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Abstract: A limited-area kilometre scale numerical weather prediction system is applied to
evaluate the effect of refined surface data assimilation on short-range heavy precipitation
forecasts. The refinements include a spatially dependent background error representation, use of
a flow-dependent data assimilation technique, and use of data from a satellite-based scatterometer
instrument. The effect of the enhancements on short-term prediction of intense precipitation events
is confirmed through a number of case studies. Verification scores and subjective evaluation of one
particular case points at a clear impact of the enhanced surface data assimilation on short-range
heavy precipitation forecasts and suggest that it also tends to slightly improve them. Although this is
not strictly statistically demonstrated, it is consistent with the expectation that a better surface state
should improve rainfall forecasts.

Keywords: numerical weather prediction; surface data assimilation; Kalman filter; scatterometer;
severe weather

1. Background

Numerical weather prediction (NWP) is concerned with, starting from an initial state, integrating
the atmospheric state forward in time. The atmospheric state is represented by a number of variables
defined on discrete grid points, and the model is run forward in time to simulate the atmosphere
and its evolution. Some processes take place on scales that cannot be represented by the model and
are accounted for through various parametrizations. Data assimilation in NWP optimally blends
observations with a forecast from the atmospheric model in order to obtain the spatial distribution of
atmospheric variables and to produce the best possible model initial state. It was early realised that
the forecast quality is strongly dependent on an accurate description of the initial state and, hence,
on the capability of the assimilation system [1].

Surface processes, such as heat and water exchanges, are essential to represent in NWP. The present
study was carried out within the European Union’s Horizon 2020 project IMPREX (IMproving
PRedictions and management of hydrological EXtremes) where the ambition is to enhance forecast
quality of extreme hydrometeorological conditions and their impacts. The current work is an extension
based on project developments and results by Lindskog and Landelius [2]. Here, we improve the
handling of surface quantities and focus on the effect on short-range (days ahead) weather forecasting.
Refined surface data assimilation in NWP has the potential to result in an improved prediction of severe
precipitation events. Impact of of soil moisture conditions on short- and medium-range NWP have
earlier been demonstrated [3–8]. In addition, the importance of an accurate soil moisture representation
has also been demonstrated at the seasonal range [9–11].

Here, we use the HARMONIE-AROME NWP system [12], which is one configuration of the shared
Aire Limitée Adaptation Dynamique Developpement InterNational (ALADIN)-High-Resolution
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Limited-Area Model (HIRLAM) NWP system. The HARMONIE-AROME system is comprised of a
data assimilation system for the surface and upper-air together with a forecast model.

Our aim is to improve short-range NWP of extreme precipitation by enhancing the representation
of the surface initial state by applying an improved HARMONIE-AROME surface data assimilation.
The enhancements concern both methodologies in data assimilation and enhanced observation
usage. Situation-dependent background error statistics is introduced. and horizontal small-scale
variations are better represented. In addition, use of scatterometer soil moisture-related data has been
introduced. One or two of these improvements have been applied before in research and to operational
systems [8,13–16]. Here, we combine these enhancements and merge them for the first time into one
novel state-of-the-art data assimilation system. Three cases associated with heavy precipitation are
used to get insight on the potential of these combined enhancements. The weather situations include
both large-scale, orographically forced precipitation events and also convective events over flat land.

The components of the HARMONIE-AROME forecasting system are the subject of Section 2,
with focus on surface data assimilation. In Section 3, the model configuration and the heavy
precipitation cases are described. Section 4 is concerned with an investigation of the abilities of
the enhanced NWP system. Experimental setup is the subject of Section 5, followed by the associated
findings in Section 6. Conclusions are emphasised in Section 7.

2. The Forecasting System and Surface Initial State

2.1. NWP System

The HARMONIE-AROME modelling configuration is comprised of a data assimilation system
and a forecast model. The data assimilation consists of two parts, which cover respectively the surface
and upper-air. A detailed description of the forecast model setup is given in Seity et al. [17] and
Bengtsson [12]. It is a non-hydrostatic model formulation with a spectral representation of the model
state. The Eddy Diffusivity Mass Flux (EDMF) scheme is used for sub-grid cloud parametrization.
Turbulence processes are represented according to Cuxart et al.[18]. The radiative transfer is modelled
as described by Fouquart and Bonnel [19] and Mlawer et al. [20] for short- and long-wave radiation
processes, respectively. For surface processes, the SURFEX (Surface Externalisée) scheme [21] is
employed together with an ISBA (interactions between the soil–biosphere–atmosphere) scheme [22,23]
that uses a force-restore method [24]. The version of the scheme used here has two vertical temperature
layers and three layers for soil moisture [25]. The third and deepest soil moisture level was introduced
to distinguish between the root zone and sub-root zone soil water reservoirs.

