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Abstract: Air pollution continues to attract more and more public attention. Space-based infrared
sensors provide a measure to monitor air quality in large areas. In this paper, a band selection
procedure of space-based infrared sensors is proposed for urban air pollutant detection, in which
observation geometry, ground and atmosphere radiant characteristics, and sensor system noise are
integrated. The physics-based atmospheric radiative transfer model is reviewed and used to calculate
total spectral radiance at the sensor aperture. Spectral filters with different central wavelength
and bandwidth are designed to calculate contrasts in various bands, which can be presented as a
two-dimensional matrix. Minimal available bandwidth and signal-to-noise ratio threshold are set to
characterize the impacts of the sensor system. In this way, the band with higher contrast is assumed
to have better detection performance. The proposed procedure is implemented to analyze an optimal
band for detecting four types of gaseous pollutants and discriminating aerosol particle pollution
to demonstrate usefulness. Simulation results show that narrower bands tend to achieve better
performance while the optimal band is related to the available minimal bandwidth and pollutant
density. In addition, the bands that are near optimal can achieve similar performance.

Keywords: urban air pollution; pollutant detection; space-based infrared sensor; atmospheric
radiative transfer model; band selection

1. Introduction

Air pollution, a byproduct of industrialization, urbanization, and economic development, is
drawing more and more public attention, since different levels of air pollutant concentration have
various adverse impacts on public health [1,2]. Air quality is generally quantified into several levels
according to the Air Quality Index (AQI) calculated by different criteria, in which six types of pollutants
are generally considered to predict air quality [3,4], i.e., tropospheric ozone (O3), carbon monoxide (CO),
sulfur dioxide (SO2), tropospheric nitrogen dioxide (NO2), suspended particulates smaller than 2.5 in
µm aerodynamic diameter (PM2.5), and suspended particulates smaller than 10 in µm aerodynamic
diameter (PM10). The concentrations of the pollutants in urban areas can be measured in a number of
monitoring stations to study local air quality [5,6]. Meanwhile, space-based earth observation sensors,
which acquire the spatial and spectral radiative characteristics in the Field of View (FOV) with a large
coverage, provide another approach for air quality surveillance in large areas [7–13].

The Total Ozone Mapping Spectrometer (TOMS) instrument on the Nimbus 7 satellite was
the first space-based equipment to detect SO2 concentration in the ozonosphere [14]. The Global
Ozone Monitoring Experiment (GOME) instrument [15] on the Second European Remote Sensing
Satellite (ERS-2) was launched in 1995 to determine the global distribution of ozone and several
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other trace gases, including O3, NO, NO2, and SO2. In 2002, the Scanning Imaging Absorption
Spectrometer for Atmospheric Chartography (SCIAMACHY) [16] was deployed to investigate
tropospheric, stratospheric, and mesospheric chemistry [17]. Two years later, the Ozone Monitoring
Instrument (OMI) onboard the National Aeronautics and Space Administration’s (NASA) Earth
Observing System (EOS) Aura satellite was launched for monitoring atmospheric pollution [18,19]. The
SCIAMACHY and OMI have operated in low earth orbit for more than twice of their anticipated lifetimes.
To achieve higher spatial and temporal resolutions, the new instruments onboard geostationary satellites
are designed to form the global geostationary constellation of pollution monitoring, including the
Tropospheric Emission: Monitoring of Pollution (TEMPO) [20,21], the European Sentinel-4 [22], and
the Korean Geostationary Environment Monitoring Spectrometer (GEMS) [23].

The TOMS, GOME, SCIAMACHY, and OMI measure the solar light scattered by the atmosphere
in the ultraviolet and visible spectrum ranging from 264 to 504 nm [24], since gaseous pollutants
exhibit very strong absorption characteristics in this spectrum. Algorithms have been developed
to retrieve pollutant concentration from measurement data. Examples are the Differential Optical
Absorption Spectroscopy (DOAS) [25,26], the TOMS-V8 total ozone algorithm [27], and the Band
Residual Difference Algorithm (BRD) [28,29]. The retrieval algorithms will be inherited by the
successors (TEMPO, sentinel-4, and GEMS), whose spectral range will be extended to include a NIR
band and a SWIR band for the measurement of cloud and aerosol properties.

Except for gaseous pollutants, pollution caused by aerosol particles is also detected and monitored
using satellites. The aerosol properties retrieved through remote sensing include particle mean radius,
size distribution, and aerosol optical depth (AOD) [9,30]. The data measured in the visible spectrum
are provided by optical sensors onboard solar orbit satellites, such as the Moderate Resolution Imaging
Spectroradiometer (MODIS) [31,32] on onboard Terra and Aqua satellites and the Cloud Aerosol Lidar
with Orthogonal Polarization (CALIOP) [33], while the aerosol properties are retrieved via comparing
the color ratios of the measured data with the calculation results from an atmospheric radiative transfer
model [34,35].

Except for the existing bands, a few spectral bands in the infrared region are studied to estimate
the potential for air pollution detection, such as absorption band of SO2 located at 7.1–7.7 µm [36,37]
and an absorption band of CO centered at 4.56 µm [38]. It is worthy to investigate the applicability of
the infrared spectrum for air pollutant detection and the selection of optimal detection bands. However,
optimal band selection for multispectral sensors is totally different from the hyperspectral counterpart.

