate the relationship between the horizontal coordinates and the pixel coordinates,
three-dimensional scatter plots were drawn. Here, the SZA and SAA of the horizontal coordinates were
taken as the x-axis and the y-axis, respectively, and the row and column of the pixel coordinates were
sequentially taken as the z-axis. As a result, two scatter plots, a row-scatter plot, and a column-scatter
plot were obtained. Figure 5 shows that two scatter plots exhibited the surface distribution taking into
account the errors of the manual annotation.
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The appropriate fitting method based on scatter plots was performed to obtain the coordinate
transformation formula. In this work, polynomial surface fitting was carried out. We attempted to
take into account the various combinations of SZA and SAA from the first to fifth order. The SZA is
denoted by Z = [1, α, α2, α3, α4, α5]. The SAA is denoted by A = [1, β, β2, β3, β4, β5]T. The coordinate
transformation formula were determined as follows:

c = Z
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
A. (3)

where c is the row or column of the predicted pixel coordinate and pij are coefficients. The coefficients
were determined by continuous optimization (see Section 4.1). The obtained results show that the
row-scatter plot had the best performance on the second-order SZA and the fourth-order SAA, while the
column-scatter plot showed the best performance from the second-order SZA and the third-order SAA.

In this way, the pixel coordinates of the sun in the images were determined using the SZA and
SAA as input into the transformation formula.

3.2. Cloud Detection Feature

Cloud detection often fails for images that suffer from interference by sunlight. The saturation
enhancement caused by strong light gives rise to inaccurate detection of many excellent algorithms.
In this work, a cloud detection feature was proposed to reduce the influence of sunlight.

3.2.1. Layering Region Division

The interference of sunlight in the image was closely related to the solar position and was not
uniformly distributed over the entire image. The circumsolar regions suffered the most serious
interference, while the interference was drastically weakened as the distance from the sun.

The layering region division was applied to classify the degree of sunlight interference in the
image. Three sun-centered circles with different radii of 90, 120, and 150 pixels, respectively, were set,
and the image was divided into four layers (see Figure 6). The choice of radius was based on the visual
observation. The first layer was a circular area containing the sun and was most affected by the sunlight.
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Generally, this area had the greatest color change in an image and was easily saturated. The second
layer, appearing as a ring, was close to the sun, but was less affected than the first layer. Hence,
the color change was somewhat stable. In the third layer, which still appears as a ring, the influence of
sunlight was weakened again, together with the color change. In the remaining area, set as the fourth
layer, the color change was stabilized and sunlight interference is close to zero.
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3.2.2. Sky State

Both clouds and clear skies have different characteristics in different sky states. If the image
displays interference caused by sunlight, the sky characteristics are different between the layers and
the detection criteria are also different. If the image does not show sunlight interference, the differences
between the sky characteristics of the different layers are small and a unified detection standard can
be used. To distinguish the sky states that display sunlight interference and no sunlight interference,
two parameters, the solar intensity (SI) and saturation difference (SD), were set.

The average intensity of the pixel block taken from the center of the solar disk was calculated as
the SI:

SI =

n∑
i=1

Ii

n
, (4)

where n is the number of pixels in the pixel block, i is the sequence number of the pixel, and Ii represents
the intensity of the i-th pixel. The dimensionless parameter SI is an integer value in the range of
(0, 255). The pixel intensity reaches the maximum value because the pixels of the sun disk region tend
to be saturated in sunny conditions, while the intensity is significantly lower when clouds block the
sun. The SI indicates whether the sun appears in the image. The appearance of the sun produces a
certain degree of interference with the image. The use of SI as the first parameter for evaluating the sky
state is enabled by its simple calculation and excludes most of the images, significantly reducing the
computational cost of the algorithm.

To determine whether the image has interference caused by sunlight, the SD was calculated by
subtracting the average of the saturation of the first layer from that of the entire image as expressed by:

SD =

nw∑
i=1

Si

nw
−

n1∑
j=1

S j

n1
. (5)

where nw is the number of pixels in the entire image, n1 is the number of pixels in the first layer, and Si
is the saturation of the i-th pixel. The dimensionless parameter SD is a floating-point value in the range
of (0, 1). The saturation distribution of the clear sky with sunlight interference gradually increased
from the first layer to the first four layers. However, the saturation distribution was uniform when the
image had no interference. The saturation of the first layer determines whether there are clear skies
or clouds with color changes affected by sunlight and indicates the state of the circumsolar regions.
Analogously, the saturation of the entire image indicates the state of the entire sky. The SD indicates
whether the sky states of the first layer and the entire image are consistent. If the parameter value
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is small, it can be determined that the saturation of the sky is evenly distributed, and the sky has no
interference by sunlight. Otherwise, the sky is affected by sunlight.