Global forecasts provided by the European Centre for Medium-Range Weather Forecasts (ECMWF)
were used as lateral boundary conditions. These forecasts are launched every 6 h with a 1-h
output frequency. Global model information was also used to replace larger-scale information
in the background state with lateral boundary information [26]. The purpose of this is to make
use of high-quality larger scale information in the ECMWF global fields.

Upper-air data assimilation is based on a 3-dimensional variational approach [27]. Types of
observations that were assimilated include in situ measurements (pilot–balloon wind, radiosonde,
aircraft, buoy, ship, and synop) and microwave radiances from various satellite-based instruments.
Statistics for the background state are based on a climatological assumption and are calculated from
an ensemble of forecast differences by downscaling global ECMWF ensemble forecasts over the
limited-area. Scaling is applied to the derived statistics in order to be in agreement with the amplitude
of HARMONIE-AROME + 3-h forecast errors.

2.2. Default Surface Data Assimilation of Temperature and Moisture

The HARMONIE-AROME reference surface data assimilation of temperature and moisture
is comprised of two steps. In step one, a horizontal data assimilation based on the CANARI
(Code d’Analyse Nećessaire á ARPEGE pour ses Rejets et son Initialisation) optimal interpolation
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scheme [28] is applied in two dimensions to horizontally spread the information from screen-level
(two-metre) temperature and relative humidity observations to update two-metre temperature and
relative humidity values over all land surface grid-points containing land parts. This is done according
to the following equation:

xa = xb + BHT(HBHT + R)−1(y − Hxb). (1)

where xa denotes the analysed values, xb denotes the background values, and y denotes the
observations. Furthermore, B is a matrix containing the background errors and R is a matrix containing
the observation errors. H is the Jacobian of the observation operator. R is set to a diagonal matrix
while B is assumed to be non-diagonal but isotropic and horizontally homogeneous with the following
correlation function:

corri,j = e−
ri,j
2a . (2)

Here, corri,j denotes the horizontal background error correlation between points i and j
separated by ri,j. The parameter a, which is the correlation length scale, was set to 80 km for
temperature and 85 km for humidity. The background error standard deviations for temperature and
relative humidity were assumed to be 1.6 K and 18%, respectively. The corresponding observation
error standard deviations were assumed to be 1.4 K and 10%. The correlation functions are
sometimes denoted structure functions. All these settings are carried over from the operational
HARMONIE-AROME system.

In step two, after the two-dimensional horizontal distribution just described, the two-metre
temperature and relative humidity information is vertically distributed to update the surface-soil
model. This is done by the application of another optimal interpolation scheme as described
in Equations (3)–(6), which originates from Equations (4)–(7) in Mahfouf et al. [13]. The procedure is
applied independently for each grid-point, using the horizontally distributed two-metre temperature
and relative humidity information to update the temperature and moisture in the soil layers:

wa
g = wb

g + α1(Ta
2m − Tb

2m) + α2(RHa
2m − RHb

2m), (3)

wa
2 = wb

2 + β1(Ta
2m − Tb

2m) + β2(RHa
2m − RHb

2m), (4)

Ta
s = Tb

s + µ1(Ta
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2m) + µ2(RHa
2m − RHb

2m), (5)

Ta
2 = Tb

2 + ν1(Ta
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2m − RHb

2m), (6)

where T2m and RH2m denote two-metre temperature and relative humidity, respectively. Ts and wg

denote soil-top values, and T2 and w2 denote layer-two values of soil moisture and temperature.
Here, superscript a and b represent analysed and background values, respectively. Note that analysed
two-metre temperature and relative humidity values are available in all grid-points as a result of the
horizontal optimal interpolation. Furthermore, the empirical coefficients or functions α1, α2, β1, β2, µ1,
µ2, ν1, and ν2 are chosen as explained in Giard and Bazile [29] and Coiffier et al. [30], and accordingly,
the coefficients µ2 and ν2 are set to zero. The third and deepest soil moisture layer is less coupled to
screen level and scatterometer soil top layer moisture observations [31] and is, therefore, left untouched
by the above procedure.