For hyperspectral data, background radiance is measured in a series of continuous bands before
processing, while only some bands are selected and used in the processing to improve efficiency or
classification accuracy [39–41]. The hyperspectral data can be used in other applications with different
processing methods. However, when a hyperspectral sensor is used to detect air pollution in a large
area, excessive storage is required to save the measurement data, resulting in challenges for data
transmission and processing efficiency.

Multispectral sensors are still widely used in air pollution detection because of the sensor expenses
and the system complexity. The bands of a multispectral sensor are designed and selected before
launch. Only the data in the selected bands can be measured during the sensor lifetime, resulting in
the band selection is implemented at the early stage of sensor missions. Additionally, the new sensors
tend to inherit the band settings from previous sensors. These facts lead to scarce recent references
regarding to multispectral band selection [42–48].

To either retrieve atmospheric constituents or predict atmospheric spectral radiance at the sensor
aperture, atmospheric radiative transfer characteristics should be analyzed quantitatively. A number of
atmospheric transfer radiative models have been developed and upgraded for this mission. Well-known
examples are Moderate Spectral Resolution Transmittance (MODTRAN) code [49,50] and Line-by-Line
Radiative Transfer Model (LBLRTM) [51]. Regarding to the six types of pollutants, O3, CO, SO2, and
NO2 are molecular gases, which have respective absorption spectral lines located at various transition
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frequencies. In contrast, PM2.5 and PM10 represent a group of aerosol particles, whose scattering
properties can be calculated according to Mie scattering.

In our previous works, an atmospheric radiative transfer model was built and upgraded at
high spectral resolution [52,53] while an infrared sensor system model was developed for detection
performance analysis [54]. These models have been used to simulate radiant images [55] and analyze
an optimal band for dim target detection [56].

In this paper, a band selection procedure of space-based infrared sensors is proposed for urban air
pollutant detection, in which observation geometry, ground and atmosphere radiant characteristics,
and sensor system noise are integrated. The absorption coefficients of the gases and the scattering
parameters of aerosols are used to calculate atmospheric transmittance and path radiance. The
constituents of unpolluted atmosphere are specified with a reference atmospheric model to calculate
total spectral radiance of unpolluted area, assuming as background. For the polluted atmosphere, the
densities of pollutants are selected according to the AQI of China to calculate total spectral radiance of
a polluted region, which is considered as a target. The contrasts of the target to the background as well
as Signal-to-Noise Ratios (SNRs) are calculated in various bands with different central wavelengths
and widths. Then, the detection performance of each band is analyzed through the calculated contrasts
and SNRs.

The remainder of the paper is organized as follows. The observational scene and the band selection
procedure driven by background and target characteristics are presented in Section 2 to clarify the
general idea. The calculation model for atmospheric radiative transfer characteristic is introduced in
Section 3, where the theoretical relevance between the pollutant density and the spectral radiance at
the aperture of the space-based infrared sensor is detailed. In Section 4, the criteria of optimal bands
are described to evaluate the performance of various bands for different pollutants. Simulation results
with discussion are given in Section 5. We conclude the paper in Section 6.

2. Band Selection Driven by Background and Target Characteristics

The total radiance at the aperture of the space-based infrared sensor includes the components of
the Earth ground radiance and the atmosphere radiance. Theoretically, different ground covers and
atmospheric conditions can be respectively identified by means of spectroscopic analysis. However, to
separate the atmospheric radiant component, the spectral characteristic of the ground cover should
have been understood at least in several spectral bands. For sensors with moderate spatial resolutions,
including MODIS at a maximal spatial resolution of 250 m, several types of ground materials are
generally involved in the instance field-of-view (IFOV), leading to mixed ground feature spectra which
are usually obtained via measurement and statistical analysis. For sensors with high spatial resolutions,
pixels containing a single material can probably be found in the images, enabling the retrieval of
the ground feature spectra using spectral unmixing [57,58], in which each ground feature spectra is
assumed as linear or non-linear combination of several preset pure materials, while mixing coefficients
of the pure materials can be calculated via different optimization method. The challenges for the usage
of high spatial resolution sensors include excessive data for processing and various types of ground
for modeling.

Two assumptions are taken to simplify the acquisition of the atmospheric radiant component, i.e.,

1. The geographic coordinates of the observed region can be studied at the specific moment, since
satellite orbits are generally preset and known;

2. The variation of the ground covers is much slower than the variation of the atmospheric condition.

According to the above assumptions, since the variance of the total radiance largely characterizes
the variance of atmospheric condition, the pollutant density can be retrieved via analyzing the variance
of the total radiance, rather than accurate calculation of the ground and the atmosphere radiances.
Consequently, the optimal band for urban pollutant detection is expected to be sensitive to the variance
of pollutant constituents.
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The procedure for optimal band selection for urban pollutant detection is presented in Figure 1.
The calculation model for atmospheric radiative transfer characteristics and the detection performance
evaluation will be introduced respectively in Sections 3 and 4. The modeling of infrared sensor system
follows the analysis methodology in [59], while the detection performance model follows [54]. We will
not discuss in detail here.
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Figure 1. Flow chart for optimal band selection for urban pollutant detection.