The thresholds for distinguishing the sky state were obtained as SI of 180 and SD of 0.1.
The threshold acquisition is detailed in Section 4.2. The decision model is given: If SI is less than
180 and SD is less than 0.1, the image has no interference by sunlight. Otherwise, the image has
sunlight interference.

3.2.3. ARGD Feature

The ARGD feature with strong adaptability was proposed using the red and green channels
according to the following definition:

ARGD = k×R−G (6)

where k is the weight of the red channel. If the sky state indicated that the image had no interference
of sunlight, the weights for layers 1–4 were set to 1.3, 1.4, 1.5, and 1.7, respectively. Otherwise,
the weight in each layer was set to the constant value of 1.7. The weights were obtained by analysis of
linear histograms.

Both the layering region division and the sky state are considered to determine the weight. If the
sky state indicates the presence of sunlight interference, the difference between the red and green
channels of the clouds is gradually increased from the first layer to the fourth layer, and that of clear
skies is reduced. Since each layer has different characteristics, it is necessary to set different weights.
If the sky state does not indicate the presence of sunlight interference, the weight set to constant is
reasonable. Through the adjustment to the weight, the feature can adapt to the characteristics of
different layers and meet the different detection requirements.

The study of channels for clouds and clear skies was carried out (see Section 4.3). The analysis
showed that the green channel had the stable centralization and the blue channel was easily saturated.
From the perspective of standardization, ARGD uses red and green channels.

It is important to note that the zero threshold satisfies the requirement of segmentation. When the
feature values are positive, pixels are identified as clouds, and if the values are negative, the pixels are
determined to be clear skies.

The practical example of cloud detection is shown in Figure 7. The sky image is shown in Figure 7a.
The sky state determined the sunlight interference by calculating SI and SD, and the weight was
determined accordingly. Figure 7b shows the detection result when the weight has a constant value of
1.3, and the result in the first layer was adopted. Figure 7c,d show the detection results when weights
were set to constant values of 1.4 and 1.5. The results of the ring regions in the second and third layers
were adopted. Figure 7e shows the detection result when the weight was set to a constant value of 1.7,
and the results of the remaining areas were adopted. Figure 7f shows the final detection result of the
ARGD feature under zero threshold. As observed from the results of the processing, the amount of
identified clouds increased with increasing weight. The increased amount of clouds was incorrect in
the circumsolar region with sunlight interference, but the clouds with the correct identification in this
area were added, proving that this feature is reasonable.
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4. Results and Discussion

4.1. Coordinate Transformation Formula

In the solar location part of the algorithm (see Section 3.1), the coordinate transformation from
the horizontal coordinates to the pixel coordinates was established. In this way, the time and location
information were used to calculate the SZA and SAA, and then the coordinate transformation was
used to obtain the solar position in the images.

The coordinate transformation was constructed by polynomial surface fitting. The specific
polynomials were determined according to the row and column scatter plot in order to take into
account the various combinations of SZA and SAA from the first to fifth order. Two evaluation
indicators, namely root mean square error (RMSE) and adjusted coefficient of determination (Adjusted
R-square, R2), were selected to find the best polynomials and were defined as:

RMSE =

√√√√ n∑
i=1

(yi − ŷi)
2

n
, (7)

R
2
= 1−

n∑
i=1

(yi − ŷi)
2

n∑
i=1

(yi − y)2

(
n− 1

n− p− 1

)
. (8)

where yi is the actual value of the i-th sample, ŷi is the predicted value of the i-th sample, y is the average
of the actual values, p is the number of explanatory variables, and n is the sample size. The RMSE
value indicates the dispersion of the sample and the RMSE value close to zero indicates that the model
fit well. The Adjusted R-square value ranges from 0 to 1, and a value closer to 1 indicates a better fit of
the model for the samples. In this work, the RMSE and the Adjusted R-square described the fitting
error of pixel coordinates row and column. The units of row and column are pixels.

