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Abstract: The evaluation of several climatological background-error covariance matrix (defined
as the B matrix) estimation methods was performed using the ALADIN limited-area modeling
data-assimilation system at a 4 km horizontal grid spacing. The B matrices compared were derived
using the standard National Meteorological Center (NMC) and ensemble-based estimation methods.
To test the influence of lateral boundary condition (LBC) perturbations on the characteristics of
ensemble-based B matrix, two ensemble prediction systems were established: one used unperturbed
lateral boundary conditions (ENS) and another used perturbed lateral boundary conditions (ENSLBC).
The characteristics of the three B matrices were compared through a diagnostic comparison, while the
influence of the different B matrices on the analysis and quality of the forecast were evaluated for the
ENSLBC and NMC matrices. The results showed that the lateral boundary condition perturbations
affected all the control variables, while the smallest influence was found for the specific humidity. The
diagnostic comparison showed that the ensemble-based estimation method shifted the correlations
toward the smaller spatial scales, while the LBC perturbations gave rise to larger spatial scales. The
influence on the analysis showed a smaller spatial correlation for the ensemble B matrix compared to
that of the NMC, with the most pronounced differences for the specific humidity. The verification of
the forecast showed modest improvement for the experiment with the ensemble B matrix. Among
the methods tested, the results suggest that the ensemble-based data-assimilation method is the
favorable approach for background-error covariance calculation in high-resolution limited-area data
assimilation systems.
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1. Introduction

Numerical weather prediction (NWP) models are the main source of information on the future
state of the atmosphere. As NWP models are based on partial differential equations that describe
the evolution of the state of the atmosphere, accurate knowledge of the initial conditions is essential.
To address this problem, many methods and approaches have been developed and have become
an important part of atmospheric science known as data assimilation (DA) (e.g., [1]).

DA methods were mainly developed in the global NWP model framework and were subsequently
adopted in limited-area models (LAMs). A detailed mathematical description of operational DA
methods can be found in [2]. In [3] a survey of DA methods used in LAMs is presented, along
with the challenges in the research and development in convection permitting NWP models. DA
combines different sources of information about the state of the atmosphere with the aim to obtain
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the best possible estimate of its true state. As all sources of information are imperfect, and to produce
the optimal combination, the error statistics (of this information) must be estimated as accurately
as possible.

Currently, variational DA is the method of choice for many NWP centers around the world for
both LAM and global models. Variational DA seeks the model state (analysis) that is the statistically
optimal combination between a background field (usually a short-range forecast) and observations by
minimizing a cost function. One of the important components of the DA system is a background-error
covariance matrix. It influences the analysis field because it determines the weight of the background
field with respect to the observations and determines how the information from observations is spread
spatially and temporally to the model grid-point space. Additionally, in multivariate formulation,
the background-error covariance matrix spreads information from one to the other model variables.

In theory, to be able to estimate a background error, the true state of the atmosphere should
be known. As this is not possible, one seeks an appropriate surrogate of the background error that
should have similar statistical properties, and presently, mostly forecast differences are used. The
forecast differences are computed either between two forecasts that are valid at the same time but
initialized at different times or from an ensemble of forecasts. The so-called NMC method [4] employs
the first approach, where 48- and 24-hour or 36- and 12-hour forecast differences are usually used
for evaluation of climatological background-error covariance matrix (B matrix). The reason for using
the 24-hour forecast differences is that it avoids including errors in modeling the diurnal cycle in the
background error [5]. The NMC approach is rather simple to use because it requires forecasts that are
usually present in the archives, so it was the first choice of many global and LAM models. Although
the NMC method has its potential deficiencies (e.g., [6]), according to Table 4 from [3] it is one of
the most widely used methods for obtaining the B matrix. Therefore, interest in studying various
aspects of the NMC B matrix continues also in recent years (e.g., [7,8]). For the LAM, a variant of
the NMC method called the lagged NMC method [9] was developed where both forecasts that are
initialized at different times use the same global LBCs (i.e., initialized at the same time). Additionally,
a shorter forecast uses the initial conditions from the global model (interpolated to the LAM grid). The
second approach computes forecast differences from an ensemble of perturbed assimilation cycles
(e.g., [5,10,11]). In the LAM context, such B matrix is estimated from a sample of differences between
ensemble members obtained either from the downscaling of a host ensemble (e.g., [12–14]) or from
ensemble of perturbed assimilation cycles of the LAM (e.g., [15–18]). Ensemble-based methods sample
forecast differences over some period of time and thus also as NMC provide estimate of climatological
B matrix. With increase of computer power available, more attempts to increase ensemble size and to
estimate daily (flow-dependent) B matrices were made (e.g., [17,19,20]). While this approach was found
beneficial, for many meteorological centers it is not operationally feasible which is why climatological
B matrix is still widely used.

