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Abstract: The scaling properties of turbulent flows are well established in the inertial sub-range.
However, those of the synoptic-scale motions are less known, also because of the difficult analysis
of data presenting nonstationary and periodic features. Extensive analysis of experimental wind
speed data, collected at the Mauna Loa Observatory of Hawaii, is performed using different methods.
Empirical Mode Decomposition, interoccurrence times statistics, and arbitrary-order Hilbert spectral
analysis allow to eliminate effects of large-scale modulations, and provide scaling properties of
the field fluctuations (Hurst exponent, interoccurrence distribution, and intermittency correction).
The obtained results suggest that the mesoscale wind dynamics owns features which are typical of the
inertial sub-range turbulence, thus extending the validity of the turbulent cascade phenomenology to
scales larger than observed before.

Keywords: scaling laws; nonlinear dynamics; Hurst exponent; turbulence spectra; turbulent
boundary layer

1. Introduction

The atmospheric boundary layer (ABL), the lowest layer of the Earth’s atmosphere varies in
thickness, particularly over land, from d ≈ 100 m during the night to d ≈ 2000–3000 m or even
more during the day. As the ABL is in contact with the Earth’s surface it effectively connects the
surface to the rest of the atmosphere and is dynamics are fundamental in the transport and exchange
of moisture, heat and momentum with the underlying surface [1,2]. Clearly, the topography of the
Earth’s surface also plays an important role in the way in which the ABL interacts with the free
troposphere. Within the ABL physical quantities such as flow velocity, temperature, moisture, density
stratification (ABL stability), etc. are characterized by rapid or large amplitude turbulent fluctuations,
and vertical mixing is strong. Moreover, numerical studies have shown that in case of strongly stratified
flows a sort of intermittency can be found at large scales in a range of the Froude numbers between
Fr ≈ 0.05, 0.3 [3,4].
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Investigation of the internal dynamical structure of wind speed time series gives insights into
the time scales over which turbulent transport occurs. Several studies have been conducted over the
past decades to characterize the ABL wind fields in the inertial sub-range (tenths of a second to tens of
minutes) [5], however, unlike inertial sub-range turbulence, few works have been devoted to the study
of mesoscale range (sub-hourly to sub-daily time scales) [6–11].

These studies provide hints for the existence of intermittency in wind fluctuations at large
scales. However, the unambiguous identification of multi-scaling properties of mesoscale wind
data is hampered by a number of factors, either singly or combination, such as, diurnal oscillations,
the discreteness of the data, the limited size of the scaling range. Therefore, from a purely statistical
standpoint, the identification of mesoscale scaling properties in wind speed data is less than reliable.
McCombs [12,13], has recently recommended a cautious approach to the definition of anomalous
exponents of the structure functions describing the statistical properties of mesoscale turbulence,
because it has been shown that large scale [14,15] or periodic forcing [16] may affect the scaling
properties of the field increments over two orders of magnitude.

The Mauna Loa Observatory (MLO) on Hawaii’s Big Island provides a unique orographic and
geographical setting for the study of the scaling properties of wind fields. The site is influenced by the
trade winds and the trade wind inversion at the synoptic scale, while local up-slope and down-slope
winds caused by solar heating and radiative cooling of the dark exposed slopes of the volcano, the so
called radiation wind, often predominates. The flow of free tropospheric air around the barrier of the
two volcanic peaks, Mauna Loa and Mauna Kea, is referred to as the barrier wind. The MLO has been
continuously monitoring atmospheric composition and meteorological parameters for over 50 years.
In order to ensure that measurements are “baseline”, that is uninfluenced by local sources, wind fields
around the MLO have been studied in great detail [17–20].

The study of turbulence at the mesoscale is relevant to numerous industrial, technological, and
environmental applications, and an extensive understanding of the statistical properties of boundary
layer turbulence under realistic conditions is essential. For example, it is of interest for stack gas
dispersion, evapotranspiration, pollutants and pollen transport, wind energy generation, and other
natural processes, as well as for the understanding of basic physical mechanisms. For this reason, it is
crucial to investigate the internal dynamical structure of wind speed time series.

The standard description of the statistical properties of homogeneous and isotropic turbulence is
in terms of the anomalous scaling of the structure functions of the field increments, Sn ∝ `ζ(q), where
ζ(q) is related to the Hurst exponentH [10,21–23]. Despite the possible anisotropy of the flow, studies
of the convective ABL seem to indicate a sort of recovery of isotropic behavior at smaller scales [24,25].
Large eddy simulations have shown that this tendency seems to be a “genuine feature” in the inertial
sub-range for both passive scalar fields and flow velocity, and due neither to sub-grid scale nor to
finite size effects [26]. These results seems to indicate that the statistical behavior of the ABL can be
described by the same set of (isotropic) scaling exponents and multifractal parameterization even for
flows characterized by different degreess of convection [24,26–29].

On the other hand, it has been shown that large scale [14,15] or periodic forcing [16] may affect
the scaling properties of the field increments, over two orders of magnitude, hence the necessity for
caution in the definition of anomalous exponents [12,13], as mentioned earlier.

Here, the scale-dependent features of the wind speed have been using different methods, and the
results compared with the classical values found in the literature. Initially, the Hurst exponentH has
been evaluated by using Empirical Mode Decomposition (EMD) [30–32], and interoccurrence times
(IOT) statistics [33–36]. The value obtained is in good agreement with the classical estimation of H
obtained via the first order structure function for the inertial sub-range [35,37], without the necessity
of employing the extended self-similarity (ESS) procedure [38].

Finally, the arbitrary-order Hilbert spectral analysis (HSA) [15,16,39] was applied to identify the
scaling of higher order moments, by minimizing all the effects of non-stationarity and large-scale
periodic cycles embedded in the data set.
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2. Analysis of Mesoscale Wind Velocity Data

The data used in this work have been collected at the Mauna Loa Observatory, Hawaii (MLO,
19◦ N, 155◦ W, 3397 m above sea level). Before performing the analysis, the standard normalization
procedure, was applied to the data (by subtracting the mean value of the data and dividing by
the standard deviation) in order to obtain a zero mean and unit variance data set. MLO is best
known for its long-term monitoring of greenhouse gases and the long range transport and chemical
oxidation of other gaseous and pollutants species in the free troposphere (FT). The MLO is located
on the northern slope of the Mauna Loa volcano and is mainly subject to two wind components:
up-slope (radiative heating) and down-slope (cooling) radiation winds, characterized by a 24-h cycle.
The second component, also known as barrier wind, is characterized by the interaction of FT flow with
the island itself. The characteristics of the boundary layer and surface winds at the MLO have been
studied intensively, mostly due to the necessity to determine the baseline conditions for atmospheric
composition studies [19,40]. During day time, the MLO typically measures air masses coming from the
the Marine Boundary Layer (MBL), while during the night time it measures air masses coming from
the FT [19]. An exhaustive discussion of the wind velocity data acquisition process and instrumental
description can be found in [41].

The complete time series analyzed in this work covers the time period between 1 January 2003
and 31 December 2017, with temporal resolution ∆t = 60 s, and with measurements recorded at 10 m
and 38 m above ground level (AGL).