The results of the row coordinate transformation for various combinations of orders are listed
in Table 1. It can be observed that the row converting coordinate had the best performance in the
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fourth order SZA and the fifth order SAA (see the bold numbers in Table 1). Considering the various
cases of SZA to RMSE, the results of the first order SAA were the worst for all orders and the gap was
large, which means that the data were not distributed in the first order. The fifth-order SAA were
the best, indicating that the data were suitable for the fifth-order distribution of SAA. The Adjusted
R-square was extremely inferior to first-order SZA and first-order SAA, which may be attributed to the
difference between the three-dimensional surface and the three-dimensional plane. When SAA was
not first order, the Adjusted R-square reached values above 0.9. Although the result of the fourth order
and fifth order was not unique, it still had the best value.

Table 1. Results of the optimal row coordinate transformation.

SZA Order
SAA Order First Second Third Fourth Fifth

RMSE (Pixel)

first 57.41 13.21 6.88 2.983 2.463

second 54.26 8.134 5.411 1.922 1.881

third 53.6 5.488 5.419 1.873 1.834

fourth 52.39 4.317 4.19 1.875 1.791

fifth 51.7 4.216 4.038 1.797 1.794

Adjusted R-Square (Pixel)

first 0 0.9468 0.9856 0.9973 0.9981

second 0.1016 0.9798 0.9911 0.9989 0.9989

third 0.1235 0.9908 0.991 0.9989 0.999

fourth 0.1627 0.9943 0.9946 0.9989 0.999

fifth 0.9896 0.9946 0.995 0.999 0.999

Table 2 shows the results of the column coordinate transformation, and comprehensive analysis
shows that the combination of the fifth-order SZA and the fifth-order SAA was the best (see the
bold numbers in Table 2). The RMSE had a wide range, and the best result can be understood as
corresponding to the sun’s position fitted to be, on average, 1.505 pixels away from the marked position.
The Adjusted R-square of any combination reached 0.9 or higher. Therefore, an appropriate column
coordinate transformation was fitted.

The method for locating the sun provides a solution in the case where the information is insufficient
and where the equipment cannot be tested experimentally. This situation is quite common. For example,
when the data are obtained from a public platform, a research institution, a university, or an enterprise,
the software interface of the equipment cannot be examined, and there is also no way to use the
OcamCalib toolbox to calibrate the camera. Our method can locate the sun in the image using only the
image, time, and device location.
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Table 2. Results of the optimal column coordinate transformation.

SZA Order
SAA Order First Second Third Fourth Fifth

RMSE (Pixel)

first 27.72 21.13 5.326 2.753 2.345

second 21.42 21.17 2.9 1.947 1.537

third 19.56 17.32 2.873 1.92 1.53

fourth 17.78 16.38 2.013 1.868 1.509

fifth 17.44 16.41 1.742 1.537 1.505

Adjusted R-square (Pixel)

first 0.9491 0.9704 0.9981 0.9995 0.9996

second 0.9696 0.9703 0.9994 0.9997 0.9998

third 0.9747 0.9801 0.9995 0.9998 0.9998

fourth 0.9791 0.9822 0.9997 0.9998 0.9998

fifth 0.9799 0.9822 0.9998 0.9998 0.9998

4.2. Parameters for Sky State

Depending on the state of the clouds and sun, the images were divided into four categories,
as shown in Figure 8. The first category of overcast sky is shown in Figure 8a where the sun was not
observed and the sky was generally covered by clouds. The second type is cloudy without sun, shown
in Figure 8b, where there were both clouds and clear skies, but the sun was blocked by the clouds.
Figure 8c shows an image with clouds and clear skies that was placed in the cloudy with sun category
because of the visible sun. The final category is that of clear sky, as shown in Figure 8d, where the sun
was extremely clear and few clouds appeared
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To determine the sky state, two parameters, namely SI and SD, were proposed (see Section 3.2.2).
The SI was obtained by calculating the average intensity of the pixel block at the center of the solar disk.
The statistical results are listed in the SI column of Table 3. The SIs of the cloudy skies without sun and
overcast skies images were lower than those of the other image categories and their values were quite
different. Moreover, the images in the overcast sky category had a lower SI value than the images for
cloudy skies without sun. To identify whether the image had sunlight interference, the overcast sky
without interference was distinguished from other categories and the threshold was set to 180.