The comparison of the B matrices obtained by NMC and ensemble-based estimation method
was studied for the global system (e.g., [10,21]) and for the LAM (e.g., [13,14]). The NMC method
suffers from two main drawbacks. First, it includes long forecast ranges (24 or 48 hours), which
are usually much longer than the ones used in the DA cycle. The second drawback is the analysis
step representation, where instead of the analysis differences as in the ensemble method, in the
NMC method analysis increments are involved, as shown in [13]. This leads to overestimation of
the correlations in both the horizontal and vertical. Additionally, for the NMC method in data-poor
regions, small forecast differences are expected, and the background-error variances are likely to be
underestimated. While having a significant influence on the B matrix characteristics, the influence of
the sampling method on the quality of the model forecast was modest for the global models [10,11,21].
Previous research has shown that, with the exception of using different sampling strategies, the B
matrix characteristics are also influenced by (i) the model resolution (e.g., [12,16]), (ii) the geographical
location (the location of the model domain) (e.g., [10]) and (iii) the weather regime during the sampling
period (the seasonal dependency) (e.g., [19]).
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This study aims to provide additional further insights into differences between NMC and
ensemble-based B matrices with an aim to improve operational application of those matrices in
different data-assimilation systems. For comparison of different formulations, we estimated three
new B matrices, the first using the standard NMC method and the two latter ones using different
ensemble-based methods. Due to constraints regarding computing resources required to run real-time
EDA with many members operationally, our focus was using EDA to estimate climatological B
matrix over the same period as NMC in order to take into account the seasonal/weather regime
influence on the B matrix characteristics. Also, to have same sample size as for NMC we have
opted to use only two ensemble members. Such a comparison in the LAM framework differed from
most of the other studies in the field in several aspects. First, the NMC and ensemble B matrix was
sampled over the same time period. A similar diagnostic comparison in the LAM framework was
performed in [13] using samples obtained by downscaling the global model ensemble (as opposed
to the ensemble of perturbed assimilation cycles of LAM used here). It was shown by [16] that the
background-error covariances from the downscaled ensemble differed from those calculated from the
ensemble of perturbed assimilation cycles of LAM. The comparison of the NMC, downscaled global
model ensemble and perturbed assimilation cycle LAM ensemble B matrices was also performed
in [14], but sampling in the different methods was performed neither for the same time period nor
for periods of the same length. Second, the B matrix was estimated for the NWP model with a 4 km
horizontal grid spacing. A similar horizontal resolution was used in [18] but it was dealing only with
ensemble methods. Third, the B matrix was estimated for the domain that covered a geographically
diverse area of southern Europe, including the Mediterranean Sea, several mountain chains (the Alps,
Dinaric Alps, and Apennines), and several plains and lowlands, and these topographical features have
an important influence on the weather conditions specific to this area and pose challenges to optimal
data assimilation [22]. This is likely to result in some differences compared to the studies performed in
other regions. Fourth, our study used a somewhat smaller domain for the calculation of the B matrix
compared to most of the other aforementioned studies. The size of the domain in our experiments
resembled the domains of operational numerical weather prediction models of many countries in the
region, which typically cannot afford using large domains due to computational constraints. Because
of the small horizontal domain of the model, the influence of LBC perturbation on the characteristics
of ensemble-based B matrix could be enhanced.

The ensemble-based B matrices were estimated from a 2-member ensemble of perturbed
assimilation cycles of the NWP model (EDA). The first EDA setup used the same LBCs for all members
while in the other setup perturbed LBCs from the global ensemble were used. Using the same LBCs
for EDA members was inspired by [14]. Although neglecting the LBC errors led to an unrealistic setup,
our approach aimed to test the influence of the LBC perturbations on the characteristics of the B matrix
for a relatively small LAM domain (the influence of the LBCs could be substantial). The statistical
properties of the ensemble-based and NMC B matrices were compared, and the influence of using
different B matrices in the LAM DA system on the analysis and quality of the model forecast was
assessed. Such ensemble-based B matrix with unperturbed LBCs was estimated and used in the
work of [18], with the aim of suppressing the B matrix influence on the large scales in the analysis, as
those were included in their LAM from the global model analysis via digital filter blending. As we
did not use such a procedure (digital filter blending), the suppression of one source of background
errors would not be realistic (except for diagnostic purposes) in our forecasting system. Therefore, the
ensemble-based B matrix with unperturbed LBCs was not used in the verification experiments.

In Section 2, the methods, model and used datasets are described. The results of the diagnostic
study and the influence of the different B matrices on the analysis and quality of the forecasts are
presented in Section 3. The main results are summarized in Section 4.
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2. Materials and Methods

2.1. Model

The model used in this study was the spectral NWP ALADIN model [23] in its hydrostatic
form with a 4 km horizontal grid spacing, quadratic grid and 73 vertical levels (ALADIN-HR4).
The horizontal domain of the model had 480 × 432 horizontal grid points and can be seen in Figure 1.

Figure 1. Normalized standard deviation of the surface pressure for (a) ENS, (c) ENSLBC and (e) NMC
experiments. The normalized standard deviation of the specific humidity at level 34 (approximately
500 hPa) for (b) ENS, (d) ENSLBC and (f) NMC experiment. The normalization was performed by
dividing the standard deviations by the maximum horizontal value of the standard deviation. The
maximum values of the standard deviations for the surface pressure were: ENS: 0.6 hPa; ENSLBC: 0.77
hPa; NMC: 6.76 hPa. The maximum values of the standard deviations for the specific humidity at level
34 were as follows: ENS: 0.26 g/kg; ENSLBC: 0.29 g/kg; NMC: 0.55 g/kg.
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For the physics parameterizations, the so-called ALARO package [24] developed for convection
permitting resolution was used. Within it, the convection scheme is split into two parts to separate
precipitating (moist deep convection) and non-precipitating processes (shallow convection). For the
first one, the Modular Multiscale Microphysics and Transport scheme (3MT; [25]) has been developed,
with intention to be used at so-called convection permitting resolutions. 3MT is a prognostic, mass-flux
type of scheme where system is closed with equations for updraft and downdraft velocity and mesh
area fractions occupied by updraft and downdraft, as well as for entrainment and convective clouds.
The second part of the scheme is treated within the turbulence parametrization through modification
of Richardson number after [26]. More details about the model settings can be found in [27]. In its
operational implementation at the Croatian Meteorological and Hydrological Service (DHMZ), model
forecast is initiated 4 times per day (at 00, 06, 12 and 18 UTC), with a forecast range of up to 72 hours.
The model is initiated without a filtering procedure (e.g., digital filter) from a 3-hourly DA cycle.
The DA setup is similar to the one detailed in [28], except that it uses ALADIN-HR4 with a 3-hourly
cycling. B matrix was estimated by the standard NMC method calculated from a sample of 36- and
12-hour forecast differences obtained from a three-month forecast archive of 2015. In the following
text, some main characteristics of the DA system are presented. The data assimilated includes surface
observations (obtained from the global exchange and additional local automatic stations), upper-air
soundings, aircraft measurements, wind vectors derived from satellite images and infrared radiances
from geostationary satellites. The analysis is performed in three steps: (i) replacing the model sea
surface temperature with the OSTIA analysis [29,30]); (ii) updating the soil variables using information
from the 2 meter temperature and relative humidity analysis obtained by optimal interpolation [31];
(iii) upper-air three-dimensional analysis (3DVar) (Fischer et al., 2005) using all previously mentioned
observations. The ALADIN-HR4 model is coupled with three hourly frequency to the deterministic
run of the Integrated Forecast System (IFS, ecmwf.int/research/ifsdocs/) global model.