For this study, the data set was divided into 24 sub-intervals, each of the same duration,
WL ≈ 90 days (WL ≈ 8 × 106 s), in order to avoid possible seasonal effects [42,43]. Figure 1
shows three samples of wind speed for three different sub-intervals.
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Figure 1. Three 90-day snapshots of wind speed u(t) time series relative to January–March
2010 (left panel), July–September 2012 (central panel), and October–December 2013 (right panel),
respectively.

The autocorrelation function C(`) ≡ 〈u(t)u(t + `)〉 (where ` is a variable temporal lag) estimated
for each 90-day interval, and shown in Figure 2 (left panel), provides a typical large eddy-turnover
time t0 ≈ 1 day, exposing the strong influence of the up-slope/down-slope (daily) cycle on signal
correlation. This cycle is a low-level thermodynamic response to the radiative heating cycle [44].
During the day, solar heating over land surface increases the lower-tropospheric temperature (and
moisture) and hence instability, leading to development of convective effects in the mixed boundary
layer. As a result the variations in mixing ratios in the frontal mixing zone are governed by turbulence.
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Figure 2. Left panel: autocorrelation function C(`) obtained for multiple data sets (full lines).
All samples exhibit a correlation time t0 ≈ 1 day (large eddy turnover, vertical dashed line). Right
panel: evolution of the scale dependent local kurtosis K(Tw)) measured for three samples: April–June
2010, October–December 2011, July–September 2012, and January-March 2013, respectively. All samples
become Gaussian (horizontal dashed line K(Tw) = 3) for an average window length Tw ≈ 1 day
(vertical dotted line).

Information about t0 can be extracted from the analysis of the scale dependent local kurtosis,
by dividing the sample into smaller windows of length Tw < WL (n points), and then selecting the
optimal block width Tw for which the average kurtosis K(Tw) over all windows is the closest to that
of the normal probability density function (PDF), i.e., K(Tw) = 3 (Figure 2, right panel). The biased
moment estimator for kurtosis can be defined as [45–47]:

K(Tw) =
〈m4〉Tw

〈m2
2〉Tw

=
1
n ∑n

i=1(ui(t)− ū)4[
1
n ∑n

i=1(ui(t)− ū)2
]2 . (1)

For shorter time windows, Tw < 0.01 days (roughly 15 min), a value close to K(Tw) = 1.2 has
been found, since for short time periods the value of u(t) is almost constant, characterized by less
pronounced tails, with respect to a normal distribution. On the other hand, K(Tw ≡ WL) > 3 coincides
with the kurtosis of the whole data set u(t). Finally, for an average window length Tw ≈ 1 day,
K(Tw) = 3 was found, the effects of mixing act on timescales shorter than 1 day, and at this scale the
system completely loses all correlations and become Gaussian. This temporal scale could represent the
upper limit of the range where scaling behavior holds.

3. Structure Function Analysis and Hurst Exponent Estimation for Mesoscale Wind Speed

The structure function analysis (SF) is the principal method used to extract the scaling properties
of a physical phenomenon [48]:

Sn(`) ≡ 〈|δun|〉 = 〈|u(t + `)− u(t)|n〉 ∝ `ζ(n), (2)

The relation between ζ(n) and the Hurst exponent H is well known: in classical Kolmogorov
theory, in the absence of intermittent corrections, ζ(n) = nH. The scaling exponent S1, therefore,
coincides with the Hurst exponent itself, ζ(1) = H, while the scaling exponent, S2, is directly linked to
the power spectral density (PSD) as ζ(2) = β− 1 (β is the power-law exponent of the power spectrum).

H is a measure of the long-term memory of a time series. This represents a key parameter useful
in order to classify the time series in terms of whether it is a random, a persistent, or an anti-persistent
process. In other words, it is a description of how the “past” increments have on “future” ones.
Values in the rangeH ∈ (0.5, 1] indicate a persistent (correlated) process, while valuesH ∈ [0, 0.5) are
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associated with anti-persistent (anti-correlated) processes. H = 0.5 indicates a completely uncorrelated
process (e.g., a random walk). H is an important parameter in the description of fluid turbulence since
it is related to the auto-correlation function of the velocity time series: the rate at which C(`) decreases
with lag `. Moreover, for self-similar (monofractal) processes,H is directly related to fractal dimension,
D, by the relation: D = [d + 1]−H, where 1 ≤ d ≤ 3 [49]. WhenH 6= 0, the average fluctuations δu
exhibit a scale dependence.

Figure 3 (left-hand panel) shows the results from the SF analysis obtained from the sample
April–June 2011. A power-law range `ζ(n) can be identified over a range of scales ` ∈ [0.02, 0.55] days,
characterized by an exponent ζ(1) ≡ H ≈ 0.21± 0.01 (χ2 ≈ 0.98, Figure 3, central panel).
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Figure 3. Left panel: Scaling of the structure functions Sn (n = 1→ 4) for sample May–August 2011.
Central panel: power-law fit of the first two order structure function; dashed lines represent the
theoretical scaling obtained via least squares fit, S1 ∼ `0.21±0.01 and S2 ∼ `0.38±0.01, respectively. Right
panel: comparison of scaling exponents ζ(n) for orders n = 1→ 4 (circles) for all samples, with respect
to other experimental values reported in the literature [10,23,35,38].

This result clearly differs from other experimental estimates [37,50], where ζ(1) ≡ H ≈ 0.37.
The last panel of Figure 3 shows the comparison among the exponents ζ(n) for MLO and other
experimental estimates taken from literature [10,23,38]. The discrepancy in the exponents becomes
more and more marked as the moments n increase, and it can be observed for all intervals (Figure 3,
last panel). The averaged scaling exponents, and their standard deviations, are: 〈ζ(1)〉 ≈ 0.24± 0.01,
〈ζ(2)〉 ≈ 0.46± 0.02, 〈ζ(3)〉 ≈ 0.64± 0.04, 〈ζ(4)〉 ≈ 0.80± 0.06.

The dashed line in the last panel of Figure 3 represents a linear dependence of the scaling
exponents on the order n of the form ζ(n) = nH, withH = 1/3. This relation is relative to the classical
Kolmogorov K41 prediction n/3 [48], and is reported only here as a reference.