Table 3. Statistical results of SI, S of different layers, and SD for four categories of images.

Sky SI S1 S2 S3 S4 SD

Overcast (28.81,176.92) (0.19,0.50) (0.21,0.48) (0.23,0.46) (0.26,0.42) (0,0.08)

Cloudy without Sun (62.03,197.44) (0.15,0.32) (0.19,0.36) (0.22,0.41) (0.35,0.59) (0.11,0.36)

Cloudy with Sun (244.85,252) (0.14,0.36) (0.21,0.42) (0.27,0.48) (0.40,0.67) (0.17,0.44)

Clear (247,252) (0.21,0.58) (0.29,0.64) (0.35,0.68) (0.55,0.77) (0.19,0.37)

Given the layering region division, the average saturation (S) of the first layer to the first four
layers was calculated, and the ranges are listed in the S1–S4 columns in Table 3. The saturation was
mostly either increasing or decreasing from the first layer to the first-fourth layer for any category,
but there were some images in which the saturations of the first-second and first-third layers changed
in the vicinity of the saturations of the first and first-fourth layers. Fifty images were taken randomly.
For 90% of the images, the saturations were either increasing or decreasing, and for 10%, turbulent
changes were observed. The first layer and the first four layers fully represented the changes in the
saturation. For the first layer, the saturations of the images in the cloudy skies and clear skies categories
had the large range of values due to the sunlight and clouds. The saturation of the clear sky was
generally relatively large, but the saturation in the morning and evening led to the low value. For the
first-fourth layer, the saturation increased sequentially from overcast to clear skies. The difference
between the first-fourth layers and the first layer indicates whether the sky state of the first layer is
consistent with that of the entire image and distinguishes the overcast skies from the other categories
(see the SD column in Table 3). The SD of overcast skies was less than 0.08 and the threshold was set
to 0.1.

4.3. Analysis of Channels and Features

To distinguish clouds and clear skies, the channels were analyzed. The RGB values are separately
extracted along the red stripe in Figure 8a, and the distribution of the values representing the clouds
and clear skies is presented in Figure 8b. The clear sky pixels were distinctly observed at 0–75 and
180–240, and cloud pixels were distributed in the 75–180 range. Bright cloud pixels were mainly
distributed at 75–130, and dark cloud pixels were distributed over 130–180. It can be clearly observed
that the two kind of clouds differed in that the channel value of the bright cloud pixels was larger than
that of the dark cloud pixels. It is important to mention that the blue component of the bright cloud
pixels was easily saturated because this component was limited to the range of 0–255. Of course, it is
also possible that all three channels were saturated. It can be observed that the blue component was
greater than the green component and the red component and the values of the cloud pixels were
higher than those of clear sky pixels in each color component.

An unexpected but vital clue was contained in the rule of stable centralization of the green
component, which was a ubiquitous phenomenon in the images used in our work. For further analysis,
the chromaticity coordinates were presented as:

r =
R

R + G + B
, g =

G
R + G + B

, b =
B

R + G + B
. (9)
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This expression reflects that r and b were presented in axisymmetric form with g as the axis,
as shown in Figure 8c. The g was stable at the value of 0.33, verifying the rule. If two of the three
channel values are known, the remaining channel value can be approximated. This implies that the
complete pixel state can be expressed with only two channels. The r and b values of the clear sky pixel
were similar to each other, and those of the cloud pixels were quite different. This phenomenon can be
expressed in a more intuitive manner through the distance between r and g.

To date, RBR has been widely used:

RBR =
R
B

=
r
b

, (10)

The r and b of the clear sky pixel were close to each other, and the ratio of r to b was large. The r of
the cloud pixel was far from b, and the ratio of r to b was small. The same conclusion can be obtained
by observing r and g.