2.2. Methods

To specify the background-error covariances in the ALADIN model, the method of control variable
transform was used [32]. Some of its most important properties are as follows: the (climatological)
covariances are estimated from regional and temporal samples of the forecast differences using
a spectral approach; the covariances are constructed as isotropic and homogeneous; the autocovariances
are nonseparable in the spectral space, which implies a dependence of the horizontal correlations
with the height and allows varying of the vertical correlations with the horizontal scale (the total
wavenumber); and the cross covariances are modeled using multiple linear regression, by which new
control variables are obtained (vorticity, unbalanced divergence, unbalanced temperature, unbalanced
surface pressure and unbalanced specific humidity). In this work, the B matrix was estimated from a set
of samples obtained by three error simulation methods: (i) the NMC–B matrix estimated from samples
obtained by the standard NMC method; (ii) the ENS–B matrix estimated from samples obtained by the
ensemble method using unperturbed LBCs; and (iii) the ENSLBC–B matrix estimated from samples
obtained by the ensemble method using perturbed LBCs.

2.2.1. NMC Method

The first set of forecast differences was calculated using the standard NMC method, where the
existing archive of ALADIN-HR4 operational forecasts was used. The samples were calculated as
the difference between the 36-hour forecast and the 12-hour forecast of the subsequent day, and this
procedure was performed for the model forecasts initialized at 00, 06, 12 and 18 UTC during the period
of 10 December 2016–27 February 2017, which resulted in 316 samples. One forecast difference could
be written as:

εNMC
b = x36 − x12 (1)
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where x36 and x12 denote the state vector of the 36- and 12-hour forecasts, respectively. This sample
could be considered to be the difference between two 12-hour forecasts where x36 is a 12-hour forecast
that starts from different initial conditions compared to the initial conditions of the x12 forecast (and
uses different LBCs). The difference in the initial conditions was the result of several subsequent
DA cycles (8 in this case as operationally, 3-hourly cycling was used). For each of these DA cycles,
an analysis increment was added to the background field (the analysis step), and then 3-hourly forecast
was performed (the forecast step). Similar to [13] where the operators were assumed to be linear, and
taking into account the 3-hourly cycling, the first analysis perturbation (εa) added to the background
at time ti (33 hours before verification time) was:

εi
a = dxi = K(yi − Hxb

i) (2)

where K is the gain matrix given as K = BHT(HBHT + R)−1, H is the observation operator, y is the
observation vector, and xb is the background state vector. Exponent T denotes adjoint operator and R
and B are the observation and background-error covariance matrices, respectively. This perturbation
was evolved by the forecast model in the next 3 hours to provide background perturbation:

εi
b = Mεi

a (3)

where M is the operator corresponding to the forecast evolution during a period of 3 hours.
By repeating this procedure for the next 7 assimilation cycles, it can be shown that the forecast
difference at the verification time is given by the following equation:

εNMC
b = εi+11 = M4(

8

∑
j=1

(M8−jdxi+j−1)) (4)

where Mj is the operator corresponding to the forecast evolution during a period of j x 3 hours and dxi

is the analysis increment at time ti (note that ti+1 is 3 hours after ti). From Equation (4) it can be seen
that the forecast difference (εNMC

b ) is the result of the accumulation (∑) of several analysis increments
(dxi) and 12-hour forecast (M4). Values of variances obtained by this method were used in diagnostic
plots without rescaling, while rescaling of variances was done before setting up DA cycle that was
used to initiate forecasts used for verification.

2.2.2. Ensemble Method

Two other sets of samples were obtained from the EDA system with 2 members that had the same
setup as the operational DA system except for using a 6-hourly cycling frequency instead of the 3-hourly
frequency used operationally. The choice of 6-hourly cycling was made to decrease the computational
cost of the experiments because limited computer resources were available. The difference between the
two EDA systems was the following: one was using LBCs provided by the IFS global ensemble [33],
while the other used the same LBCs provided by the deterministic IFS forecast for all ensemble
members. For both EDA systems, the assumption of a perfect model was used. The samples were
obtained by calculating the differences between the 6-hour forecasts for the two ensemble members
every 6 hours. The EDA was started on 20 November 2016 from the same background field for all
ensemble members. Before the analysis step, two different observation vectors were obtained by
perturbing real observations vector. This was done by adding perturbations that had a Gaussian
distribution with a zero mean and standard deviation corresponding to the estimated observation
error standard deviations. Using this procedure, the two perturbed analysis and a subsequent two
perturbed 6-hour forecast (the new backgrounds) were obtained. The first 20 days were considered to
be the system spin-up and for the computation of the statistics, the period from 11 December 2016.
12 UTC–28 February 2017. 06 UTC was used to be consistent with the NMC sampling strategy, thus
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providing a sample of 316 differences for estimating the B matrix. One pair of forecast differences can
be expressed as:

εENS
b = xb,1 − xb,2 (5)

where xb,1 and xb,2 denote the pair of state vectors of the ensemble member 6-hour forecasts.
Following [13], at time ti−1, two analyses are available, and their difference is:

εi−1
a = xi−1

a,1 − xi−1
a,2 (6)

These analyses are then evolved by a 6-hour model integration, and if the assumption of a perfect
model is used, the difference between the two backgrounds εb at time ti, reads:

εi
b = Mεi−1

a (7)

By following the algorithm of the ensemble method, those two backgrounds are then combined
with two observation sets (obtained by perturbing the observations) in the analysis procedure.
The analysis difference εi

a at time ti could be written as:

εi
a = εi

b + K(εi
o − Hεi

b) (8)

Finally, by evolving these two analyses with a 6-hour model integration, the difference between
the two backgrounds εb at time ti+1 reads:

εENS
b = εi+1

b = Mεi
a = M(εi

b + K(εi
o − Hεi

b)) (9)

where εi
a is the vector of the analysis difference between two ensemble members at time ti, εi

b is the
vector of the background field difference between two ensemble members at time ti, εi

o is the vector
of differences between two different observation sets (for two corresponding ensemble members) at
time ti, K is the gain matrix, H is the observation operator and M is the operator corresponding to the
forecast evolution during a period of 6 hours. From Equation (9), it can be seen that the differences in
the forecasts for the ensemble method are the result of the different initial conditions (εa), and they
are the result of the explicit observation perturbations (εo) and implicit background perturbations (εb).
Additionally, in one of the ensemble experiments (EDA with perturbed LBCs),the LBC perturbation
contributed to the forecast difference (although not explicitly written in Equation (9)). Comparing
Equation (9) with Equation (4), it can be noted that much larger forecast ranges were present in the
NMC method. For the estimation of the B matrix, the difference between two perturbed ensemble
members is used (rather than the differences between the perturbed and unperturbed control members).
As shown by [13], this result is estimating twice the background-error covariances and the result must
be divided by a factor 2. It was also shown that the main conceptual difference between the NMC and
the ensemble method is that in the analysis error equation, the NMC method replaced I − KH by −KH

εi
a = (I − KH)εi

b + Kεi
o ≈ −KHεi

b + Kεi
o (10)

which is valid only in data rich regions and where the background and observation error variances
are approximately the same (the observations have similar quality and spatial error structures as
the background). On the other hand, in areas where the observation network is sparse or where
observations have a poor quality (large error variance), small analysis increments are expected, and
the analysis error is expected to be large. Additionally, it can be shown that if the observation errors
are less spatially correlated than the background errors. −KH tends to act as a low-pass filter (in
contrast to the high-pass filter characteristics of I − KH) resulting in a larger scale analysis increment
compared to the analysis error, thus leading to the overestimation of the analysis error correlations by
the NMC method.



Atmosphere 2019, 10, 570 8 of 25

3. Results

3.1. Diagnostic Comparison

3.1.1. Geographical Distribution of the Standard Deviations

To address the characteristics of the estimated B matrices, the standard deviations (STD) in the
grid-point space were computed and compared. In Figure 1 the normalized STD for the surface
pressure and specific humidity at level 34 (approximately 500 hPa) of the samples used in B matrix
estimation are plotted. The normalization was performed by dividing the STD by the maximum
horizontal value of the STD. The maximum values of the STD were similar for the two ensemble
experiments (ENS p: 0.6 hPa; ENSLBC p: 0.77 hPa; ENS q: 0.26 g/kg; and ENSLBC q: 0.29 g/kg)
but were significantly larger for the NMC experiment (NMC p: 6.76 hPa and NMC q: 0.55 g/kg).
The maximum STD values for the surface pressure and ensemble experiments were comparable to
those found in [14], but they were larger than those of their NMC experiment (3.53 hPa for their NMC
experiment). The patterns found in the STD maps could be explained by several overlapping effects,
and they are discussed in the following text.

(a) Influence of the weather regime

Large STD were expected for the NMC and ENSLBC samples at the N and the NW part of the
domain as synoptic disturbances were common in this area during the winter period used for obtaining
samples. These disturbances influenced the faster spreading of information from the LBCs into the
domain and decreased the predictability of the model state in this area. For the ENS, wider areas of
low LBC STD were expected at the N and the NW part of the domain due to the stronger advection
from the boundaries caused by synoptic disturbances. This is indeed true for the STD of the surface
pressure in the ENS sample, where a small surface pressure STD could be found at all borders with the
largest area of small STD at the N and NW parts of the domain. This effect was not as pronounced for
the specific humidity. For the NMC, the largest pressure STD was found in the northern (N) part of
the domain, and the largest STD of the humidity was at the W boundary of the domain. On the other
hand, for the ENSLBC experiment, the larger STD of the surface pressure were found at all model
boundaries with the largest amplitudes on the N, NW and S (SE) boundaries.

(b) Influence of the method used for obtaining the samples

As discussed at the end of Section 2, in data-poor areas, small forecast differences are expected
for the NMC samples. This is one of the shortcomings of the NMC method because in this area,
the background error should be higher as the analysis had less information to reduce the error
locally. On the other hand, the STD in the data-poor area was expected to be higher for the ensemble
differences, as in this area, there were no observations to anchor the analysis and the subsequent
forecast. The observation density for the surface observations (also to some extent for upper-air
observations) was small at the S part of the domain (mostly covered by sea); thus, lower NMC STD
were expected in that area and higher for the ensemble samples. For both ensemble samples, the
land-sea contrast was visible in the surface pressure and humidity STD fields with the higher values
found over sea. A similar distribution could also be found for the upper-air temperature and wind
fields (not shown). For the NMC samples, this land-sea contrast was not visible for the surface pressure
and humidity, but it was clearly visible for the upper-air temperature and wind fields (not shown)
with smaller STD values over sea.