The parameters of the MODIS are taken as an example in our analysis, as listed in Table 1 [32].
There is no specific reason to select the MODIS, except that these parameters were used in our
previous study.

Table 1. Settings of space-based infrared sensor system.

Description Value

Sensor System

IFOV 70.896 µrad
Detector integration time 0.5 ms

Effective focal length 380.86 mm
Effective pupil diameter 17.78 cm

Temperature of optical train 99 K
Temperature of shield 99 K

Temperature of focal plane array 223 K
Quantization 12 bits

Voltage of analog-to-digital conversion 1 V

3. Calculation Model for Atmospheric Radiative Transfer Characteristic

Atmospheric radiative transfer modeling is briefly reviewed in this section to clarify the
theoretical relevance between the total radiance at the aperture of the space-based infrared sensor and
pollutant density.

3.1. Total Background Radiance

The equations in this section were introduced in [55]. The spectral radiance at the aperture of
space-based Earth observation infrared sensor can be expressed as

Et(λ) = C·
(
Eg(λ)·τv(λ) + Ep(λ)

)
(1)
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where Et denotes the total spectral radiance; Eg and Ep represent, respectively, the ground radiance
and the radiance computed along the viewing path; τv is the spectral transmittance of the viewing
path; C indicates a constant related to observation geometry and sensor IFOV; λ is the wavelength,
which will be omitted in the following equations in this section to simplify the expression.

The radiance scattered by the atmosphere can be monitored to identify aerosol type and
concentration, while the radiance emitted by the atmosphere can be measured to retrieve gaseous
pollutant concentration. The scattering and emission contribution to the radiance are considered in
Equation (1), especially for s medium wave infrared spectrum where the scattering contribution to the
radiance is as intense as the emission contribution. Due to the fact that the density of the atmosphere
varies with height, the precise spectral radiance in Equation (1) should be calculated by means of
integration. For simplification, the Curtis-Godson approximation [60,61] is adopted to divide the
inhomogeneous atmosphere into numbers of homogenous layers, enabling discrete calculation, i.e.,

τv(θv) =
L∏

i=1

τ′i(θv) (2)

Eg(θv,θs,ϕ) = εg·B(Tg) + ρg(θv,θs,ϕ)·

E0·

L∏
i=1

τ′i(θs) +
L∑

i=1

E−e−i(θs)

 (3)

Ep(θv,θs,ϕ) =
L∑

i=1

[
E+

s−i(θv,θs,ϕ) + E+
e−i(θv)

]
(4)

where L is the number of atmospheric layers; θv, θs, and φ are, respectively, the viewing zenith angle,
the solar zenith angle, and the scattering angle; εg and ρg denote the ground spectral emissivity and
reflectance respectively; B represents the Planck function; Tg is the ground temperature; E0 denotes the
solar spectral irradiance at top of atmosphere; the positive and negative symbols on the top right of
E represent upwelling and downwelling radiances, respectively; Es-i, Ee-i, and τ′i are the scattering
contribution to the radiance, the emission contribution to the radiance, and the total transmittance of
the ith atmospheric layer, defined as

Es−i(θv,θs,ϕ) = E0·ωi·Pi(ϕ)·[1− τi(θs)·τi(θv)]·
i−1∏
j=1

(
τ′ j(θs)·τ

′
j(θv)

)
(5)

E+
e−i(θv) = (1−ωi)·[1− τi(θv)]·B(Ti)·

i−1∏
j=1

τ′ j(θv) (6)

E−e−i(θs) = (1−ωi)·[1− τi(θs)]·B(Ti)·
L∏

j=i

τ′ j(θs) (7)

τ′i(θ) = τi(θ) + (1− τi(θ))·ωi·Pi(0) (8)

where ωi denotes the single scattering albedo; Pi(ϕ) is the phase function of the ith layer at the ϕ
direction, which characterize spatial distribution of the radiance scattered by atmosphere; Ti is the
temperature of the ith layer; τi represents the direct transmittance, calculated as

τi(θ) = exp(−li(θ)·ke−i) (9)

where li is the transfer path length in the ith layer with the zenith angle θ, while ke-i denotes the spectral
extinction coefficient of the ith layer.

The mathematical expressions of the total spectral radiance in Equation (1) indicate the impacts of
atmospheric conditions on the observed radiance. In the calculation, the atmospheric condition can be
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characterized via the vertical profiles of atmospheric temperature Ti, the spectral albedo ωi, the phase
function Pi, and the spectral extinction coefficient ke-i, in which ωi, Pi, and ke-i are directly related to
gaseous and aerosol constituents in the atmosphere.

Note that the spectral extinction coefficient ke is virtually the sum of scattering coefficient ks and
absorption coefficient ka, i.e., ke = ks + ka, while the spectral albedo can be defined as ωi = ks/ke. In
addition, the atmospheric scattering and absorption phenomenon can be caused by either gases or
aerosols, which will be introduced respectively in the following sections.

3.2. Impact of Gaseous Molecules

As the sizes of gaseous molecules are small in comparison to the wavelength of the visible and
infrared electromagnetic waves, the scattering coefficient and the phase function of the molecules can
be calculated according to the Rayleigh scattering theory [62], in which the scattering of the Earth
gaseous molecules has noticeable impacts on the visible and near infrared spectrum.