3. Modelling System Setup and Description of Cases

The limited-area kilometre scale forecasting system is applied over a domain covering a southern
part of Europe, as is illustrated in Figure 1. The three cases with heavy precipitation took place
in an area inside the blue circle. These cases are described in Table 1. An illustration of one of the cases
is given by the SEVIRI (Spinning Enhanced Visible and InfraRed Imager) instrument satellite data
visualised in Figure 2.
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Figure 1. Model area (red rectangle) and event evaluation area (blue circle).

Table 1. Description of extreme precipitation events studied with the HARMONIE-AROME
modelling system.

Period Charachteristics

20130612–20130619 Heavy precipitation in the Pyrenees.
20130721–20130728 Large convective precipitation amounts in northern continental Europe.
20140622–20140625 Severe precipitation case in the southwestern part of France.

Figure 2. SEVIRI instrument infrared brightness temperature on 20130727 at 03.30 UTC (unit: K).

The model grid consists of 768 × 648 horizontal points with a 2.5-km separation and 65 vertical
levels. Data assimilation was carried out every third hour within an intermittent data assimilation
cycle, and every sixth hour, a +48-h forecast was launched.

4. An Enhanced Assimilation of Surface Temperature and Soil Moisture

4.1. Overview

There are some obvious limitations in the reference surface data assimilation covered in Section 2.
These are related to simplifying assumptions in the spatial distribution of observational information,
to the lack of a proper flow-dependency, and to only using synoptic screen-level observations. With the
refined system presented below, we have tried to alleviate these shortcomings.

4.2. Screen-Level Structure Functions

The refined structure functions for two-metre temperature and humidity are based on
developments made in the European FP7 project “European Reanalysis and Observations for
Monitoring” (EURO4M). Here, the isotropic structure functions in the mesoscale analysis system
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CANARI were replaced with the orography-dependent ones used in MESAN, an operational mesoscale
analysis system [32]:

corr(ri,j, dp, dz) = 0.5[e−
ri,j
L + (1 +

2ri,j

L
)e−

2ri,j
L ]Fp(dp)Fz(dz). (7)

The correlation difference due to land fraction (dp) and height (dz) between positions i and j
and separated by a distance ri,j are represented by the linear functions Fp and Fz. These are empirical
scaling functions that describe a reduction of the correlation due to differences in fraction of land (dp)
and height (dz) [32]. The function Fp reduces the correlation with a factor of 0.5 when dp = 1 and
equals one when dp = 0 (no reduction). In the same way, Fz equals one when dz = 0 and comes down
to 0.5 when dz exceeds 500 m. The correlation length scale, given by L in Equation (7), is set to 190 km
for both variables.

This improved version of CANARI is known as MESCAN. Within the EURO4M project, the use of
the anisotropic structure functions was shown to result in improved analyses of two-metre temperature
and relative humidity [33,34]. In the present study, we relied on those results and assumed that our
use of MESCAN would offer an improvement over CANARI when it comes to the horizontal surface
screen-level analysis.

4.3. Flow-Dependent Vertical Spreading of Information

The refined vertical distribution of two-metre temperature and humidity information relies
on a Kalman-filter approach. The analysed state is based on a methodology formally given
by Equation (1) and with the Jacobian of the observation operator Hi,j approximated following
Mahfouf et al. [13]. The approximation is obtained for each surface-soil data assimilation control
variable (xj) by performing one perturbed (δxj) model run and by projecting the results to observation
space yi. This procedure is carried out for each analysis time every third hour and can formally be
written as follows:

Hi,j =
∂yi
∂xj

∼=
∂yi(x + δxj)− yi(x)

δxj
. (8)

The main advantage, as compared to the reference system surface data assimilation procedure, is
that it results in a flow-dependent coupling between observations and surface-soil control variables.
Here, we have made the simplifying assumption that the background errors are uncorrelated and static.
The latter assumption means that our improved methodology falls within the category Simplified
Extended Kalman Filter (SEKF) as described by Draper et al. [35], where the flow-dependency of
the SEKF enters through the Jacobians of the observation operator only and not through the B matrix.