(c) Influence of the LBCs

The influence of LBC perturbations was expected predominantly near the lateral boundaries of
the domain with a larger affected area at the N due to the influence of the weather regime. As all the
members of the ENS experiment had the same LBCs, the STD for the surface pressure was the lowest
at the boundaries of the domain. This area of smaller STDs spread toward the center of the domain
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with the largest area of small STD at the N and NW of the domain. However, this area of small STD,
although present, was not as noticeable for the humidity. Neglecting the LBC perturbation in the ENS
experiment is deficient by construction, but it is an interesting setup to visualize the LBC influence in
the surface pressure STD plot. In contrast, in the ENSLBC experiment, where perturbed LBCs were
used, the largest surface pressure STDs were found at the edges of the domain (mainly at the N, NW
and SE) from where they were decreasing toward the center of the domain. The humidity STD patterns
were similar between the ENS and ENSLBC experiments. The influence of the LBC perturbations
on the STD in the ENS (ENSLBC) experiment for the upper-air temperature fields (not shown) was
similar to that for the surface pressure with the lowest (highest) STD at all domain boundaries. For
both ensemble experiments, the wind field STD had a maximum in the central and the southern
part of the domain (not shown). For the NMC samples, the geographical distribution of STD for the
upper-air wind fields and temperature differed from that found in the ensemble experiments, with
the maximum amplitude found in the N of the domain (not shown). For the NMC experiment, which
also used different LBCs (from the IFS deterministic run) in the +12 and +36-hour model forecasts, the
highest surface pressure STD were at the northern edge of the domain from where they were spreading
southerly inside the domain. For the humidity, the largest STD were found at the western edge of the
domain, and the overall pattern was different than that found for the ensemble methods. The LBCs
that were used in the NMC experiment came from a deterministic IFS model run with a horizontal
grid spacing of approximately 9 km, while the LBCs used in the ENSLBC experiment came from a
coarser IFS ensemble with a horizontal grid spacing of approximately 18 km. A notable difference
was found between the NMC and ENSLBC STD patterns, as higher NMC STD were found mainly in
the N part of the domain, while for the ENSLBC effect of LBC perturbations was visible at all lateral
boundaries. Noticeable differences in the horizontal grid spacing between the ALADIN-HR4 and IFS
ensembles for the ENSLBC experiment could lead to discrepancies between the development of the
model state in the host and driving model and influence the boundary area on all sides of the domain,
but this assumption should be further investigated, which was not the aim of this paper.

Considering the previously mentioned effects, it is important to note that the specific humidity
patterns of STD were rather similar between the two ensemble experiments. This could imply that
humidity background errors were less sensitive to the LBC perturbations and thus more sensitive to
analysis perturbations (the latter being the same in both ensemble experiments). The LBC perturbation
influence on the standard deviations in the grid space was also discussed in [14], and it was found
that the LBCs influenced a relatively small part of their domain while they influenced a relatively
large part of the ALADIN-HR4 domain. Having a small horizontal domain of the model, with a
large part influenced by LBC perturbations, and taking into account that during the estimation of
the B matrix averages over the domain were used, LBC perturbations could have a considerable
effect on the B matrix characteristics (increase of background-error variances and influence on
background-error correlations).

Similar STD maps could be used in 3DVar, but this was not the case in the conducted experiments;
we instead used them for diagnostic purposes.

3.1.2. Horizontal Spectral Densities

The horizontal correlation spectra were obtained by normalizing the variance spectra by the total
variance to compare the contributions of the different horizontal scales to the correlation function shape
for the different experiments. The horizontally averaged variance spectra were calculated according to
Equation (A3) of [32]. They are plotted for all control variables (surface pressure, temperature, specific
humidity, vorticity and divergence) in Figure 2 (for vertical level 34, near 500 hPa).
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Figure 2. Horizontal correlation spectra of (a) temperature, (b) specific humidity, (c) divergence and
(d) vorticity on level 34, which is located approximately near the 500 hPa level for the ENS (blue; full
lines), ENSLBC (orange; dashed lines) and NMC (green; dotted lines) experiments.

The relative amount of the large-scale variance (small wave numbers) was the largest for NMC
experiment, with the ENSLBC experiment in the middle and the ENS experiment with the smallest
amount of large-scale variance. This result is consistent with findings in [13], where it was shown that
the large-scale part of the spectrum was (i) decreased for the ensemble method compared to the NMC
method because of the involvement of the analysis error instead of the analysis increments and the
shorter forecast ranges in the evolution of the model state errors and (ii) increased for the NMC method
due to the different LBCs used (as in ENSLBC). The shape of the correlation spectra was shifted toward
the smaller scales (especially for the ENS method) for both ensemble methods compared to the NMC
method, and this shift was more pronounced for the surface pressure, temperature, humidity and
less pronounced for the divergence and vorticity. The difference between the shape of the correlation
spectra for the ENSLBC and NMC experiments was found to be smallest for the divergence at all levels.
The smallest difference between the correlation spectra of the ENSLBC and ENS experiments was
found for the humidity. This result suggests that the LBC perturbations in the ENSLBC experiment
have a small influence on the shape of correlation spectra of humidity background error. Similar
shapes of the correlation functions and shifts to smaller scales for the ensemble method compared to
NMC were also reported in previous research (e.g., [13,14]). For all experiments a shift of correlations
spectra towards the large scales by going from the surface to the model top was noticed (not shown).
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3.1.3. Standard Deviation

The vertical profiles of the horizontally averaged standard deviations for the temperature, specific
humidity, vorticity, and divergence for the three experiments are plotted in Figure 3.