The NRBR is meant to represent the blueness of the sky and improves image contrast and
robustness to noise:

NRBR =
B−R
B + R

=
1−R/B
1 + R/B

=
b− r
b + r

= 1−
2r

1− g
≈ 1− 3r, (11)

The NRBR is the normalization of RBR and is a monotonically decreasing function of the RBR.
The RBR range was theoretically (0, 255) and the NRBR range was (−1, 1) (Figure 10a). However,
the RBR range in the sky image was (0, 1), as was the NRBR range. Figure 10b shows the relationship
between the two features. The NRBR was converted to the chromaticity coordinates. When the blue
channel was not saturated, g was approximately 0.34 and NRBR was approximately the function of r.

The S feature was designed to identify the saturation of the sky, and its theoretical basis is
consistent with the features discussed above. According to the definition of chromaticity coordinates,
S can be derived as the function of r, which is the same as the NRBR approximation function.

S = 1−
3

R + G + B
[min(R, G, B)] = 1−

3
R/r

×R = 1− 3r. (12)

To numerically understand the three features, the feature values on the red stripe in Figure 8a
are plotted in Figure 9d. The trends of the three features were observed to be similar. The results
of RBR and NRBR were fully compatible with the relationship shown in Figure 10b. Compared to
RBR, although the nonlinear compression of NRBR reduced noise, it was prone to reduce the contrast
between clouds and clear skies. The consistency of the chromaticity coordinate function of S with the
approximation function of NRBR was verified. The analysis showed that RBR and NRBR measured
the difference between r and b, and S and NRBR were regarded as the measures of r. The measure
of the difference between r and g can obtain similar results. Thus, the ARGD feature was proposed.
ARGD was not only consistent with the theory, but also corrected the blue component saturation.
The computational cost was minimized, and the adjustable weight was highly suitable for cloud
detection considering the interference of sunlight.



Atmosphere 2019, 10, 640 14 of 19

Atmosphere 2019, 10, x FOR PEER REVIEW 13 of 19 

 

The r and b of the clear sky pixel were close to each other, and the ratio of r to b was large. The r 
of the cloud pixel was far from b, and the ratio of r to b was small. The same conclusion can be obtained 
by observing r and g. 

The NRBR is meant to represent the blueness of the sky and improves image contrast and 
robustness to noise: 

−− −= = = − ≈ −
+ + + −

1 2NRBR = 1 1 3 ,
1 1

R BB R b r r r
B R R B b r g  

(11) 

The NRBR is the normalization of RBR and is a monotonically decreasing function of the RBR. 
The RBR range was theoretically (0, 255) and the NRBR range was (−1, 1) (Figure 10a). However, the 
RBR range in the sky image was (0, 1), as was the NRBR range. Figure 10b shows the relationship 
between the two features. The NRBR was converted to the chromaticity coordinates. When the blue 
channel was not saturated, g was approximately 0.34 and NRBR was approximately the function of 
r. 

The S feature was designed to identify the saturation of the sky, and its theoretical basis is 
consistent with the features discussed above. According to the definition of chromaticity coordinates, 
S can be derived as the function of r, which is the same as the NRBR approximation function. 

= − = − × = −
+ +

3 3S 1 [min( , , )] 1 1 3 .R G B R r
R G B R r  

(12) 

To numerically understand the three features, the feature values on the red stripe in Figure 8a 
are plotted in Figure 9d. The trends of the three features were observed to be similar. The results of 
RBR and NRBR were fully compatible with the relationship shown in Figure 10b. Compared to RBR, 
although the nonlinear compression of NRBR reduced noise, it was prone to reduce the contrast 
between clouds and clear skies. The consistency of the chromaticity coordinate function of S with the 
approximation function of NRBR was verified. The analysis showed that RBR and NRBR measured 
the difference between r and b, and S and NRBR were regarded as the measures of r. The measure of 
the difference between r and g can obtain similar results. Thus, the ARGD feature was proposed. 
ARGD was not only consistent with the theory, but also corrected the blue component saturation. 
The computational cost was minimized, and the adjustable weight was highly suitable for cloud 
detection considering the interference of sunlight. 

  
(a) (b) 

Atmosphere 2019, 10, x FOR PEER REVIEW 14 of 19 

 

  
(c) (d) 

Figure 9. Discussion of the color channels and several features: (a) Original image with the red strip, 
(b) linear histogram of RGB channels, (c) linear histogram of the chromaticity coordinates, (d) 
relationship of the three features. 

 
(a) (b) 

Figure 10. Relationships between NRBR and RBR: (a) Theoretical relationship; (b) actual relationship. 