Applying the denotations of Equations (3)–(6), the background error standard deviations applied
in the vertical are 2.0 K for T2 and Ts. For w2 and wg, the background error standard deviations
used are 0.15 × (w f c − wwilt) and 0.1 × (w f c − wwilt), where w f c and wwilt are the volumetric
water content at field capacity and at permanent wilting point, respectively, which depend on
soil type [23]. The estimates of the observation error standard deviations are 1.0 K and 10% for
gridded screen-level temperature and relative humidity, respectively. For scatterometer-based wg,
the observation error standard deviations is set to a value of 0.4 × (w f c − wwilt ). The error estimates
are based on Mahfouf el al. [13] and so are the values used in the perturbations of the control vector in
the SEKF (10−4 for volumetric water content and 10−5 for temperature).

4.4. Use of Remote Sensing Data

There is a clear room for improvement regarding observation usage in the surface data assimilation
in the reference system. In particular, the use of soil moisture data obtained from remote-sensing
instruments is a promising next step of enhancement.

Use of satellite-based soil moisture products gives the potential to obtain an improved model
soil moisture description through surface-soil data assimilation. The polar orbiting MetOp-A and
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MetOp-B satellites carry an Advanced SCATterometer (ASCAT) instrument, which can provide data
related to soil moisture in the uppermost centimetres of the soil. The instrument is a radar backscatter
instrument, and the horizontal resolution of the product used here is roughly 25 km [36].

A HARMONIE-AROME-specific preprocessing is applied to link the soil-top layer moisture
product with the characteristics of the NWP model used. The pre-processing converts the
scatterometer-based product, for which data is provided in degrees of saturation (ranging from 0%
during dry conditions to 100% during wet conditions) to corresponding model moisture values.
This processing is carried out separately for each model horizontal grid-point covered by an
observation. Based on data from a two-month period, the maximum and minimum observed ASCAT
soil-top layer moisture values (obsprodmax

ascat and obsprodmin
ascat ) were identified, as well as the corresponding

maximum and minimum values in the top most level (one) of the soil model.
These estimates are then used to transform between the scatterometer product and the soil

moisture in the top-most level of the surface-soil model (wascat
g ). The transformation is then, at any given

time, applied to all model grid-points covered by scatterometer data. The procedure is demonstrated
in Figure 3 and can formally be described by the following equation:

wascat
g = wmodmin

g +
wmodmax

g − wmodmin
g

obsprodmax
ascat − obsprodmin

ascat

× (obsprod
ascat − obsprodmin

ascat ). (9)

Figure 3. Demonstration for 20130614 at 09 UTC of the procedure for conversion of scatterometer
product (unit: %) to wascat

g , uppermost model level soil moisture (unit: m3/m3).

Here, the model value from the grid point og the nearest neighbour to the observation position is
used. However, note that there is a significant difference in scales between the model data at 2.5 km
and the ASCAT product at 25 km. This inconsistency should ideally be taken care of by having
an observation operator that provides model equivalents at the same scale as the satellite observations,
based on how the satellite antenna pattern interacts with the underlying model data.

The preprocessing is applied independently for the two different satellites. Since different satellite
passages in general are associated with different spatial coverage, potential differences in characteristics
between differences passages are accounted for through the conversion carried out separately for each
horizontal position. Ideally, conversion between the scatterometer soil moisture product and model
soil moisture should be based on a period long enough to build the statistics covering a wide range
of plausible soil moisture states. The length of the time period used here was limited by practical
constraints, such as available computing resources. In future operational use, the period could be
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extended by using archived model data. The above approach is similar to the cumulative distribution
function (CDF) matching method proposed by Reichle et al. [37]. In the CDF case, each soil moisture
time series is rescaled by subtracting the mean and by dividing by the standard deviation and then uses
these normalized variables in the data assimilation. In the future, we will also investigate the effect of
using such methods for relating the ASCAT product to the control variables in the data assimilation,
as proposed by Dharssi et al. [38] and by de Rosnay et al. [31].

Ideally, the scatterometer soil moisture from the two different satellites should be used
simultaneously in the data assimilation and weighted according to their assumed error statistics.
However, our present version of the SEKF cannot make use of scatterometer soil moisture data from
more than one satellite at each horizontal position. Therefore, prior to the surface-soil data assimilation,
we search for collocated satellite-based soil moisture observations, and when such collocations are
found, preference is given to the one from MetOp-A and the one from MetOp-B is disregarded.
The functionality of the tool for handling of collocated scatterometer observations is demonstrated
in Figure 4.