4. Hurst Exponent Estimation from the Empirical Mode Decomposition

Alternatively, H can be obtained using Empirical Mode Decomposition (EMD) [30]. EMD was
developed to process and analyze the evolution of non-stationary data in order to obtain a set of
basis functions derived (empirically) from the signal itself [51–59]. Since EMD analysis is adaptive
(in contrast to traditional Fourier decomposition methods where the basis functions are fixed) and
not restricted to stationary data [30,60], the data set may be analyzed without introducing spurious
harmonics or artefacts near sharp data transitions, which could appear when using classical Fourier
filtering or high-order moments analysis. Indeed, EMD allows local information to be extracted through
the instantaneous frequencies which cannot be captured by fixed-frequency methods (such as Fourier
or Wavelets). The main consequence is that the frequency is not widely spread (as for Wavelets), with a
much better frequency definition and smaller amplitude variation induced frequency modulation [30,61].
Within EMD framework, the data are decomposed into a finite number k (approximately k ≤ log2(N)

modes where N is the number of data sample) of elementary oscillating basis functions φj(t), known as
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intrinsic mode functions (IMFs), characterized by an increasing time scale τ and a residual rk(t), which
describes the mean trend, if one exists, given by

u(t) =
k

∑
j=1

φj(t) + rk(t) . (3)

The decomposition includes two stages: first, the local extrema of u(t) are identified and
subsequently connected through cubic spline interpolation. Once connected, the envelopes of local
maxima and minima are obtained. Second, the mean m1(t) is calculated between the two envelope
functions, then subtracted from the original data, h1(t) = np(t)−m1(t). The difference h1(t) is an IMF
only if it satisfies the following criteria: (i) the number of local extrema and zero-crossings does not
differ by more than 1, and (ii) at any point t, the mean value of the extrema envelopes (emax(t) and
emin(t)) is zero. When h1(t) does not meet the criteria above, the sifting procedure is repeated using
h1(t) as the new raw data series, and h11(t) = h1(t)−m11(t) is generated, where m11(t) is the mean
of the envelopes. The sifting procedure is repeated m times until h1m(t) satisfies the criteria above.
A general rule to stop the sifting is introduced by using a standard deviation σ, evaluated from two
consecutive steps:

σ =
N

∑
n=0

|h1(m−1)(tn)− h1m(tn)|2

h2
1(m−1)(tn)

. (4)

The iterative process stops when σ is smaller than a threshold value typically of the order of
σthresh ≈ 0.2, 0.3 [30,62]. Another widely used criterion is based on 3 thresholds α, θ1 and θ2, in order to
guarantee globally small fluctuations in the mean while taking into account locally large variations [63].
The sifting procedure is iterated until the parameter σ(t) ≡ |m(t)/a(t)| < θ1 (a(t) = [emax(t)− emin(t)]/2)
represents the mode amplitude) for a prescribed fraction of the total duration (1− α), and σ(t) < θ2 for
the remaining fraction. The values for the three parameters used in this work are: α = 0.05, θ1 = 0.05,
and θ2 = 10θ1, in accordance with their typical values [63]. The IMFs obtained from the decomposition of
the sample April–June 2011 are reported in Figure 4.

When the decomposition is applied on dataset possessing certain feature, such as noise time
series, fractional Gaussian noise, turbulent time series, fractal time series, random walks, EMD
acts intrinsically as a dyadic filter bank [31,64–66]. Each IMF captures a narrow spectral band in
frequency space [15,16,39,67] and their superposition behaves as M(ω) ≡ Max[φj(ω)] ∼ ω−β, where
β ≈ 1.62± 0.04 (Figure 4). By comparison with the Fourier PSD, each IMF can be interpreted according
to its characteristic time scale. In particular, as visible in Figure 4, IMFs φj|j ∈ [5, 12] capture a
power-law dynamic, which seems to mimic a turbulent cascade in a fashion similar to the inertial
sub-range [21,48], which develops over different time scales (roughly from tens of minutes up to 1 day).

Ideally, the ABL above MLO would be stratified, characterized by 4 principal zones: sub-cloud,
fog (cloud), transitional (inversion), and free atmosphere [68]. Experimental observations [69] and
numerical studies have shown that ABL at MLO can present both stable (during nighttime, with
Richardson number Rig < 0.2) and unstable (during daytime, Rig > 0.2) conditions [70], and in
case of strongly stratified (very stable) conditions (nighttime) ABL can be catheterized by a refractive
index structure parameter of the order of C2

n < 10−14 [70]. However, on the mesoscale, due to the
continuous thermal forcing from the surface (shallow convection), the influence of the descending
limb of the Hadley cell, which leads to the formation of the trade wind inversion, and the interplay
between synoptic-scale (North Pacific anticyclone) and mesoscale (thermal up-slope/down-slope
winds) circulation systems, the heights and strengths of these atmospheric layers, are subject to strong
fluctuations, which may leads to continuous mixing [68,70]. A possible explanation for the power-law
behavior in the PSD (Figure 4) is that during this mixing phase, the large scale eddies under incessant
motions undergo a fragmentation process, responsible for the formation of smaller scales.
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Figure 4. Upper panels: Intrinsic mode functions (IMFs) j ∈ [1, 16] and the associated residual rn,
obtained through Empirical Mode Decomposition (EMD) for sample April–June 2011. Lower left panel:
Comparison of Fourier power spectral density (black line) for sample April–June 2011 with the Fourier
power spectrum of different IMFs φj(ω), as a function of frequency ω (the curves have been shifted
for clarity). The band-like structure of each IMF shows the dyadic nature of the decomposition. The
dashed black line indicates the relation ω−1.59±0.03. Lower right panel: same as previous case but
for samples relative to the period July–September 2011. The dashed black line indicates the relation
ω−1.59±0.03. In order to enhance the readability of the two figures, only odd IMFs have been reported
in the lower panels.

In the classical, self-similar Kolmogorov theory [21,48], the spectral slope β is linked to the second
order SF via the relation E(ω) ∼ ω−β → β− 1 = ζ(2). However, a strong discrepancy (Figure 3,4) is
seen when comparing the two slopes: β− 1 and ζ(2), respectively.

Hurst Exponent Estimation from IMF Scaling Relations

Once the EMD decomposition has been performed, and the IMFs have been identified, an
estimate of the Hurst exponentH can be obtained by relating the variance of the j-th IMF Vj with its
characteristic period Tj [71], via the relation:

Vj ∝ T 2H
j . (5)
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The mean period of each IMF mode is estimated by calculating the local extrema points (Nj,max,
Nj,min) and zero-crossing (Nj,0) [65,72]:

Tj =
4L

Nj,max + Nj,min + Nj,0
, (6)

where L is the temporal length of the data and j represents the IMF index.
Modes j ∈ [4, 10], (approximately from T ≈ 28 min to T ≈ 1 day) have the same mean period for

each sample (Figure 5, log-linear plot), and follow an exponential law, i.e.:

Tj = α× γj, (7)

in which α ∈ [10−3, 3× 10−4] and γ ∈ [1.9, 2.1] are obtained via a least squares fitting algorithm.
The uncertainty associated with Tj has been evaluated as the standard deviation of the inverse
instantaneous frequency of the j-th IMF: ωj(t) = (2π)−1dθj/dt, where θj = arctan[φ?

j (t)/φj(t)] and
φ?

j (t) is the Hilbert transform of the j-th IMF. The first 3 modes do not follow the predicted scaling.
The value of γ close to 2 indicates the quasi dyadic filter bank property of the EMD algorithm for these
series, as found in other works [64,65,67]. The average value ofH, extracted from the 24 sections of the
original data set, is shown in the left panel of Figure 6. The scaling relation 5 holds from Tj ≈ 25 min up
to the large eddy turnover time Tj ≡ t0 ≈ 1 day, in agreement with the the definition of the mesoscale
range, and far beyond the inertial-range of turbulence. High-frequency IMFs (1 ≤ Tj < 25 min, Figure 6
left panel) create a curvature that does not follow the scaling relation between Vj and Tj.