Figure 3. Vertical profile of the horizontally averaged standard deviations for (a) temperature,
(b) specific humidity, (c) divergence and (d) vorticity for the ENS (blue; full lines), ENSLBC (orange;
dashed lines) and NMC (green; dotted lines) experiments.

They were obtained from sum of variance contributions from different horizontal wave numbers
at a given model level according to calculations shown in [32]. The largest standard deviations were
found for the NMC experiment, while the smallest ones were for the ENS experiment (as it lacks
spreads near model boundaries, by construction). The ENSLBC standard deviations were between
those of the ENS and NMC experiments, which could be expected from the variance spectra discussed
in Section 3.1.2. Additionally, the smallest difference between the two ensemble methods was for
the specific humidity. It was also showed in [13,14] that using ensemble methods decreased the STD
magnitude for all control variables compared to the NMC method. Although there is a clear distinction
between values of STD for NMC and ensemble-based B matrices, those are usually scaled before using
them in DA.
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3.1.4. Horizontal and Vertical Correlations

The vertical profiles of the horizontal correlation length scales were estimated as in [32] and are
plotted in Figure 4.

Figure 4. Vertical profile of the horizontal correlation length scale for (a) temperature and surface
pressure, (b) humidity, (c) divergence and (d) vorticity for the ENS (blue; full lines), ENSLBC (orange;
dashed lines) and NMC (green; dotted lines) experiments.

The horizontal correlation length scale at a given level is inversely proportional to the variance
spectrum multiplied by the square of the wave number. Such a formulation puts weight on the short
scale correlations, which is the reason the correlation length scales are small in terms of the absolute
values. Therefore, because of the tendency of the correlation spectra to shift to large scales when
going to higher levels, increase in the length scale with height is expected. This was the case for
the temperature, vorticity and divergence, while the correlation length scale was noisy for humidity
above 200 hPa (probably because there is only little humidity at this level). The largest differences
among the correlation length scales for the different experiments were found for the temperature
and specific humidity, while for the vorticity and divergence, the differences were negligible. The
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highest correlation length scale amplitudes were for the NMC experiment and the smallest for the ENS
experiment with the ENSLBC values in between. The shape of the correlation length scale vertical
profile was more similar for the two ensemble methods for the temperature and humidity compared
to that of the NMC method.

The horizontal correlation lengths were comparable with those of previous research for models
with a similar horizontal grid spacing (e.g., [18]) except for shorter values of the horizontal correlation
length in stratospheric levels (especially for the vorticity and divergence). The decrease in the length
scales for the ENS and ENSLBC experiments compared to that of the NMC experiment agreed with
the decrease in the variance at the large scales, as discussed in Section 3.1.2. The vertical profiles of the
vertical correlations were calculated by averaging the vertical covariances over the horizontal wave
numbers, and they are plotted with reference to model level 34 (approximately 500 hPa) in Figure 5 for
the temperature and vorticity.

Figure 5. Vertical profile of the horizontally averaged vertical correlations at level 34 (approximately
500 hPa) for (a) temperature and (b) vorticity for the ENS (blue; full lines), ENSLBC (orange; dashed
lines) and NMC (green; dotted lines) experiments.

The NMC experiment had the broadest vertical correlations, while the sharpest one was for the
ENS experiment. Additionally, the ENS and ENSLBC experiments resulted in more similar correlation
shapes compared to that of the NMC experiment.

The vertical profiles show that for the temperature negative correlations (up to −0.25) were found
above the maximum correlation near 500 hPa. This may reflects the vertical structure of the upper-level
thoughts in the mid-latitudes, where upper-level tropospheric cold air is associated with a decrease of
the tropopause and a warming of the air above it (e.g., [34]). Similar results are found below 500 hPa,
albeit not as significant and consistent. While the shape of the correlation profile of the temperature
was rather symmetrical above level 34 (approximately 500 hPa) for the ensemble experiments, negative
correlations were found mainly above that level for the NMC experiment. Similar asymmetric features
within the NMC temperature correlations were also found in [14].

The diagnostic study presented above suggest that the ensemble-based B matrix is better adapted
for use in the LAM DA system because it emphasizes more on the small scales than the NMC B
matrix. The importance and influence of the LBC perturbations was demonstrated with the ENS and
ENSLBC experiments showing that the LBC perturbations mainly influenced the large scale for all
control variables with the exception of the humidity, where the influence of the LBC perturbation is
small. One of the driving ideas behind this work was to compare the ensemble method with NMC
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method that was used to estimate the operational B matrix, but to do the sampling for the same
period as ENS/ENSLBC. Therefore, 36- and 12-hour forecast differences were used. The choice of 24
hour staggered forecast is usually made with aim to avoid errors in modeling of the diurnal cycle,
but different choices have been made in previous literature (36- and 12-hour as in e.g., [13,35] or
48- and 24-hour as in [14], or 24- and 12-hour as in e.g., [7,8]). As forecasts used in NMC method
incorporate longer forecast ranges than forecast used for obtaining background, adjustment to statistics
is usually made with aim to scale resulting variances. As discussed in Section 2.2 and in [13] longer
forecast ranges and involvement of analysis increments instead of analysis errors differences influences
properties of NMC B matrix. In order to assess degree at which analysis increments and longer forecast
ranges influence NMC B matrix characteristics, two additional NMC B matrices were estimated,
using 36- and 24-hour forecast differences (NMC2436) and using 24- and 12-hour forecast differences
(NMC1224). Comparison of NMC1224 and NMC2436 enables us to assess influence of longer forecast
ranges, while comparison of NMC1224 and NMC enables us to assess influence of accumulation of
analysis increments (8 in NMC and 4 in other two experiments). Similar diagnostic plots were made as
before and some results are shown in Figure 6.