The absorption and the emission of molecules occur at specific frequencies with different intensity.
The spectral line parameters of different molecules can be found in a molecular spectroscopic database,
such as HITRAN [63], while the total absorption coefficient of the atmosphere can be obtained by
means of the line-by-line calculation [64], i.e.,

ka( f ) =
L∑

m=1

[
Nm·

Sm( fm)
π
·Fm( f , fm, ∆ fm)

]
(10)

where L is the total number of spectral lines; Nm denotes the number density of the absorbing molecule
for the mth spectral line, in units of molecules·cm−3; Sm represents the line intensity of the mth spectral
line, in units of Hz·molecule−1

·cm2; f, fm, and ∆fm are the variable frequency, the transition frequency
and the half-width of the mth spectral line, respectively; and Fm is the line shape function.

The line intensity, the transition frequency, and the half-width provided by the database should
be adjusted according to atmospheric pressure and temperature, as it was described in the appendix
of [64].

Since the mass density of each pollutant is generally used in the calculation of AQI, the number
density in Equation (10) can be calculated as

Nm = ρm·NA/Mm (11)

where ρm is the mass density of the absorbing molecule for the mth spectral line, in units of g·cm−3; NA
denote the Avogadro constant, in units of molecules·mol−1; Mm is the relative molecular mass, in units
of g·mol−1.

The vertical concentration profiles of all gaseous molecules should be assumed as known values in
the use of Equation (10). In our calculation, the vertical concentration distribution of gaseous molecules
in reference atmospheric models is adopted [65], while gaseous pollutant density is assumed to have
negligible impacts on the vertical concentration distribution. Then, the impacts of O3, CO, SO2, and
NO2 on the total spectral radiance can be analyzed respectively to understand their feature spectra.

3.3. Impact of Aerosol Particles

An aerosol actually indicates a group of suspended particles with various sizes. When the
aerosol particles are approximated as spheres with different equivalent radiuses, the scattering and the
absorption coefficients of the aerosol can be expressed in a discrete form as

ks(λ) = N·
∑

r
[σms(λ, r)·n(r)]·∆r (12)
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ka(λ) = N·
∑

r
[σma(λ, r)·n(r)]·∆r (13)

where λ denotes the wavelength; N is the total number density of aerosol particles; r represents particle
radius; σms and σma are respectively the scattering and the absorption cross sections calculated by the
Mie scattering theory [66]; n(r) represents size distribution function, which indicates the number of
particle per unit volume having a radius between r and r + ∆r.

Based on the available data on the nature of the aerosols, the size distribution function in
Equations (12) and (13) is generally set as one or the sum of two log-normal distributions in the
tropospheric aerosol models, including the rural aerosol model, urban aerosol model, and maritime
aerosol model. However, the size distribution of fog (another type of tropospheric aerosol model) is
described as a modified gamma size distribution. Size distribution parameters of all aerosol models
are empirical parameters obtained by measurements and curve fitting [67].

Note that the aerosol density is also depicted as the particle number per unit volume in atmospheric
radiance calculation, rather than the mass density in the AQI reports. Since the aerosol is a complex
mixture, there is no simple conversion between the aerosol number density and the aerosol mass
density. In addition, the size distribution, the refractivity, and the number density of the aerosol are
related to its constituent and air humidity, result in variable radiative transfer characteristics. For
simplicity, four types of tropospheric aerosol models are developed for reference, where the number
density of each aerosol type is listed for different humidity and visibility values [67].

Another challenge for the usages of Equations (12) and (13) is the acquisition of the total number
density. In engineering applications, the total number density is estimated by means of visibility to
characterize the impacts of aerosol on radiative transfer quantitatively. The visibility is defined as the
distance at which the target radiance decreases to 2% of the radiance at the observing position [68], i.e.,

V = 3.912/ks(λ0) (14)

where V is the visibility; λ0 denotes a specified wavelength where the molecular absorption is negligible,
such as 0.55 µm and 0.61 µm; and ks(λ0) is the scattering coefficient at wavelength λ0 calculated in
Equation (12).

Besides, the visibility in Equation (14) is generally used for estimating horizontal density of
aerosol particles, since the particle density is assumed invariant along the light of sight. Due to the fact
that atmospheric density decreases with altitude, the vertical density distribution of aerosol particles
should be specified for atmospheric radiance calculation. According to empirical models, the vertical
density distribution of aerosol particles can be expressed as [69]

N(z) = N(0) exp(−z/z0) (15)

where N(z) is the particles density at the height of z, while z0 denotes the vertical profile scaling
parameter, which is related to pressure and temperature profiles.