Dashed and dotted lines are the average Vj value and the 95% confidence bounds, respectively.
The right-hand panel of Figure 6 shows the value ofH for all the 90 day sections, from 2010 to 2013,
with the associated average value and the 95% confidence bounds. These values are in good agreement
with the classical estimation of the Hurst exponent reported in the literature [10,23]. Interestingly,
similar values have also been reported in the inertial sub-range [37,73–75].
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Figure 5. Log-linear plot of the average IMF period as a function of the mode j for three samples; error
bars show 95% confidence bounds. The dashed lines represent the relation (7), with γ = 2.10± 0.05,
γ = 2.05± 0.06, and γ = 1.95± 0.11, respectively.
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Jan-Mar 2010

Jul-Sep 2012
Oct-Dec 2011

Oct-Dec 2013

Figure 6. Left panel: IMF variance Vj as a function of the average period Tj (symbols) for
four different samples: January–March 2010, October–December 2011, July–September 2012,
and October–December 2013, respectively. The dashed line represents the averaged relation (5),
with the associated 95% confidence bounds (dotted lines). The scaling holds over a range of periods
Tj ∈ [0.02, 1] days, in accordance with previous estimates. Right panel: H exponent for all samples for
the years 2010→ 2013 (symbols). The horizontal dashed line represents the average value with the
associated 95% confidence bounds (dotted lines).

5. Interoccurrence Times Statistics in Mesoscale Wind

A further method used to obtain information on the scaling properties of a stochastic processes,
is theIOT τ analysis [33–36]. IOTs are a measure of the time between the occurrence of two or more
subsequent extreme events in the data that exceed a fixed threshold Q (Figure 7, upper panel). For
every Q, an average 〈τ〉 and standard deviation στ are defined. By increasing Q, 〈τ〉 and στ become
larger. The higher the Q, the rarer or more extreme are the events. Furthermore, there is a one-to-one
correspondence between Q and the 〈τ〉, στ values (Figure 7, lower panels). In addition, it is known
that if a correlation exists in the data, then the IOTs sequence is also correlated [76–81].

The behavior of 〈τ〉 and στ can be described by an exponential law of the form 〈τ〉 = τ0 exp (α1Q)

στ = σ0 exp (α2Q), where τ0 and σ0 are the values obtained at Q = 0. Figure 7 (lower panels) shows
the two exponential laws for 〈τ〉 and στ obtained from the average values of the two parameters α1,2;
all curves have a value of α1 ∈ [1.05, 1.21] and α2 ∈ [1.1, 1.3]. In terms of 〈τ〉 the values of Tj obtained
through the EMD lies in the interval Q ∈ [0.1, 3]. However, in certain samples the values of 〈τ〉 for
thresholds Q > 2.8 seem to increase faster (Figure 7 lower panels). For this reason, the upper limit for
the IOTs analysis was fixed at Q = 2.5, for a total of NQ ≈ 250 IOTs measured.

Empirical studies have shown that the PDFs of the IOTs can be described by a universal
Tsallis q-exponential function, if a long-term memory exists in the data (i.e., power-law decay of
the autocorrelation function) [34–36,82] of the form:

P(τ) = α [1− τ(1− q)β]1/(1−q) , (8)

where α is a normalization factor and q is a measure of the deviation from an exponential distribution
(and q > 1 indicates a long-tailed distribution). The limit of validity for the parameter q lies in the
range 1 ≤ q ≤ 2. The upper limit arises from the normalization condition of P(τ) to the unit area and
the requirement that the normalization constant, α, is positive [82,83].

The PDFs of the IOT, P(τ), from the normalized wind speed data have been evaluated for
a number of bins, Nbins (Nbins ∈ [10 ÷ 20]), logarithmically spaced between the minimum and
maximum values of τ, of the width Abins. As it is the PDFs that are calculated, the number of
bins and their width are irrelevant to the analysis. The sampling uncertainty on each bin of P(τ) is
calculated from the statistical (Poisson) error on the histogram Err[N(x)] =

√
N(x), which, following
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the error in the probability density becomes: Err[P(τ)] =
√

P(τ)/(AbinsNQ). For threshold values
Q ≥ 2.5, the statistics is too poor (NQ < 100) to permit accurate analysis, since the relative statistical
error becomes too large.
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Figure 7. Upper panel: Sample illustration of the interoccurrence times (IOT) τi obtained from a
synthetic data set A(t). Horizontal dashed lines represent the selected threshold Q in the data. By
increasing Q, two sets of IOT τ1,2 can be identified in the data, characterized by an increasing average
〈τi〉 and standard deviation στ , respectively. Lower panels: Average IOT duration 〈τ〉 (left panel)
and standard deviation στ (central panel) as a function of the threshold Q normalized to the large
eddy turnover t0, for different samples. Dotted lines indicate the exponential behavior of 〈τ〉 and
στ , respectively, 〈τ〉 = τ0 exp(1.13Q) and στ = σ0 exp(1.21Q). The right-hand panel shows the
dependence of the total number of IOTs, NQ measured at different thresholds Q.

In order to compare the different distributions of the IOT, the PDFs of the normalized IOTs
P(τ/στ) were evaluated. This procedure ensures that for every Q the values of τ/στ always lies in
the same interval. The first two panels of Figure 8 show the PDF P(τ/στ) (symbols), obtained from
the 90 days data sets, for the years 2012 and 2014, respectively, at various thresholds Q. The relative
q–exponential fit (dashed line) obtained from Equation (8), at the maximum threshold Q reported in
legend, is also shown. All the PDFs collapse on to the same q-exponential distribution characterized
by an average q ≈ 1.65± 0.03, in a range of thresholds Q ∈ [0.3, 2.3], which, in terms of IMF periods,
are Tj ≈ 30 min up to Tj ≈ 0.5 days, demonstrating the universality of the process as reported
in [35,36]. This q-value is significant since a similar value has been reported in a different context,
namely velocity fluctuations in fully-developed turbulence experiments for the inertial sub-range [35],
where q ≈ 1.62 was obtained from the IOT statistics. The IOTs analysis shows that the mesoscale
atmospheric dynamics, could share similar features than those observed in laboratory experiments or
inertial sub-range turbulence.
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Figure 8. Left panel: Probability density functions (PDFs) of the normalized IOTs P(τ/σ0) evaluated
at different thresholds for different 90-days data sets relative to the year 2012. All the PDFs collapse
on to the same theoretical distribution (dashed lines). Central panel: same as previous case but for
samples relative to the year 2014. Right panel: PDFs of the normalized IOTs P(τ/σ0) for all 90 data
sets obtained after the shuffle procedure (equally spaced bins). The correlation in the Mauna Loa
Observatory (MLO) wind dynamics has been completely destroyed by the random permutation of the
data. All the IOT sequences converge to an exponential distribution, exposing their uncorrelated nature.

The q-exponential fitting was performed by minimizing the χ2 statistics by varying the model
parameters of Equation (8): q within the closed interval q ∈ [1÷ 2], while the other parameters in the
open interval α, β ∈ (0÷∞).