Figure 4. Illustration of the collocation methodology of scatterometer soil moisture product from
MetOp-A (green) and MetOp-B (red) for 20140614 at 09 UTC: The resulting data to be used within the
surface-soil data assimilation are marked blue.

5. Organisation of Experiments

To investigate the potential of the surface data assimilation enhancements of the NWP system
on the severe precipitation cases presented in Table 1, a number of parallel experiments have been
carried out; see Table 2. The strategy of successive enhancements added to the reference system
surface data assimilation (labelled OI) when designing the four parallel model versions are illustrated
in the flow-diagram of Figure 5. The procedure is to first run the reference system (OI) for a two-week
period in data assimilation cycling mode, prior to each of the period of the three heavy precipitation
cases. Various aspects of the modelling system will spin up during this period, and the state obtained
at the end of the two-week period is then copied to all parallel experiments. Thereafter, all the parallel
experiments are run in cycling mode for a couple of days prior to the period of each heavy precipitation
case. In this way, the initial state of all parallel experiments are spun up to be consistent with
the respective data assimilation methods of the different experiments. This means that the model states
differ already from the very beginning of the heavy precipitation periods.
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Table 2. Experiment configurations.

Versions Description

OI Default surface data assimilation.
OI-MESC Identical to OI but with default background error statistics replaced by MESCAN.

EKF-MESC Identical to OI-MESC but with a simplified Kalman filter being used in the vertical.
EKF-MESC-SCAT Identical to EKF-MESC but using in addition scatterometer soil moisture product.

Figure 5. Model versions used in the parallel experiments and illustration of adding components
through successive enhancements of the reference system (OI).

One advantage of having four parallel experiments, not just one default experiment and one
additional, including all data assimilation enhancements, is that it allows for investigation of how
sensitive a precipitation forecast is to various surface data assimilation enhancements. Furthermore,
it allows for receiving an indication of predictability for each case and the sensitivity to variations of
the initial state variables. As shown in Table 1, the three cases that are used to evaluate the enhanced
surface data assimilation are associated with heavy precipitation, synoptically driven and influenced
by orography, as well as convective situations. The events evaluated all have the potential to be to
influenced by fluxes at the surface and, therefore, also by the workings of the surface data assimilation.

6. Results

The effect of the enhancements related to a refined methodology for obtaining a improved NWP
surface initial state is, in this section, demonstrated through various types of idealized studies, through
verification scores, and through subjective evaluation of a case study.

In Figure 6, the effect of using MESCAN structure functions for the background error statistics
is highlighted through assimilation of one single synop two-metre temperature observation located
in a mountainous European area. In case of MESCAN, the analysis increments are obviously influenced
by terrain. In our case, the observation characterize the temperatures in the valley rather than up in
the mountain regions. These terrain-related temperature variations are often seen in reality and are
better treated using MESCAN than with the reference background error statistics.
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Figure 6. Effect of screen-level temperature of a single temperature observation located in the valley in
the Alps and 1.5 K larger than the background equivalent (unit: K) using reference background error
statistics (left) and MESCAN (middle): Also shown is model orography in meters (right).

The flow-dependent relations between observations and surface-soil state variables induced by
the Kalman filter-based methodology is shown in Figure 7 and is compared to what is used in the
reference system. Shown are histograms of Jacobians derived from the surface-soil model grid-points
for a ten-day period. The distribution is shown for ∂RH2m

∂w2
(unit: 1/m3/m3) and ∂T2m

∂T2
(unit: K/K)

for daytime (blue) and nighttime (red) conditions. Due to different spatial variations of surface
and upper-air conditions, a clear variation of Jacobians can be seen for both daytime and nighttime
conditions. In addition, the Jacobian distributions vary between daytime and nighttime conditions.
For example, ∂T2m

∂T2
Jacobians are larger at 00 UTC than at 12 UTC, reflecting a stronger relation when

incoming short-wave radiation is insignificant and when the heat transfer from the deep soil layer to
the surface dominates. Couplings also have a clear variation from one day to another (not illustrated).

Figure 7. Statistics based on a ten-day period (20140621 to 2013062830) of Jacobian values for surface
grid-points for ∂T2m

∂T2
(left, unit: 1/m3/m3) and ∂RH2m

∂w2
(right,unit: K/K): Statistics are both for daytime

(blue histograms) and nighttime (red histograms) conditions.