Figure 6. (a) Vertical profile of the horizontally averaged standard deviations for temperature, (b)
Vertical profile of the horizontal correlation length scale for humidity, (c) Vertical profile of the
horizontally averaged vertical correlations at level 34 (approximately 500 hPa) for divergence, (d)
Horizontal correlation spectrum of vorticity and for NMC1224 (blue; full lines), NMC2436 (orange;
dashed lines) and NMC (green; dotted lines) experiments.
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Results indicate that for standard deviation, length scale and vertical correlation more pronounced
differences among experiments were found for temperature and humidity than for vorticity and
divergence. Largest differences for divergence and vorticity were found for large-scale part of
horizontal correlation spectrum where highest values were found for NMC experiment (e.g., Figure 6c).
Overall results clearly show (e.g., Figure 6a,b,d) that accumulation of analysis increments influences
statistics more than longer forecast ranges. Although, as shown, choice of forecast staggering can
influence NMC B matrix characteristics, still differences between NMC and ensemble-based B matrix
are more pronounced. In the following section, the impact of using NMC and ENSLBC B matrices on
the analysis and quality of forecasts was tested. Because the ENS B matrix was only used to diagnose
the influence of LBCs, it was left out in further analysis.

3.2. Impact on the Analysis and Forecast

Two ALADIN-HR4 DA cycles with 6-hour cycling were set up during June 2017, where B matrices,
calculated from the ENSLBC and NMC experiments, were used. The DA cycle was the same as that
used in the operational runs (Section 2.1), except that 6-hour cycling was used here. Two DA cycles
provided an initial “condition” file for a 72-hour forecast starting at 00 UTC. No filtering method
(e.g., digital filter initialization) was applied before model integration. The filtering step was omitted
to avoid small scale structures that are the result of the analysis being misinterpreted as noise. To
reduce the noise during a model spin-up, space-consistent coupling was used. Space-consistent
coupling refers to a setup where the first LBC file was the same as the initial condition file (coming
from the ALADIN-HR4 assimilation cycle). Prior to setting up DA cycles used for initialization of
forecast, one month of 6 hourly cycling was performed for both experiments and tuning of the B
matrices was conducted by using innovations as proposed by [36]. As in [35] the misfit ratio between
vertical averages of predefined and diagnosed standard deviations was computed for temperature,
specific humidity and kinetic energy (the squared average of u and v wind components). No variable
dependent correction was applied, rather the average misfit ratio was calculated as average over
mentioned variables and used for the overall tuning.

3.2.1. Impact on the Analysis

To test the influence of the different B matrices on the analysis, two single-observation
experiments were performed with a temperature innovation of 1 K from radiosonde observations
at approximately 500hPa and horizontally located at the model grid-point near the town of Zagreb,
Croatia. The increments were normalized by their respective maximum values. The vertical zonal cross
section through the location of observation of the normalized analysis increment for the temperature,
specific humidity and two wind components is plotted in Figure 7.

The resulting increments for the two B matrices differed both in shape and spatial extent from the
observation location. Sharper increments for the ENSLBC B matrix were clearly visible for all variables
where the 0.5 contour lines differed by 50–200 km in extension for the two experiments. Except for the
sharpness, the differences in the sign of the increment at certain places between the two experiments
were noticed in all figures. This was most pronounced for the humidity, where a strong negative
increment was present near the observation point for the ENSLBC experiment, while it was completely
missing in the NMC experiment. Similar differences were also found for at horizontal cross section
plot of the normalized analysis increments at model level near 500 hPa (not shown).

The influence on the analysis was also tested by averaging the increments horizontally by the
model level and in time over all assimilation cycles in June 2017, and the results for the temperature,
specific humidity, divergence and vorticity are shown in Figure 8.
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Figure 7. Vertical cross section of the analysis increments due to single radiosonde temperature
observations with an innovation of 1K at approximately 500 hPa normalized by its maximum value
and plotted with contours with levels from −1 to 1 K with 0.25 K increments for (a) temperature, (b)
specific humidity, (c) zonal wind component, and (d) meridional wind component. A zero contour
line was omitted to maintain the clearness of the plot. The experiment where the ENSLBC B matrix
was used was denoted with blue full lines for positive values and blue dotted lines for negative values,
while the experiment where the NMC B matrix was used was denoted with red full lines for positive
values and red dashed lines for negative values. The location of the observation was marked with
a black dot.

The shape of the temperature increments is similar for both experiments, but the warming (below
900 hPa, and between 400 and 200 hPa) and cooling (approximately 600 hPa) is more pronounced for the
NMC experiment. The vorticity increments were also rather similar, with slight differences in the location
and intensity of the extremes. Larger differences were found for the divergence between 600 and 200 hPa.
The largest differences were for the humidity, where moistening was present in both experiments, but the
shape of the mean vertical increment was quite different between the two experiments.

The fit of the analysis to the observation was assessed by calculating the bias and root-mean-square
error (RMSE) against radiosonde observations for the month of July 2017 and is presented in Figure 9.