To check the dependence of the correlated structure in the data set, all the 90 days dataset were
randomly shuffled for a large number of trials, keeping the random seed fixed. The last panel of
Figure 8 reports the PDF of the shuffled data set in a log linear plot. The random permutation destroys
the correlation in the data and, moreover, the distribution becomes independent of the threshold
Q and collapses onto the same exponential shape: P(τ) = σ−1

τ exp [−τ/στ ], demonstrating their
uncorrelated nature.

The value of q in Equation (8) is, therefore, linked to the correlation properties of the data.
Following [35], this value can be linked to the Hurst exponent as: q = (3 − H)/(2 − H), where
H = 0.46± 0.06 (average and standard deviation obtained from different q-exponential fits), which,
within the error bar, is compatible with EMD results. IOTs scaling leads to an estimate of H closer
(within the error bars) to the values reported in literature for the inertial sub-range [37,73–75], compared
to the scaling of the structure function S1. The slightly higher value obtained via IOTs measurement
could be due to the finite size of the sample. In other words, in order to minimize the error in the
estimate, a very large number of IOTs (and, consequently, a longer dataset) is required.

6. Scaling of High-Order Moments: Intermittency and Arbitrary Order Hilbert Spectral Analysis

To correctly obtain scaling information for wind speed data sets and reduce the impact of the
up-slope/down-slope cycle, arbitrary-order Hilbert Spectral Analysis (HSA) [16,72,84] was applied to
the wind speed samples. HSA represents an extension of the classical Hilbert-Huang transform [31]
designed to characterize scale-invariant properties of a time series. Starting from the EMD, once the
IMFs have been obtained, the subsequent step consists of evaluating the Hilbert transform of each mode

φ?
j =

p
π

∫ +∞

−∞

φj(τ)

t− τ
dτ , (9)

where p is the Cauchy principal value and φj(t) is the j-th IMF. The combination of φj(t) and φ?
j (t)

defines the so called analytical signal Z = φj + iφ?
j = Aj(t)eiθ(t), where Aj(t) is the time-dependent

amplitude modulation and θ(t) is the phase of the mode oscillation [85].
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For each mode, the Hilbert spectrum, defined as H(ω, t) = A2(ω, t) (where ω = dθ/dt is the
instantaneous frequency), provides energy information in the time-frequency domain [67]. A marginal
integration of H(ω, t) provides the Hilbert marginal spectrum h(ω) = T−1

∫ T
0 H(ω, t)dt, defined as

the energy density at frequency ω [30,86]. In addition, from the Hilbert spectrum, a joint probability
density function P(ω,A) can be extracted, using the instantaneous frequency ωj and the amplitude
Aj of the j-th IMF. This allows the Hilbert marginal spectrum h(ω) to be written as

h(ω) =
∫ ∞

0
P(ω,A)A2dA , (10)

which corresponds to a second order statistical moment [67]. Equation (10) can be generalized to the
arbitrary order q ≥ 0 by defining the ω-dependent qth-order statistical moments

Lq =
∫ ∞

0
P(ω,A)AqdA. (11)

In particular h(ω) ≡ L2 is similar to the Fourier spectral energy density, and can be interpreted as
the energy associated to the frequency ω [67]. However, it should be pointed out that the definition of
frequency in h(ω) is different from the definition in the Fourier framework. The interpretation of the
Hilbert marginal spectrum should be given with more caution [30,86,87].

Figure 9 shows three examples of Ln(ω) up to the 5-th order, obtained from Equation (11)
using the samples January–March 2010, April–June 2012 and July–September 2013. The resulting
Ln(ω) demonstrates power-law behavior Ln(ν) ∝ ω−βn for all n, in the range of frequencies
ω ∈ [1.6× 10−1, 4× 101] days−1 (approximately from 30 min to 6 days), and the slope β2 ≈ 1.67± 0.02
is compatible with the slope of the Fourier spectrum (Figure 4). This range is wider than the previous
estimate (Figure 6), due to the local nature of EMD and HSA, the strong daily modulation, as well as
the possible “non-stationarity” due to ramp-cliff structures, can be constrained, isolating the properties
of the cascade from the possible effects of the larger scale forcing and residual structures [15,16,39].
The last panel of Figure 9 shows the evolution of the slope β2 as a function of time, with the associated
average value and standard deviation: 〈β2〉 = 1.64± 0.03, compatible with the β ≈ 5/3 characteristic
of the inertial sub-range turbulence [21,48].

At higher frequencies, for ω ≈ 50 − 60 days−1 (T ≥ 30 min) a spectral break is observed,
characterized by an abrupt slowing of the spectral slope, which tends to reach a saturation at
higher order n.

As discussed in Section 3, the relation between the spectral slope and the scaling exponent of
the second order SF is E(ω) ∼ ω−β → β− 1 = ζ(2). By extending this relationship to any arbitrary
order q, a family of generalized scaling exponents ξ(q) can be introduced through the generalized
Hilbert spectra [15,16] as ξ(q) ≡ βq − 1. The exponents ξ(q) are the Hilbert analogues of the standard
scaling exponents ζ(q) obtained through the structure functions or through Extended Self-Similarity
(ESS) [10,23,38,88]. Equation (11), therefore, is an alternative to the structure function scaling exponents
to quantitatively estimate the level of intermittency in the turbulent cascade [21], with the advantage
of constraining the effects of noise and large-scale structures [15].
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Figure 9. Left panel: the Hilbert spectra Ln(ω) for n = 1 → 5, obtained for sample dated
January–March 2010. A power-law range can be observed over the frequencies ω ∈ [0.3, 0.02] days−1

(from 20 min up to ∼ 3 days). The generalized spectra have been shifted for clarity. Central panel:
Same as previous case, but for sample April–June 2012. In addition, in this case, the power-law range is
present but in slightly smaller range ω ∈ [1, 0.025] days−1 (from 30 min up to ∼ 1 days). Right panel:
Temporal evolution of the slope β2 relative to the second order generalized Hilbert spectra (L2(ω)).
The results are in good agreement with the classical Kolmogorov spectrum β ≈ 5/3 (horizontal dashed
line), characteristic of the inertial sub-range turbulence. The horizontal dotted line represents the
average value 〈β2〉. Each point represents a 90-day sample.

Examples of scaling exponents ξ(n) obtained via least square fits of the generalized Hilbert spectra
are shown in Figure 10. The same figure also shows different values of the exponents taken from
literature, for laboratory experiments, and atmospheric turbulence.
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Figure 10. Left panel: comparison of the scaling exponents obtained from MLO wind data
(January–March 2010) (open circles) with other exponents taken from the literature for various systems:
hydrodynamic turbulence using extended self-similarity (ESS) (squares) [38], atmospheric boundary
layer in the mesoscale regime (diamonds and stars) [10,23], and other estimates in hydrodynamic
turbulence [35,89]; the dashed line represents the theoretical expectation n/3, as estimated from
dimensional analysis in the absence of intermittency [48]. Central panel: as the previous case for
the sample January–March 2013. Right panel: intermittency parameter estimated via the log-normal
model (Equation (12)) for the MLO wind speed data; each point represents a 90-day sample. The
horizontal dashed line represents the value µ ≈ 0.02 obtained for isotropic turbulence in the inertial
sub-range, the dotted line represents the average intermittency value 〈µ〉 ≈ 0.0165± 0.0031 for the
MLO wind speed data. The value of 〈µ〉 is in good agreement with other estimates [90] obtained with
different methods.