As can be seen, Equation (12) through Equation (15) can be used to characterize the spectral
distribution of particle density with the assumed aerosol type. However, except for the specified
band for estimating visibility, other spectral bands should be selected for earth observation sensors to
distinguish urban pollutants from natural suspended particles.
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4. Analysis on Optimal Band for Pollutant Detection

The calculation of the spectral radiance at the aperture of space-based Earth observation infrared
sensor is briefly introduced in Section 3. Then, the total radiant intensity received by one pixel in a
specific band can be represented in discrete form as [56]

Ib =
cosθv·∆A·∆Ωb

π
·

λ2∑
λ1

[
R(λ)·

(
Eg(λ)·τv(λ) + Ep(λ)

)]
·∆λ (16)

where Ib is the radiant intensity of the unpolluted area, defined as background; θv represents the
viewing zenith angle; ∆A denotes the area of the detector; λ1 and λ2 are respectively the cut-in and
cut-off wavelength of the band; R represents the spectral response function; ∆λ represents the spectral
resolution; ∆Ωb is the solid angle occupied by the background, which is equal to the IFOV of the
space-based sensor for pollutant detection.

Target pixels are defined as pixels in which the variance of the total radiance characterizes the
variance of the pollutant density in the corresponding IFOVs. Considering the possibility that the
pollutants may occupy only a part of the IFOV, the radiant intensity of the pollutant area It can be
written as

It =
cosθv·∆A·∆Ωt

π
·

λ2∑
λ1

[
R(λ)·

(
Eg(λ)·τ

′
v(λ) + E′p(λ)

)]
·∆λ (17)

where τ′v is the spectral transmittance of the viewing path through the polluted atmosphere; E′p
represent the spectral radiance of the polluted atmosphere; ∆Ωt denotes the solid angles occupied by
the polluted atmosphere, which is related to the pollution area and the observing distance.

Then, the radiant intensity of an arbitrary target pixel Im can be calculated as

Im = Ib +
cosθv·∆A·∆Ωt

π
·

λ2∑
λ1

[
R(λ)·

(
Eg(λ)·(τ

′
v(λ) − τv(λ)) +

(
E′p(λ) − Ep(λ)

))]
·∆λ (18)

It should be noticed that the parameters in the square brackets are related to the adopted spectral
band, indicating the existence of optimal bands for urban pollutant detection. For quantitative analysis,
contrast and signal-to-noise ratio (SNR) are selected as two criteria to evaluate detection performance
of different bands.

4.1. Contrast Analysis

The contrast of the target pixel to the background pixels can be defined as

C =
Im − Ib

Ib
=

∆Ωt

∆Ωb
·

λ2∑
λ1

[
R(λ)·

(
Eg(λ)·(τ′v(λ) − τv(λ)) +

(
E′p(λ) − Ep(λ)

))]
λ2∑
λ1

[
R(λ)·

(
Eg(λ)·τv(λ) + Ep(λ)

)] (19)

The band achieving the highest contrast is considered as the optimal band. The contrast is related
to the two ratio terms on the right hand side of Equation (19). The first ratio term illustrates that the
larger the pollution area, the easier the pixel can be detected. The second ratio term characterizes
the impact caused by atmospheric condition variance. For absorption bands where the spectral
transmittance is close to zero, since the ground radiance is negligible, the optimal band is expected
to be sensitive to the variance of path radiance characterizing different pollutant density. For other
bands, as the ground radiance should be considered, the contrast in a specified band can be different
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for various ground types. In this case, the average contrast of different ground types in one specific
band is selected as a compromise, i.e.,

C =
1
n

n∑
k=1

Ck (20)

where C is the average contrast in one specific band, while Ck is the contrast assuming kth ground type
calculated in Equation (19).

Although the shape of the spectral response function R is diverse, the spectral response function
can generally be characterized by center wavelength and bandwidth. In this way, for an arbitrary
pollutant, the contrast defined in Equations (19) and (20) can be represented as a two-dimensional
matrix varying with the central wavelength and the bandwidth, given as

C =


C11 . . . C1N

...
. . .

...
CM1 . . . CMN


M×N

(21)

where C denotes the contrast matrix; M and N are respectively the number of central wavelength and
bandwidths.

As the bands with higher contrast are expected to achieve better detection performance, the
optimal band selection can be implemented via searching the maximum in the contrast matrix C. Note
that the optimal band is selected via analyzing the variance of the total radiance rather than retrieving
either the ground radiance or the atmospheric radiance.

4.2. Signal-to-Noise Ratio

According to the discussion in Section 3.1, absorption bands can be used to detect atmospheric
pollution. However, as the total radiance at the sensor aperture is relatively weak in the absorption
bands, signal-to-noise-ratio (SNR) should be considered to select available bands. The SNR can be
defined as

SNR =

λ2∑
λ1

[
R(λ)·

(
Eg(λ)·τv(λ) + Ep(λ)

)]
λ2∑
λ1

[R(λ)·φtot(λ)]

(22)

where φtot is the noise equivalent spectral irradiance.
Similar to Equation (20), since the SNR in Equation (22) is also related to the ground type, the

minimal SNR for various ground type is expected to surpass a SNR threshold for reliable detection,
expressed as

min{SNRk} > γ (23)

where γ is the SNR threshold, which set as 6 for detection while 30 for discrimination [47].
In addition, similar to Equation (21), SNRs in various bands are calculated to form a

two-dimensional matrix varying with the central wavelength and the bandwidth, which can be
used to identify the bands with reliable detectability.