4.4. Comparison and Analysis 

Our algorithm was compared to the algorithms using RBR with a fixed threshold, S with a fixed 
threshold, and HYTA, which flexibly uses fixed and minimum cross entropy (MCE) adaptive 
thresholds on the NRBR feature images. 

The ARGD adopted the constant zero threshold, while the fixed threshold of other features were 
statistically estimated as described by [22]. A quarter of the image set was used to calculate the mean 
μ and the standard deviation δ of the clouds, and the threshold was finally set as T = μ ± 3δ based on 
the probability theory of Gaussian distribution, with TRBR = 0.36, TS = 0.639, and THYTA = 0.452. The 
clouds in various features had different properties. Therefore, the pixels for which the feature values 
were smaller than the threshold were classified as clouds for S and HYTA, while the feature values 
of clouds must be greater than the threshold for RBR. 

The numerical analysis of RBR, S, NRBR, and ARGD and image comparison of the 
corresponding algorithms are illustrated under different sky conditions (Figure 11). A linear 
histogram was plotted to analyze the performance of the pixels on the red line in the sky image under 
different features in detail. For better observation, ARGD was displayed in normalized form. Figure 
11a shows the experimental results for a clear sky. It is observed from the linear histogram that cloud 
pixels were identified from 0 to 58 to RBR with the fixed threshold, and from 0 to 49 to S with the 
fixed threshold. Since the influence of sunlight caused the sky standard deviation to be large, the 
HYTA algorithm used the MCE adaptive threshold (0.529) on the NRBR, and clouds were identified 
from 0 to 67. The values of ARGD were negative for the entire red line, correctly identifying the clear-
sky pixels at zero threshold. The misrecognition of other features in cloud pixels was considered to 
be caused by the interference of sunlight. Two parameters, namely SI and SD, were calculated to 
determine the sky state. The SI indicates that the brightness of the sun was high, so the sun appeared 

Figure 9. Discussion of the color channels and several features: (a) Original image with the red
strip, (b) linear histogram of RGB channels, (c) linear histogram of the chromaticity coordinates,
(d) relationship of the three features.

Atmosphere 2019, 10, x FOR PEER REVIEW 14 of 19 

 

  
(c) (d) 

Figure 9. Discussion of the color channels and several features: (a) Original image with the red strip, 
(b) linear histogram of RGB channels, (c) linear histogram of the chromaticity coordinates, (d) 
relationship of the three features. 

 
(a) (b) 

Figure 10. Relationships between NRBR and RBR: (a) Theoretical relationship; (b) actual relationship. 

4.4. Comparison and Analysis 

Our algorithm was compared to the algorithms using RBR with a fixed threshold, S with a fixed 
threshold, and HYTA, which flexibly uses fixed and minimum cross entropy (MCE) adaptive 
thresholds on the NRBR feature images. 

The ARGD adopted the constant zero threshold, while the fixed threshold of other features were 
statistically estimated as described by [22]. A quarter of the image set was used to calculate the mean 
μ and the standard deviation δ of the clouds, and the threshold was finally set as T = μ ± 3δ based on 
the probability theory of Gaussian distribution, with TRBR = 0.36, TS = 0.639, and THYTA = 0.452. The 
clouds in various features had different properties. Therefore, the pixels for which the feature values 
were smaller than the threshold were classified as clouds for S and HYTA, while the feature values 
of clouds must be greater than the threshold for RBR. 

The numerical analysis of RBR, S, NRBR, and ARGD and image comparison of the 
corresponding algorithms are illustrated under different sky conditions (Figure 11). A linear 
histogram was plotted to analyze the performance of the pixels on the red line in the sky image under 
different features in detail. For better observation, ARGD was displayed in normalized form. Figure 
11a shows the experimental results for a clear sky. It is observed from the linear histogram that cloud 
pixels were identified from 0 to 58 to RBR with the fixed threshold, and from 0 to 49 to S with the 
fixed threshold. Since the influence of sunlight caused the sky standard deviation to be large, the 
HYTA algorithm used the MCE adaptive threshold (0.529) on the NRBR, and clouds were identified 
from 0 to 67. The values of ARGD were negative for the entire red line, correctly identifying the clear-
sky pixels at zero threshold. The misrecognition of other features in cloud pixels was considered to 
be caused by the interference of sunlight. Two parameters, namely SI and SD, were calculated to 
determine the sky state. The SI indicates that the brightness of the sun was high, so the sun appeared 

Figure 10. Relationships between NRBR and RBR: (a) Theoretical relationship; (b) actual relationship.