From the results, it is easily observed that the departure from a linear (monofractal) scaling
is captured in the mesoscale wind data. Moreover, the values of ξ(n) are similar to the exponents
obtained in other experiments in comparable range of scales (ten min up to six h).

Moment n = 4 deviates from the scaling of homogeneous and isotropic flow (Figure 10, left
and central panel), and converges to the values reported in Reference [10], without the necessity of
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employing the ESS procedure. In the above reference, the generalized scaling exponent ζ?4,3 = ζ4ζ−1
3

is evaluated in terms of ESS, and in case of complex orography. It is important to note that, in the
presence of strong shear, the applicability of ESS seems to be somewhat limited [91,92].

Higher orders are affected by the finite sample size. In other words, the sample size is not sufficient
to ensure the convergence of the exponents; heuristically, the convergence of the results is guaranteed
up to order nmax ≈ log10[WL/∆t]− 1 ≈ 4.

The last panel of Figure 10 shows the evolution of the intermittency parameter µ obtained from
a simple log-normal cascade model [93,94]:

ξ(n) = nH− µ

2
(n2 − n). (12)

As shown in the last panel of Figure 10, the intermittency effects are clearly present in each
sample, but the values of the parameter µ varies from case to case. The figure also shows (dashed
line), the reference for the inertial sub-range µ ≈ 0.02. The intermittency parameter obtained for
the MLO wind speed, is slightly lower the isotropic case, and the characteristic average value and
standard deviation is 〈µ〉 ≈ 0.0165± 0.0031. The value of 〈µ〉 is in good agreement with other estimates
obtained from the classical multifractal spectrum [90] and from magnitude covariance analysis [7,8].
Intermittency effects could suggest the existence of a universal cascade mechanism associated with the
energy transfer between synoptic motions and turbulent microscales in the atmospheric boundary
layer. The values of µ have been obtained via least square fitting of the exponents ξ(n) determined
from each sample; the orders n > 4 have been excluded in order to make allowance for the finite
sample size effects.

7. Conclusions

The scaling properties of the mesoscale wind speed fluctuations at MLO have been analyzed
with different methods, and all the results show empirical evidence that large scales phenomena
possess a certain degree of universality and share a number of features and characteristics with fully
developed turbulence in the inertial sub-range. The findings presented in this work, specifically the
statistics for intermittency and cascade models, can be applied to atmospheric fields, such as, wind
resource assessment, extreme event characterization, and short-term wind predictions. Moreover,
most numerical weather prediction models, in their standard operational configuration, are unable to
capture, or reproduce, the scaling behavior observed in the mesoscale regime, which is required to
improve turbulence closure parameterizations [23], i.e., the power-law scaling of the PSD characterized
by an exponent 〈β2〉 ≈ 1.64± 0.03, characteristic of a cascade dynamic.

The EMD framework, yielded a value of the Hurst exponent,H ≈ 0.32± 0.04, close to the classical
value of the fully developed turbulence, over a temporal range of Tj ∈ [0.02, 1] days (from 10–20 min
up to 1 day), in agreement with the values reported in the literature [7,8,10]. For a scale of Tj = 1
day the wind speed data are normally distributed and characterized by a local kurtosis K(Tw) = 3,
exposing the convective effects within the mixed boundary layer [44].

By using the statistics from IOTs, it was found that above a fixed threshold Q ∈ [0.3, 2.3], the PDFs
of the normalized IOTs are described by a Tsallis q-exponential function [82].

The range of timescales associated with the IOTs, at these threshold values, is compatible with
those obtained via EMD (Tj ∈ [0.02, 1]). The value of the parameter q at the MLO, q ≈ 1.65± 0.03,
is in good agreement with the value found for the inertial sub-range [35]. The dependence of the
correlated structures in the data set has been shown by simply randomly shuffling the data in the
time series. Randomization destroys the correlation in the data, and the effect is observed in the PDFs
of the normalized IOTs, which become independent of the threshold Q and collapse onto the same
exponential shape, demonstrating their complete lack of correlation. The Hurst exponent extracted
from the q-exponential fit has a slightly higher value than that found using EMD, or from estimates in
the literature. It is the finite sample size in this case that influences the estimate of the Hurst exponent.
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The scaling of the higher order moments were studied with the HSA. At the mesoscale, departure
from linear (monofractal) scaling was observed. Intermittency effects were clearly present in each
sample, however the values of the intermittency parameter µ varied from case to case. The average
value, with the associated standard deviation, was found to be of the order of 〈µ〉 ≈ 0.0165± 0.0031,
in good agreement with estimates obtained from the classical multifractal spectrum [90], and from
magnitude covariance analysis [7,8]. The scaling exponents ξ(n) obtained thorough HSA are similar
to the exponents obtained in other experiments through ESS, up to the fourth order n = 4.

These results suggest the existence of a universal cascade mechanism associated with the energy
transfer between synoptic motions and turbulent microscales in the atmospheric boundary layer.
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47. Jizba, P.; Korbel, J.; Lavička, H.; Prokš, M.; Svoboda, V.; Beck, C. Transitions between superstatistical regimes:

Validity, breakdown and applications. Phys. A Stat. Mech. Appl. 2018, 493, 29–46. [CrossRef]
48. Kolmogorov, A.N.The local structure of turbulence in incompressible viscous fluid for very large Reynolds

numbers. C. R. Acad. Sci. U. R. S. S. 1941, 30, 301. [CrossRef]
49. Tarnopolski, M. On the relationship between the Hurst exponent, the ratio of the mean square successive

difference to the variance, and the number of turning points. Phys. A Stat. Mech. Appl. 2016, 461, 662–673.
[CrossRef]

50. Stolovitzky, G.; Sreenivasan, K.R. Kolmogorov’s refined similarity hypotheses for turbulence and general
stochastic processes. Rev. Mod. Phys. 1994, 66, 229–240. [CrossRef]

51. Salisbury, J.I.; Wimbush, M. Using modern time series analysis techniques to predict ENSO events from the
SOI time series. Nonlinear Process. Geophys. 2002, 9, 341–345. [CrossRef]

52. Jánosi, I.M.; Müller, R. Empirical mode decomposition and correlation properties of long daily ozone records.
Phys. Rev. E 2005, 71, 056126. [CrossRef]

53. McDonald, A.J.; Baumgaertner, A.J.G.; Fraser, G.J.; George, S.E.; Marsh, S. Empirical Mode Decomposition
of the atmospheric wave field. Ann. Geophys. 2007, 25, 375–384. [CrossRef]

54. Vecchio, A.; Carbone, V. Amplitude-frequency fluctuations of the seasonal cycle, temperature anomalies,
and long-range persistence of climate records. Phys. Rev. E 2010, 82, 066101. [CrossRef]