5. Results and Discussion

Regarding the six types of pollutants in the AQI, optimal band analysis is implemented in
this section. The pollutants are classified as the gaseous molecules and the aerosol particles to
facilitate discussion.
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5.1. Gaseous Pollutants

The essential parameters for optimal band selection are listed in Table 2, where atmospheric
conditions for unpolluted air and observation geometry are arbitrarily specified for optimal band
analysis. As the spectral lines of the gaseous pollutants are located at different spectral region [63], the
spectral range of the central wavelength is set respectively for each pollutant. The simulation results of
CO, SO2, NO2 and O3 are analyzed and discussed in this section.

Table 2. Clear atmosphere condition and observation geometry for optimal band selection.

Description Value

Atmosphere

Atmospheric model Mid-latitude summer
Boundary Aerosol Type Rural

Relative humidity 90%
Visibility 23 km

Temperature of surface 290 K

Geometry

Solar zenith angle 30◦

Viewing zenith angle 0.1◦

Relative azimuth angle 50◦

Height of surface 0.001 km
Height of sensor 705 km

Band selection

Central wavelength of
spectral filter

CO [38] 2.0–5.0 µm in step of 1 nm
SO2 [36] 7.0–10.0 µm in step of 1 nm
NO2 [70] 6.0–7.0 µm in step of 1 nm
O3 [71] 9.0–10.0 µm in step of 1 nm

Shape of spectral filter Blackman Window
Bandwidth of spectral filter 0.01–0.2 µm in step of 1 nm

SNR Threshold (γ) 6

5.1.1. Carbon Monoxide (CO)

The CO density measured as the average per one hour is set as 5 mg·m−3, which is the boundary
between excellent and good in the AQI of mainland China. In contrast, the CO density is about
0.17–0.2 mg·m−3 in the reference atmospheric models [65]. With the spectral reflectivity and emissivity
of the land cover named urban and built-up [72], the spectral radiance curves of the unpolluted and
the polluted atmosphere are calculated at 1 nm resolution in a spectrum spanning from 0.4 to 14 µm,
as shown in Figure 2.

As it can be seen in Figure 2, molecular absorption occurs at a few specific bands, leading to the
lower transmittance and the less intense total radiance, which can be used to identify the molecular
species and retrieve density. Since these spectral characteristics distribute in a relatively narrow spectral
range, the contrast can be analyzed in a narrower spectrum for efficiency.

With the assumption that the pollution covers an entire IFOV, the contrast and the SNR matrices
are calculated for various bands in spectrum from 2.0 to 5.0 µm, as shown in Figure 3.
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Figure 2. Spectral radiance at sensor aperture through unpolluted and CO contaminated atmospheres.
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Figure 3. Performance of various bands for CO detection (density of 5 mg·m−3).

As it has been discussed in Section 4.2, the SNRs in Figure 3b are calculated using the unpolluted
atmospheric condition. The bands whose corresponding SNRs are lower than the threshold are
excluded directly in the optimal band selection. Besides, Figure 3 shows that the bands with higher
contrasts may not obtain higher SNR.

The maximal contrast in Figure 3a is about 0.486, which is calculated at the central wavelength of
4.606 µm and the bandwidth of 0.01 µm. To figure out the effect of bandwidth on detection performance,
the contrast curve calculated with the central wavelength of 4.606 µm and different bandwidths is
given in Figure 4a, while Figure 4b is the spectral radiance around a wavelength of 4.606 µm.Atmosphere 2019, 10, x FOR PEER REVIEW 12 of 21 
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Figure 4. Impacts of bandwidth on CO detection and explanation.

Molecular absorption and emission occur at specific wavelength point characterized as spectral
lines with extreme narrow width. However, due to molecular vibration and thermodynamic collision,
the width of the spectral lines is broadened, resulting in a structure of the vibrational band of CO in
the spectral radiance curves, as shown in Figure 2. When the central wavelength and the shape of
the spectral filter are specified, the function of the spectral filter can be approximated as calculating
the average difference in the specified band. As the widths of the spectral lines are generally much
narrower than the bandwidth, a number of peaks and valleys are included in the calculation, leading
to the fluctuation in Figure 4a.

In addition, because of the vibration phenomenon in Figure 4b, a narrower band is expected to
achieve higher contrast, while the central wavelength of the optimal band is related to the available
minimal bandwidth set in Table 2. For example, regarding the spectral radiance curves in Figure 2,
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when the minimal bandwidth is set as 0, 0.02, and 0.10 µm, the optimal bands are, respectively,
4.601–4.611 µm, 4.600–4.620 µm, and 4.545–4.645 µm. The corresponding contrasts are 0.486, 0.445,
and 0.3749. The results are consistent with the band adopted in [38], where the band for CO detection
is centered at 4.60 µm with about 0.12 µm bandwidth (4.545–4.665 µm).

5.1.2. Sulfur Dioxide (SO2)

Similar to the discussion about the optimal band for CO detection, the SO2 boundary density
between excellent and good in the AQI of mainland China is selected as an example, which is 150µg·m−3

measured as average per one hour. In contrast, the performance of the bands in Table 2 is also analyzed
for the SO2 density of 50 µg·m−3 (excellent), 250 µg·m−3 (good) and 500 µg·m−3 (lightly polluted) to
illustrate the effects of pollutant density. The results are shown in Figure 5, where the contrast is
assigned as zero when the SNR of the corresponding band is lower than the threshold.Atmosphere 2019, 10, x FOR PEER REVIEW 13 of 21 
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Figure 5. Performance of various bands for SO2 detection in different densities.