The effect of assimilating scatterometer-based soil moisture information is presented in Figure 8.
Shown are the surface soil moisture data assimilation increments for one particular case on 20140625 at
18 UTC. The increments are presented as a percentage of change of the corresponding background value
for the enhanced version (EKF-MESC-SCAT) and the reference version (OI). For the enhanced system,
both scatterometer based data as well as screen-level synop humidity and temperature observations are
assimilated. For the reference system, on the other hand, only screen-level humidity and temperature
observations were used. To enable a fair comparison, the same background state was used (the one
from the EKF-MESC-SCAT experiment). For wg, the magnitude of the increments of the two versions
differ. Some clear similarities can be found between the two versions within the satellite swaths,
but differences can be identified as well. The reason why the satellite information dominates the
impact on the wg analysis increments is both due to the error specification of the data assimilation and
also due to the differences in the surface data assimilation approaches. When it comes to moisture in
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the second layer, w2, the satellite information is less dominant in the assimilation increments. This is
also the case for the soil temperatures in both layers.

Figure 8. Data assimilation increments of soil moisture in the top and second soil layers are shown
in the upper and lower panels, respectively. Results for the OI experiment are depicted to the left, and
the ones for the EKF-MESC-SCAT experiments are to the right. All maps refer to the date 20140625 at
18 UTC, and the unit is % of change of the corresponding background value.

6.1. Objective Verification

One way of measuring forecast quality is to evaluate the model-based weather predictions
against available observations. Bias and standard deviation of forecast errors are two typical
statistical measures used to quantify systematic forecast errors and the dispersion of the forecast
errors. For upper-air variables, the evaluation is typically carried out against radiosonde observations,
and for near surface variables, the verification is done against synoptic surface measurements. Synop
surface measurements exist over many more locations than radiosonde stations and are also available
much more frequently in time, allowing for a larger sample size for the verification.

The objective verification scores for the cases support that the enhanced system has a clear impact.
Although the time periods in the experiments are too short to demonstrate statistical significance,
we find the impact to be consistent with physics as argued below.

Verification statistics for upper-air the +12-h and +24-h range temperature and humidity
predictions are shown in Figure 9. The verification is against radiosonde measurements averaged over
all three cases (all within the period from 20130612 to 20140630) presented in Table 1.
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Figure 9. Verification statistics in terms of bias and standard deviation of predictions against radiosonde
observations of temperature (left, unit: K) and relative humidity (right, unit: %) averaged over the
three cases: Scores are accumulated over +12-h and +24-h prediction ranges and shown as a function
of the vertical level. Different colours are for different model versions within the parallel experiment.
The grey dashed curve illustrates the number of observations used within the verification.

Systematic error differences between the different model versions are most evident close to
the surface but extend up to mid-troposphere. It seems like the OI-based model version results in larger
systematic errors in humidity and temperature predictions as compared to other versions. In terms
of dispersion of prediction errors, the impact of methods when obtaining an improved surface-soil
moisture state are most clear for humidity and it extends from the surface up to the mid-troposphere.

In Figure 10, scores for two-metre temperature and humidity predictions verified against
synop measurements are illustrated. It can be seen that the run with all improvements included
(EKF-MESC-SCAT) produced the best forecasts in terms of two-metre relative humidity bias.
The improvement of the relative humidity bias (compared to OI) is also consistent with what was seen
for low levels when verifying against radiosonde observations in Figure 9. For the runs including only
one or two of the methodology enhancements (OI-MESC and EKF-MESC), there is no improvement
in terms of two-metre relative humidity bias as compared to the reference system (OI). The scores
are rather neutral when it comes to bias and standard deviation of two-metre temperature and
standard deviation of two-metre relative humidity. However, the lowest two-metre relative humidity
standard deviations are obtained for EKF-MESC-SCAT. The reason for smaller differences between
the experiments at zero forecast time as compared with longer ranges is that, at this range, the same
observations that have been used in the data assimilation are used also for verification.
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Figure 10. Verification statistics in terms of bias and standard deviation of predictions against synop
observations of two-metre temperature (left, unit: K) and two-metre relative humidity (right, unit:
%) averaged over the three cases: Scores are shown as a function of prediction length in hours, and
different colours are for different model versions within the parallel experiment. The grey dashed
curve illustrates the number of observations used within the verification.