55. Vecchio, A.; Capparelli, V.; Carbone, V. The complex dynamics of the seasonal component of USA’s surface
temperature. Atmos. Chem. Phys. 2010, 10, 9657–9665. [CrossRef]

56. Capparelli, V.; Vecchio, A.; Carbone, V. Long-range persistence of temperature records induced by long-term
climatic phenomena. Phys. Rev. E 2011, 84, 046103. [CrossRef]

57. Vecchio, A.; Anzidei, M.; Carbone, V. New insights on the tsunami recording of the May, 21, 2003, Mw 6.9
Boumerdès earthquake from tidal data analysis. J. Geodyn. 2014, 79, 39–49. [CrossRef]

58. Carbone, F.; Landis, M.S.; Gencarelli, C.N.; Naccarato, A.; Sprovieri, F.; De Simone, F.; Hedgecock, I.M.;
Pirrone, N. Sea surface temperature variation linked to elemental mercury concentrations measured on
Mauna Loa. Geophys. Res. Lett. 2016, 43, 7751–7757. [CrossRef]

59. Alberti, T.; Consolini, G.; Carbone, V.; Yordanova, E.; Marcucci, M.F.; De Michelis, P. Multifractal and Chaotic
Properties of Solar Wind at MHD and Kinetic Domains: An Empirical Mode Decomposition Approach.
Entropy 2019, 21, 320. [CrossRef]

60. Xuan, Z.; Xie, S.; Sun, Q. The Empirical Mode Decomposition Process of Non-stationary Signals.
In Proceedings of the 2010 International Conference on Measuring Technology and Mechatronics Automation,
Changsha, China, 13–14 March 2010; Volume 3, pp. 866–869. [CrossRef]

61. Liu, Q.; Fujita, T.; Watanabe, M.; Mitani, Y. Hilbert-Huang Transform and Wavelet Analysis of Oscillation
Characteristics for Japan Western 60 Hz Power System Based on Campus WAMS. In IFAC Proceedings
Volumes; Elsevier: Amsterdam, The Netherlands, 2012; Volume 45, pp. 144–149.

62. Cummings, D.A.; Irizarry, R.A.; Huang, N.E.; Endy, T.P.; Nisalak, A.; Ungchusak, K.; Burke, D.S. Travelling
waves in the occurrence of dengue haemorrhagic fever in Thailand. Nature 2004, 427, 344–347. [CrossRef]
[PubMed]

63. Rilling, G.; Flandrin, P.; Goncalves, P. On Empirical Mode Decomposition and Its Algorithms.
In IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing; 2003. Available online:
https://pdfs.semanticscholar.org/3f61/6db40f5da4446a039bb6ae5d801d4c616f2b.pdf?_ga=2.169233441.
1820239345.1570677681-561144769.1570677681 (accessed on 20 September 2019).

64. Wu, Z.; Huang, N.E. A study of the characteristics of white noise using the empirical mode decomposition
method. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 2004, 460, 1597–1611. [CrossRef]

http://dx.doi.org/10.1034/j.1600-0889.2003.00027.x
http://dx.doi.org/10.1029/2005JD006535
http://dx.doi.org/10.1175/1520-0493(2001)129<0784:TDCITT>2.0.CO;2
http://dx.doi.org/10.1103/PhysRevE.72.056133
http://dx.doi.org/10.1016/j.physa.2007.06.024
http://dx.doi.org/10.1016/j.physa.2017.09.109
http://dx.doi.org/10.1098/rspa.1991.0075
http://dx.doi.org/10.1016/j.physa.2016.06.004
http://dx.doi.org/10.1103/RevModPhys.66.229
http://dx.doi.org/10.5194/npg-9-341-2002
http://dx.doi.org/10.1103/PhysRevE.71.056126
http://dx.doi.org/10.5194/angeo-25-375-2007
http://dx.doi.org/10.1103/PhysRevE.82.066101
http://dx.doi.org/10.5194/acp-10-9657-2010
http://dx.doi.org/10.1103/PhysRevE.84.046103
http://dx.doi.org/10.1016/j.jog.2014.05.001
http://dx.doi.org/10.1002/2016GL069252
http://dx.doi.org/10.3390/e21030320
http://dx.doi.org/10.1109/ICMTMA.2010.280
http://dx.doi.org/10.1038/nature02225
http://www.ncbi.nlm.nih.gov/pubmed/14737166
https://pdfs.semanticscholar.org/3f61/6db40f5da4446a039bb6ae5d801d4c616f2b.pdf?_ga=2.169233441.1820239345.1570677681-561144769.1570677681
https://pdfs.semanticscholar.org/3f61/6db40f5da4446a039bb6ae5d801d4c616f2b.pdf?_ga=2.169233441.1820239345.1570677681-561144769.1570677681
http://dx.doi.org/10.1098/rspa.2003.1221


Atmosphere 2019, 10, 611 18 of 19

65. Flandrin, P.; Rilling, G.; Goncalves, P. Empirical mode decomposition as a filter bank. IEEE Signal Process. Lett.
2004, 11, 112–114. [CrossRef]

66. Flandrin, P.; Goncalves, P. Empirical mode decomposition as data-driven wavelet-like expansions. Int. J.
Wavel. Multires. Inf. Process. 2004, 1, 477–496. [CrossRef]

67. Huang, Y.X.; Schmitt, F.G.; Lu, Z.M.; Liu, Y.L. An amplitude-frequency study of turbulent scaling
intermittency using Empirical Mode Decomposition and Hilbert Spectral Analysis. EPL Europhys. Lett. 2008,
84, 40010. [CrossRef]

68. Thomas, W.G.; Dennis, N. Influence of the trade-wind inversion on the climate of a leeward mountain slope
in Hawaii. Clim. Res. 1991, 1, 207–216.

69. NCAR/HAO. Mauna Loa Seeing Study. 2006. Available online: https://archive.eol.ucar.edu/docs/isf/
projects/mlo/report.shtml (accessed on 20 September 2019).

70. He, P.; Basu, S. Extending a surface-layer Cn2 model for strongly stratified conditions utilizing a numerically
generated turbulence dataset. Opt. Express 2016, 24, 9574–9582. [CrossRef]

71. Nava, N.; Matteo, T.D.; Aste, T. Anomalous volatility scaling in high frequency financial data. Phys. A Stat.
Mech. Appl. 2016, 447, 434–445. [CrossRef]

72. Huang, Y.; Schmitt, F.G. Time dependent intrinsic correlation analysis of temperature and dissolved oxygen
time series using empirical mode decomposition. J. Marine Syst. 2014, 130, 90–100. [CrossRef]

73. Schmitt, F.; Schertzer, D.; Lovejoy, S. Estimation Of Universal Multifractal Indices For Atmospheric Turbulent
Velocity Fields; 1994; pp. 274–281. Available online: https://www.worldscientific.com/doi/abs/10.1142/
9789814503792_0025 (accessed on 20 September 2019).