As another type of gaseous pollutant, the procedure of optimal band analysis for SO2 is almost the
same with CO. Figure 5 shows that the central wavelength of the optimal band locates at 7.2–7.5 µm.
When the available minimal bandwidth is set as 0.01 µm, the optimal bands are the same for the
two given densities, which locates at the central wavelength of 7.436 µm with the bandwidth of
0.011 µm. Although the exact same optimal band for different densities can be coincident, it indicates
that the contrasts in different bands are close to each other in a small range of central wavelengths and
bandwidths. For instance, in Figure 5b, the contrast in the bands 7.431–7.441 µm and 7.431–7.442 µm
are, respectively, 0.0505 and 0.0508, which have negligible difference for detection. In comparison, a
wider band was used to detect SO2 plume from Mt. Etna volcano in [36], where the band was located
at 1285–1345 cm−1 (around 7.435–7.782 µm).
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Note that detection of SO2 is more challenging than CO since the contrasts in Figure 6 is much
lower than Figure 5, while the proposed procedure can potentially be used for regions with relatively
low concentrations of pollutants (the corresponding AQI in Figure 5a is lower than 20).
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Figure 6. Performance of various bands for NO2 detection with different polluted areas (density of
100 µg·m−3).

5.1.3. Nitrogen Dioxide (NO2)

The density boundary of excellent and good AQI for NO2 is 100 µg·m−3 measured as average per
one hour, in contrast with 0.04–0.05 µg·m−3 in the reference atmospheric models. The contrast matrices
of different pollution areas are calculated and given in Figure 6.

As can be seen in Equation (19) (similar to the Equation (13) in [56]), the contrast depends on two
ratios, i.e., the ratio of solid angles and the ratio of radiances. The solid angle ∆Ωt is related to the
pollution area, whereas the spectral radiances Eg, Ep and E′p indicate radiation flux in unit area at
specific wavelength (in unit of W·m−2

·µm−1). Consequently, the pollution area has noticeable impacts
on the contrast value, whereas it has no effect on the optimal center wavelength or bandwidth. As
can be seen in Figure 6, the patterns of Figure 6a,b show no obvious difference. Although it is easy to
identify different spectral radiance curves in Figure 6c, the contrast for pollution covering entire FOV
is twice of the contrast for pollution covering half FOV.

Regarding the specified conditions, the optimal band for NO2 detection locates at the wavelength
of 6.112 µm with the bandwidth of 0.013 µm. The result is similar to the band for NO2 measurement
in [70], which centered at 1632.1 cm−1 with 1 cm−1 bandwidth (6.125–6.129 µm).

The relationship between the available minimal bandwidth and the selected optimal band has
been discussed thoroughly in Sections 5.1.1 and 5.1.2.
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5.1.4. Ozone (O3)

The vertical density distribution of O3 is different than the three above-mentioned gaseous
pollutants. As can be seen in Figure 7, the maximum of O3 density in each reference atmospheric
model appears around the height of 20 km, whereas the density of CO decreases with height [65].
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The O3 density is set as 160 µg·m−3 at the ground, in contrast with a maximal density of
50–60 µg·m−3 in the six types of reference models. The performance of various bands for O3 detection
is given in Figure 8, where Figure 8a is the contrast matrix while Figure 8b is the spectral radiance
difference between the polluted and unpolluted atmospheric conditions.

As can be seen Figure 8b, the spectral radiance difference between the O3 contaminated atmosphere
and the unpolluted atmosphere can be either positive or negative in the given spectrum. This
phenomenon is related to many influencing factors, including ozone concentration, ground emissivity
and temperature, and temperature gradients between the stratospheric ozone layer and tropopause.
When the ozone concentration increases, the atmospheric radiance becomes more intense while
the ground radiance is weaker. As the total spectral radiance varies nonlinearly with the ozone
concentration, both positive and negative values can be seen in the difference.
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Figure 8. Performance of various bands for O3 detection.

As the spectral filtering actually calculates the average difference in the specific bands, the optimal
band can be selected via accumulating either positive or negative values of the radiance difference.
Regarding the specified conditions, the optimal band for O3 detection locates at the wavelength
of 9.967 µm with the bandwidth of 0.010 µm. The optimal band is still related to the available
minimal bandwidth. When the available minimal bandwidth is set as 1.084 µm, the optimal band
is 9.289–10.369 µm with a maximal contrast of 0.1205. A similar spectral band was used in [71],
where the spectral range for retrieval ozone concentration is 970 cm−1 through 1084 cm−1 (around
9.225–10.309 µm with contrast about 0.1169).

According to the results and discussions in Section 5.1, gaseous pollutants can be detected using
the bands affected by molecular absorption phenomenon, where variance of total radiance at sensor
aperture is identified for pollutant detection. Although the optimal band of each gaseous pollutant is
related to available minimal band and pollutant density, the bands at the nearby central wavelength
with similar bandwidth can achieve equivalent detection performance, since the contrast difference is
negligible. Besides, detection performance can probably be improved using a narrower bandwidth.

It should be noted that the SNR threshold is set to exclude low SNR bands before the implementation
of optimal band selection. This step ensures that the selected bands can measure data in unpolluted
regions. The impacts of SNR will be discussed in more detail in the following section.