4.4. Comparison and Analysis

Our algorithm was compared to the algorithms using RBR with a fixed threshold, S with a fixed
threshold, and HYTA, which flexibly uses fixed and minimum cross entropy (MCE) adaptive thresholds
on the NRBR feature images.

The ARGD adopted the constant zero threshold, while the fixed threshold of other features were
statistically estimated as described by [22]. A quarter of the image set was used to calculate the mean
µ and the standard deviation δ of the clouds, and the threshold was finally set as T = µ ± 3δ based
on the probability theory of Gaussian distribution, with TRBR = 0.36, TS = 0.639, and THYTA = 0.452.
The clouds in various features had different properties. Therefore, the pixels for which the feature
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values were smaller than the threshold were classified as clouds for S and HYTA, while the feature
values of clouds must be greater than the threshold for RBR.

The numerical analysis of RBR, S, NRBR, and ARGD and image comparison of the corresponding
algorithms are illustrated under different sky conditions (Figure 11). A linear histogram was plotted to
analyze the performance of the pixels on the red line in the sky image under different features in detail.
For better observation, ARGD was displayed in normalized form. Figure 11a shows the experimental
results for a clear sky. It is observed from the linear histogram that cloud pixels were identified from
0 to 58 to RBR with the fixed threshold, and from 0 to 49 to S with the fixed threshold. Since the
influence of sunlight caused the sky standard deviation to be large, the HYTA algorithm used the
MCE adaptive threshold (0.529) on the NRBR, and clouds were identified from 0 to 67. The values of
ARGD were negative for the entire red line, correctly identifying the clear-sky pixels at zero threshold.
The misrecognition of other features in cloud pixels was considered to be caused by the interference
of sunlight. Two parameters, namely SI and SD, were calculated to determine the sky state. The SI
indicates that the brightness of the sun was high, so the sun appeared in the image. The SD indicates
that the sky saturation was unevenly distributed, so the image was disturbed by sunlight. At this time,
different layers had different weights. The performances of the four algorithms were also shown and it
was observed that RBR detected more clouds than S, but fewer than HYTA, while ARGD reduced most
of the interference of sunlight and showed excellent performance.

The image analyzed in Figure 11b contained both clouds and clear skies and suffered from
interference by sunlight. For the RBR in the linear histogram, the cloud pixels were identified over
the ranges of 0–64, 66–132, and 134–224, with the rest of the pixels identified as clear skies. Cloud
pixels were identified over the ranges of 0–64, 66–124, and 134–217 in the S. NRBR used MCE adaptive
thresholds of 0.6, 0–228, and 232–237 to be identified as clouds. The clouds were identified from 10–63
and 136–217 for ARGD, obtaining results that were consistent with the actual sky conditions. Due to
the interference of sunlight, misrecognition was still present. The parameters of the sky state indicate
that the sun appeared in the image and the image had sunlight interference, meaning the weight was
determined. The detection results of the four algorithms coincide with the cloud distribution of each
feature in the linear histogram. It can be seen that the ARGD result was particularly outstanding
compared to other features when the image was interfered by sunlight. This indicates that ARGD
successfully reduced solar interference.

The overcast sky is analyzed in Figure 11c. All four algorithms used the fixed threshold and the
pixels on the entire red line were correctly identified as clouds. The SI indicates that the brightness of
the sun was small, so the sun did not appear in the image. The SD indicates that the sky saturation
was evenly distributed, so the image was not disturbed by sunlight. In this case, the weights of the
layers were the same. The detection results of the algorithms correctly reflect the actual situation of the
sky. Overall, ARGD performed well under three sky conditions and outperformed other algorithms
when the image was interfered by sunlight.