Variations between handling of day- and nighttime predictions are illustrated in Figure 11,
which illustrates predicted mean values for two-metre temperature and two-metre relative humidity
predictions 24 h forward in time as compared with the corresponding observed values. For temperature,
the scores are relatively neutral between the experiments and all model versions are in good agreement
with synop observations and manage well to capture the daily cycle. On the other hand, forecasts of
two-metre relative humidity results in an underestimation of the daily cycle for all model versions.
In particular, it seems that nighttime predictions of relative humidity are too low as compared with
observations. It can be seen, however, that nighttime two-metre relative humidity forecasts are better
for the EKF-MESC-SCAT model version than for the other model versions. In addition, for daytime
(12 UTC) conditions, EKF-MESC-SCAT performs slightly better than the reference (OI).

Figure 11. Mean +24-h forecast of two-metre temperature (left, unit: K) and two-metre relative humidity
(right, unit: %) as compared with synop observations as a function of time within the day: Different
colours are for different model versions within the parallel experiment and for observations. Scores
are averaged over the three cases. The grey dashed curve illustrates the number of observations used
within the verification.

Figure 12 deals with verification scores for predictions of 12 h of accumulated precipitation
verified against all synop measurements for a prediction length between +12 and + 24 h. Clearly,
the scores depend on the version of parallel experiment, particularly for prediction ranges up to +18 h.
Looking at objective verification scores in the form of bias and standard deviation for precipitation,
it is clear that all the versions with improved components perform better than the reference version.
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Based on categorical precipitation scores, like the Kuiper skill score, the improvement is less evident
(not shown).

Figure 12. Verification scores in terms of bias and standard deviation of predictions against synop
observations of 12 h of accumulated precipitation (unit: mm/12 h) and averaged over the three cases:
Scores are shown as a function of prediction length in hours, and different colours are for different
model versions within the parallel experiment. The grey dashed curve illustrates the number of
observations used within the verification.

Thus, although the number of cases is too small to derive statistically significant verification
scores, the objective results indicate that the enhanced surface data assimilation results in improved
short-range NWP precipitation forecasts for severe events. This is consistent with the expectation that
a better surface initial state should improve the rainfall forecast.

6.2. Subjective Verification of a Case Study

In the relatively flat land area of the northern continental Europe, a large convective precipitation
system developed and moved towards the northeast during the days 26–27 July 2013. The precipitation
associated with the system is illustrated in Figure 13, which shows the rain rate in mm per hour as
obtained by making use of both information from the satellite-based SEVIRI and SSM/I (Special
Sensor Microwave/Imager) instruments based on a multi-sensor approach (https://navigator.eumetsat.
int/product/EO:EUM:DAT:MSG:MPE-GRIB).

To illustrate the capabilities of the reference (OI, upper-left) and enhanced (EKF-MESC-SCAT,
upper-right) HARMONIE-AROME NWP system to predict the heavy precipitation case, a +36-h
forecast launched from 20130726 at 00 UTC of 6 h of accumulated precipitation is presented in Figure 14,
together with verifying synop gauge observations (lower right). Comparison of the two figures
reveals that the location of the convective system in northern France is better predicted with
the enhanced version than with the reference version. While the location of the area with the most
intense precipitation is located too far to the west with OI, the location is better predicted with
EKF-MESC-SCAT, although still slightly too far to the west. For OI, an EKF-MESC-SCAT overestimates
the predicted precipitation amounts as compared to the synop gauge observed amounts. It should
furthermore be noted that both model versions predict a precipitation system in southwestern France
not supported by observations.

https://navigator.eumetsat.int/product/EO:EUM:DAT:MSG:MPE-GRIB
https://navigator.eumetsat.int/product/EO:EUM:DAT:MSG:MPE-GRIB
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Figure 13. Rain rate (mm/h) for a convective heavy precipitation event on 20130727 at 19.00 UTC
(upper left), on 20130728 at 03.15 UTC (upper right), and on 20130728 at 08.30 UTC (lower left):
The estimates are based on a multi-sensor approach.

Figure 14. Predictions at +24 h of 6 h of accumulated precipitation (unit:mm/6 h) valid between
20130727 at 00 UTC and 20130727 at 06 UTC with OI (upper left), EKF-MESC-SCAT (upper right), and
EKF-MESC-SCAT OI-UA (lower left): Also shown are the corresponding 6-h accumulated rain gauge
observations (lower right).