74. Lovejoy, S.; Schertzer, D.; Tuck, A.F. Fractal aircraft trajectories and nonclassical turbulent exponents.
Phys. Rev. E 2004, 70, 036306. [CrossRef] [PubMed]

75. Lovejoy, S.; Tuck, A.F.; Schertzer, D.; Hovde, S.J. Reinterpreting aircraft measurements in anisotropic scaling
turbulence. Atmos. Chem. Phys. 2009, 9, 5007–5025. [CrossRef]

76. Santhanam, M.; Kantz, H. Long-range correlations and rare events in boundary layer wind fields. Phys. A
Stat. Mech. Appl. 2005, 345, 713–721. [CrossRef]

77. Eichner, J.F.; Kantelhardt, J.W.; Bunde, A.; Havlin, S. Statistics of return intervals in long-term correlated
records. Phys. Rev. E 2007, 75, 011128. [CrossRef]

78. Bogachev, M.I.; Eichner, J.F.; Bunde, A. Effect of Nonlinear Correlations on the Statistics of Return Intervals
in Multifractal Data Sets. Phys. Rev. Lett. 2007, 99, 240601. [CrossRef]

79. Bogachev, M.I.; Bunde, A. Memory effects in the statistics of interoccurrence times between large returns in
financial records. Phys. Rev. E 2008, 78, 036114. [CrossRef]

80. Ferri, G.; Savio, M.R.; Plastino, A. Tsallis’ -triplet and the ozone layer. Phys. A Stat. Mech. Appl. 2010,
389, 1829–1833. [CrossRef]

81. Ferri, G.L.; Figliola, A.; Rosso, O.A. Tsallis’ statistics in the variability of El Niño/Southern Oscillation
during the Holocene epoch. Phys. A Stat. Mech. Appl. 2012, 391, 2154–2162. [CrossRef]

82. Tsallis, C. Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 1988, 52, 479–487. [CrossRef]
83. Douglas, P.; Bergamini, S.; Renzoni, F. Tunable Tsallis Distributions in Dissipative Optical Lattices.

Phys. Rev. Lett. 2006, 96, 110601. [CrossRef] [PubMed]
84. Huang, Y.; Wang, L. Cascade and intermittency of the sea surface temperature in the oceanic system. Phys. Scr.

2018, 94, 014009. [CrossRef]
85. Cohen, L. Time-Frequency Analysis; Prentice Hall PTR: Englewood Cliffs, NJ, USA, 1995.
86. Huang, N.E.; Shen, Z.; Long, S.R. A new view of nonlinear water waves: The Hilbert Spectrum1. Ann. Rev.

Fluid Mech. 1999, 31, 417–457. [CrossRef]
87. Huang, N.E.; Chen, X.; Lo, M.T.; Wu, Z. On Hiblert spectral representation: A true time-frequency

representation for nonlinear and nonstationary data. Adv. Adapt. Data Anal. 2011, 3, 63–93. [CrossRef]
88. Arneodo, A.; Baudet, C.; Belin, F.; Benzi, R.; Castaing, B.; Chabaud, B.; Chavarria, R.; Ciliberto, S.; Camussi, R.;

Chillà, F.; et al. Structure functions in turbulence, in various flow configurations, at Reynolds number between
30 and 5000, using extended self-similarity. EPL Europhys. Lett. 1996, 34, 411–416. [CrossRef]

89. Schmitt, F.G. Linking Eulerian and Lagrangian structure functions’ scaling exponents in turbulence. Phys. A
Stat. Mech. Appl. 2006, 368, 377–386. [CrossRef]

90. Liu, L.; Hu, F.; Huang, S. A Multifractal Random-Walk Description of Atmospheric Turbulence: Small-Scale
Multiscaling, Long-Tail Distribution, and Intermittency. Bound. Layer Meteorol. 2019, 172, 351–370. [CrossRef]

http://dx.doi.org/10.1109/LSP.2003.821662
http://dx.doi.org/10.1142/S0219691304000561
http://dx.doi.org/10.1209/0295-5075/84/40010
https://archive.eol.ucar.edu/docs/isf/projects/mlo/report.shtml
https://archive.eol.ucar.edu/docs/isf/projects/mlo/report.shtml
http://dx.doi.org/10.1364/OE.24.009574
http://dx.doi.org/10.1016/j.physa.2015.12.022
http://dx.doi.org/10.1016/j.jmarsys.2013.06.007
https://www.worldscientific.com/doi/abs/10.1142/9789814503792_0025
https://www.worldscientific.com/doi/abs/10.1142/9789814503792_0025
http://dx.doi.org/10.1103/PhysRevE.70.036306
http://www.ncbi.nlm.nih.gov/pubmed/15524632
http://dx.doi.org/10.5194/acp-9-5007-2009
http://dx.doi.org/10.1016/S0378-4371(04)00998-7
http://dx.doi.org/10.1103/PhysRevE.75.011128
http://dx.doi.org/10.1103/PhysRevLett.99.240601
http://dx.doi.org/10.1103/PhysRevE.78.036114
http://dx.doi.org/10.1016/j.physa.2009.12.020
http://dx.doi.org/10.1016/j.physa.2011.11.050
http://dx.doi.org/10.1007/BF01016429
http://dx.doi.org/10.1103/PhysRevLett.96.110601
http://www.ncbi.nlm.nih.gov/pubmed/16605807
http://dx.doi.org/10.1088/1402-4896/aaece0
http://dx.doi.org/10.1146/annurev.fluid.31.1.417
http://dx.doi.org/10.1142/S1793536911000659
http://dx.doi.org/10.1209/epl/i1996-00472-2
http://dx.doi.org/10.1016/j.physa.2005.12.028
http://dx.doi.org/10.1007/s10546-019-00451-6


Atmosphere 2019, 10, 611 19 of 19

91. Amati, G.; Benzi, R.; Succi, S. Extended self-similarity in boundary layer turbulence. Phys. Rev. E 1997,
55, 6985–6988. [CrossRef]

92. Ruiz-Chavarria, G.; Ciliberto, S.; Baudet, C.; Lévêque, E. Scaling properties of the streamwise component of
velocity in a turbulent boundary layer. Phys. D Nonlinear Phenom. 2000, 141, 183–198. [CrossRef]

93. Schmitt, F.G. A causal multifractal stochastic equation and its statistical properties. Eur. Phys. J. B Condens.
Matter Complex Syst. 2003, 34, 85–98. [CrossRef]

94. Medina, O.D.; Schmitt, F.G.; Calif, R. Multiscale Analysis of Wind Velocity, Power Output and Rotation of
a Windmill. Energy Proc. 2015, 76, 193–199. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1103/PhysRevE.55.6985
http://dx.doi.org/10.1016/S0167-2789(00)00028-2
http://dx.doi.org/10.1140/epjb/e2003-00199-x
http://dx.doi.org/10.1016/j.egypro.2015.07.897
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Analysis of Mesoscale Wind Velocity Data
	Structure Function Analysis and Hurst Exponent Estimation for Mesoscale Wind Speed
	Hurst Exponent Estimation from the Empirical Mode Decomposition
	Interoccurrence Times Statistics in Mesoscale Wind
	Scaling of High-Order Moments: Intermittency and Arbitrary Order Hilbert Spectral Analysis
	Conclusions
	References