5.2. Aerosol Particles

The aerosol density is generally measured using bands without absorption effect, such as 0.55
and 0.6 µm. However, it is difficult to identify the type of aerosol for pollutant detection. With the
assumption that the aerosol density can be retrieved by means of visibility estimation, the possibility
of aerosol type identification is discussed in this section.

The spectral radiance of rural aerosol with 12 km visibility is calculated in comparison with the
spectral radiance of urban aerosol with the same visibility and ground cover. Since aerosol scattering
phenomenon is noticeable in visible and short-wave infrared, the spectral radiance curves from 0.4 to
2.5 µm with the ground cover of urban and built-up [72] are calculated and plotted in Figure 9.
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Figure 9. Spectral radiance at sensor aperture through different types of aerosol with same visibility.

As can be seen in Figure 9, the total radiance through urban aerosol is weaker than rural aerosol
in most bands, since the ground reflection is more intense than atmospheric scattering contribution to
the radiance in this spectral range, where the impact of illuminating geometry on the total radiance
is noticeable.

With the assumption that the aerosol pollutant covers an entire IFOV, the contrast and the SNR
matrices are calculated for various bands in spectrum from 0.5 to 2.0 µm, as shown in Figure 10.
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Figure 10. Performance of various bands for aerosol type discrimination (visibility of 12 km).

As can be seen in Figure 10a, the bands located around 1.4 and 1.8 µm seem to achieve better
performance. However, either the spectral radiance in Figure 9a or the radiance difference in Figure 9b
is extremely low in these spectral regions. The major reason for this difference is the lack of spectral
contrast between surface and aerosol in urban areas for these bands. In this situation, the SNR of these
bands should be considered to distinguish available detection bands, as shown in Figure 10b.

For reliable discrimination, the SNR threshold is set as 30 for optimal band selection while another
set of geometry parameters are selected, i.e., solar zenith angle (RZA) of 50◦, viewing zenith angle
(VZA) of 30◦, and relative azimuth angle (RAA) of 120◦. The analyzing results are given in Figure 11.
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The patterns of the two figures show similar characteristics in Figure 11. As has been discussed in
Section 5.1, the optimal band is selected via maximizing the difference of the total radiance through
urban aerosol to the total radiance through rural aerosol. For Figure 11a,b, the optimal bands are,
respectively, 0.773–0.783 µm and 0.772–0.782 µm in comparison to 0.743–0.753 µm band used in the
MODIS for retrieving aerosol properties. It still should be noticed that the nearby bands have similar
performance for distinguishing aerosol types.

The discussion in this section demonstrates the importance of considering SNR in optimal band
selection. As shown in Figure 11, some spectral bands can achieve high contrasts with extremely low
SNRs, implying that the bands can measure nothing but noise in unpolluted regions. Consequently,
the proposed procedure can potentially be applied to select remote sensing bands in regions with
relatively low pollutant concentrations.

6. Conclusions

We propose a band selection procedure of space-based infrared sensors for urban air pollutant
detection, which is based on contrast and SNR analyses. The fundamental model of atmospheric
radiative transfer calculation is reviewed to clarify the theoretical relevance between the total radiance
at the aperture of the space-based infrared sensor and the pollutant density. Instead of selecting
bands for retrieving the atmospheric radiance from the total radiance, the contrast of the polluted area
to the unpolluted area is calculated in various bands to characterize the sensitivity of the bands to
the variance of the pollutant density. Then, with the consideration of the SNR threshold, the band
achieving the maximal contrast is selected as the optimum.

To demonstrate the usefulness of the proposed procedure, the optimal bands are analyzed
respectively for detecting four types of gaseous pollutants and discriminating aerosol particle pollution
in the AQI estimation. As can be seen in the results, for gaseous pollutants including CO, SO2, NO2,
and O3, the radiance variance can be observed in a relatively narrow spectral range, in which a
narrower band tends to achieve better performance. Due to the fact that the peaks and valleys in total
radiance curves are caused by molecular vibration and collision, the optimal band is actually related to
different factors including available minimal bandwidth, ground cover characteristics, and pollutant
density. However, the bands located near the central wavelength of the optimum with a slight different
bandwidth can achieve similar performance for pollutant detection. As a reference, with the limit
of 0.01 µm available minimal bandwidth, the optimal bands for CO, SO2, NO2, and O3 are around
4.601–4.611 µm, 7.431–7.442 µm, 6.106–6.119 µm, and 9.962–9.972 µm, respectively.

Besides, the possible band for discriminating different types of aerosol is analyzed under the
same visibility with the consideration of impacts of geometry difference. The impacts of available
minimal bandwidth and ground cover characteristics are similar to those in gaseous pollutant detection,
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whereas for some bands achieving higher contrasts, the corresponding SNRs are too low for reliable
detection. With a specified SNR threshold, the optimal band is analyzed for distinguishing the urban
aerosol from the rural aerosol, which is around 0.773–0.783 µm.

The physics-based analysis procedure can be used in space-based infrared sensor design, especially
for acquiring available data in regions with relatively low pollutant concentrations. The procedure can
also be used to retrieve pollutant concentrations in future studies.
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