The differences between the two forecasts shown in upper panels of Figure 14 are due to
enhancements in deriving the surface initial state and secondary effects due to, for example, the cycling
procedure. At one particular time, there were differences not only in surface fields between the forecasts
of the different model versions but also in upper-air fields caused by differences in earlier surface
initial states and their force on the atmosphere. To illustrate that both the secondary effects from forces
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on the surface of the atmosphere of previous surface states and the effects from differences in current
surface states (also affected by cycling effects) play an important rule, one additional run named
EKF-MESC-SCAT OI-UA (UA - Upper-Air) has been carried out for 20130726 at 00 UTC. In this run,
upper-air conditions were taken from OI and surface conditions were taken from EKF-MESC-SCAT.
The resulting +36-h forecast of 6 h of accumulated precipitation is illustrated in the lower left
part of Figure 13. With regard to forecasting the location of the precipitation system in northern
France, the EKF-MESC-SCAT OI-UA is somewhat better than the OI-based forecast but worse than
EKF-MESC-SCAT, indicating important contributions from both cycling-effect making on upper-air
field and of the surface state differences. In Figure 15, it is furthermore demonstrated that such surface
state differences between OI and EKF-MESC-SCAT exists. The figure shows differences in the initial
state of the w2 soil moisture and the surface temperature for a forecast launched on 20130726 at 00 UTC.
The initial state of the EKF-MESC-SCAT version is more moist where the heavy precipitation system
develops and propagates. The w2 differences are of the order of 0.03 m3/m3, corresponding roughly
to the magnitude of the background error standard deviation derived by Mahfouf [39]. In addition,
a surface temperature difference of about 2 K exists between OI and EKF-MESC-SCAT. In general,
slightly higher surface temperatures are found for EKF-MESC-SCAT than for OI in the area of activity
of the heavy precipitation system in northern France, although some areas with lower temperatures in
EKF-MESC-SCAT also exist. Larger w2 soil moisture and top soil level temperatures means enhanced
surface to atmosphere heat fluxes creating static instability and conditions favourable for heavy
convective precipitation. Interestingly, the location of the area of where EKF-MESC-SCAT generated
precipitation in accordance with gauge observations while OI did not coincide with the area where the
surface EKF-MESC-SCAT surface initial state is more moist and warmer than the OI surface initial state.

Figure 15. EKF-MESC-SCAT and OI w2 soil moisture (unit: m3/m3) and and top soil level temperature
(right: unit: K) differences for the analysis valid on 20130726 at 06 UTC.

Encouragingly, the refined approach for obtaining an improved surface initial state resulted
in a better prediction of the location of the area of heavy convective precipitation. As pointed out by
Mahfouf [39], the magnitude of ASCAT data on the the w2 assimilation increments for one particular
assimilation cycle is dependent on the Jacobian ∂wg

∂w2
, of which the magnitude is dependent on the

assimilation cycle. Here, we use a rather short assimilation cycle of 3 h, implying smaller but more
frequent updates as compared to application of a longer assimilation cycle.

7. Conclusions

This paper presents improved methodologies and enhanced observation usage for data assimilation
with a km-scale limited area modelling system. Although one or two of these improvements have been
applied before in research and operational systems, they are combined here in a novel system.

Demonstration was made of the performance of the refined NWP system. Three case studies
involving strong precipitation events have revealed that the enhancements have an impact on
the short-term prediction of precipitation during these events. This is illustrated both by verification
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statistics and by subjective evaluation of one particular event. It is furthermore shown that
the improved procedure for obtaining a surface initial state can lead to a better prediction of severe
precipitation events. However, simulations of a much larger number of strong precipitation cases
are needed to obtain statistically significant evidence that these enhancements do indeed improve
the prediction of heavy precipitation events. Here, the main conclusions are that the surface data
assimilation enhancements do have an impact on the prediction of severe precipitation events and that
they can improve these forecasts in a way consistent with the expectation that a better surface state
improves the rainfall forecasts.

In future work, we will address the difference in scales of representation when comparing
values from the model (2.5 km) with the scatterometer product (25 km). Furthermore, issues related
to the sharp gradients in the analysis increments occurring close to borders of the satellite swaths
need to be addressed. We should furthermore investigate the effect of applying CDF matching
methods to relate the ASCAT product to the control variables in the data assimilation, as proposed by
Dharssi et al. [38] and by de Rosnay [31]. In addition, extended parallel experiments will be carried
out in a preoperational context. These runs should also include various types of quality control, like a
background check [40] and rejection in particular areas [39].
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