A classic confusion matrix evaluation method [24] was used to assess the accuracy of detection.
Four statistics can be clearly observed in the matrix shown in Table 4. True positive (TP) and true
negative (TN) represent the correct detection for clouds and clear skies, respectively. False negative
(FN) and false positive (FP) represent incorrect detection. Several classical evaluation indices, such as
accuracy, recall, and precision, can be obtained using these four statistics. Accuracy, which is defined
as the percentage of correct detection, is one of the most widely used evaluation indicators, and is
used in many studies used as the sole criterion for the evaluation of the algorithm performance. In this
work, recall can be interpreted as the proportion that is accurately detected in the clouds and precision
is the fraction of the pixels predicted as clouds that are in fact cloud pixels. Although a higher accuracy
indicates the better performance of the algorithm, it should be accompanied by the balanced values of
the other criteria.
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Table 4. Confusion matrix and evaluation indicators.

Actual

Cloud Clear

Predicted
Cloud TP FP Precision = TP

TP+FP

Clear FN TN

Recall = TP
TP+FN Accuracy = TP+TN

TP+TN+FP+FN

The confusion matrix of ARGD for evaluating the performance of the algorithm is listed in Table 5
with the statistics expressed as percentages. The probability that clear skies were misclassified as clouds
was as low as 1.34%, suggesting that the algorithm reduced the interference of sunlight. The case
where the clouds were misclassified as clear skies was considered to be caused by the dark clouds
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in the area interfered by sunlight. Overall, the correct classification of 98.02% is quite satisfactory,
demonstrating the effectiveness of the algorithm.

Table 5. Confusion matrix for ARGD.

Actual

Cloud Clear

Predicted
Cloud 64.72 0.64

Clear 1.34 33.3

The evaluation results for the four algorithms are presented in the histogram (see Figure 12).
The recall of RBR was 99.42%, which was the highest among the four features, indicating that the
majority of actual clouds were identified. The precision indicates that 9.17% of the pixels should be
clear skies but were falsely determined to be clouds, and the accuracy was 92.98%, ranking third among
all features. The accuracy and precision of S were 94.04% and 92.29% respectively, and the recall was
6.97% higher than the precision. The three statistics for S showed the second highest values among the
four algorithms.Atmosphere 2019, 10, x FOR PEER REVIEW 17 of 19 
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The accuracy of HYTA was the lowest at 91.29%. The recall of 97.97% is not low, but the precision
of 89.78% is not good, so the tradeoff between these criteria was observed. Different threshold methods
were employed to determine whether the image was unimodal or bimodal in this algorithm. The images
of cumuliform and cirriform clouds segmented with adaptive thresholds were bimodal, and the images
of stratiform clouds and clear sky with fixed thresholds for segmentation were unimodal. Different
from the work of HYTA, the set of images in this paper was not image patches containing only a
single cloud type. Clouds of different types inevitably appeared in an image to be processed, so the
detection accuracy was decreased. The sky in a small area was uniform to the color change, but the
entire clear sky was interfered by the uneven sunlight, so the unimodal result was detected. This is
one of the reasons why HYTA performed poorly in this case. In addition to the interference of sunlight,
the presence of multiple peaks also gave rise to the error of the MCE threshold.

Compared to other algorithms, ARGD had the highest accuracy of 98.02%, and moreover, the recall
and precision were the most balanced. Although the recall rate of 99.02% was the lowest, it was not
much different from the recall values of the other algorithms. Overall, ARGD obtained outstanding
detection results. The outstanding performance was due to the weakening of the effect of sunlight,
demonstrating that interference by sunlight was the difficulty that must be overcome to obtain improved
accuracy. In summary, ARGD reduced the interference of sunlight and achieved better performance.
Therefore, it is the most promising approach.
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5. Conclusions

We proposed a cloud detection algorithm for reducing the interference of sunlight in ground-based
sky images. The proposed solar location method locates the pixel coordinates of the sun using the
coordinate transformation. The coordinate transformation formula is obtained by fitting the polynomial
surface with manually labeled pixel coordinates and horizontal coordinates. This overcomes the
drawbacks of the lack of device information and calibration data. The ARGD feature using red and
green channels takes into account the interference of sunlight in the image, which is reflected in
the red weight determined by the layering region division and the sky state. The layering region
division classifies the degree of sunlight interference in the image by tracking the position of the sun.
The sky state discriminates whether there is sunlight interference in the image according to the SI
and SD. After the image is calculated by the feature, the zero threshold is used for segmentation.
Our experiments demonstrate that ARGD effectively attenuates the interference of sunlight and
outperforms other algorithms.
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