The overall better fit to the observations was for the ENSLBC experiment, especially for the wind.
Smaller RMSE but slightly higher bias of NMC compared to ENSLBC was found for geopotential
between 800 and 400 hPa. The moistening in the NMC experiment between 800 and 400 hPa, as shown
in Figure 8 drove the model away from the observations, which was visible on the bias score for the
specific humidity.
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Figure 8. Mean vertical analysis increments for the month of June 2017 and for (a) temperature,
(b) specific humidity, (c) divergence, (d) vorticity. The analysis increments for the NMC experiment
(solid red), and the ENSLBC experiment (dashed blue) were horizontally averaged by the model level
and in time over all analyses performed in the data-assimilation cycle during the month of June 2017.

The beginning of model integration could be affected by the imbalances produced by the analysis,
and the effect of these imbalances (spin-up effect) could be noticed in the surface pressure field.
To assess the degree of balance within the analyses produced using different B matrices, the mean and
root-mean-square of the surface pressure tendency over the domain were calculated. Statistics for the
surface pressure tendencies were calculated for every time step (180 sec) during the 6-hour forecasts
inside the DA cycle, and the average over several forecasts (11 forecasts) is plotted in Figure 10.

High values for both the mean and root-mean-square at the beginning of the forecasts indicated
that the model was adjusting during the first three hours of forecasting in both experiments.
Nevertheless, smaller values were found for the ENSLBC experiment compared to the NMC
experiment, thus most probably showing more balanced initial conditions. Even though, variances of
both B matrices were rescaled, it appears from Figure 8 that somewhat larger amplitude increments
were present for NMC B matrix and this could also influence spin-up. To test this, we have re-run DA
cycle with NMC B matrix for same period (11 forecasts), but we have inflated standard deviations
for NMC B matrix (with same factor for all variables) for approximately 60%. Resulting pressure
tendencies were only slightly different (not shown) from results obtained for NMC, which indicates
that more balanced initial conditions and not amplitude of analysis increments decreased spin-up.
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Figure 9. Vertical profile of the bias (dashed line) and root-mean-square error (RMSE) (full line) for (a)
temperature [K], (b) geopotential height [m], (c) specific humidity [g/kg] and (d) wind speed [m/s]
from the analysis and for the experiments: ENSLBC (blue) and NMC (red). The number of data used
in the verification is shown with the gray dashed line on top of the x-axis. The statistical scores were
computed against radiosonde observations at 00 UTC over all radiosonde stations in the domain and
over June 2017 and they represent analysis fit to the assimilated observations.

Figure 10. Temporal evolution of the surface pressure tendency mean (dashed line) and
root-mean-square (full line) averaged over the domain and over 11 forecasts as a function of the
forecast lead time for the ENSLBC (blue) and NMC experiments (red).
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3.2.2. Impact on The Forecast Quality

The quality of the forecasts started from the ALADIN-HR4 DA system using different B matrices
was assessed by comparing the forecasts with in situ data from surface and radiosonde observations
during June 2017. To determine if the differences between the experiments were statistically significant,
a t-test was used at the 95% confidence level.

For the surface parameters, the differences between the experiments were negligible, except for
the mean sea level pressure (MSLP) and total cloudiness. Figure 11 shows the normalized mean
root-mean-square difference between the ENSLBC and NMC experiments for the MSLP and for the
cloud cover for June 2017 and for both experiments.

Figure 11. Normalized mean root-mean-square difference between the ENSLBC and NMC experiment
for (a) mean sea level pressure, (b) cloud cover during 24 hours of forecasting computed over all surface
observations inside the domain (700 stations) for June 2017. The error bars show the 95% confidence
intervals using the Student’s t-test (the negative values indicate that the ENSLBC experiment is better;
the difference is significant if the error bars do not cross the zero line.

The results suggest that the MSLP forecast was better in the first 6 hours for the ENSLBC
experiment, which was likely related to the higher degree of balance in the ENSLBC experiment
as shown in Section 3.2.1. The total cloud cover was better for the ENSLBC experiment for the first 12
hours of the forecast (only for two lead times they were not statistically significant). Similar verification
scores for most parameters but different ones for the humidity could be connected with the results from
Section 3.2.1, where it was shown that the most pronounced differences between the two B matrices
and their effect on the analysis were found for the humidity.

The vertical profiles of the bias and STD were calculated by comparing the model forecasts with
radiosonde observations at 12 UTC (using the +12- and +36-hour forecasts started at 00 UTC) for June
2017 and are shown in Figure 12.

The results are rather similar for both experiments, with small differences indicating slightly better
results for the ENSLBC experiment. Nevertheless, as demonstrated, for example, for the verification of
the forecasts at 500 hPa in Figure 13, these differences were mostly not significant, and if they were it
was only for certain cases depending on the model level, the forecast hour and the model variable.
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Figure 12. Vertical profile of the bias (dashed line) and standard deviation (STD) (full line) for (a)
temperature [K], (b) geopotential height [m], (c) specific humidity [g/kg] and (d) wind speed [m/s]
for the experiments: ENSLBC (blue) and NMC (red). The number of data used in the verification is
shown with the gray dashed line on top of the x-axis. The verification scores were computed against
radiosonde observations at 12 UTC (using 12- and 36-hour forecasts initialized at 00UTC) over all
radiosonde stations in the domain and over June 2017.

Figure 13. Normalized root-mean-square difference between the ENSLBC and NMC experiments for
(a) temperature, (b) specific humidity, (c) wind speed and (d) geopotential height at 500 hPa during
48 hours of forecasting computed against radiosonde observations for June 2017. The error bars show
the 95% confidence intervals using the Student’s t-test (the negative values indicate that the ENSLBC
experiment is better; the difference is significant if the error bars do not cross the zero line (black).
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For the precipitation, the point-based verification where the model output was compared to
the rain gauge measurements over the domain was performed and the verification statistics were
calculated from contingency tables. To compare the model results with the 12-hour accumulated
precipitation from a rain gauge that measured the precipitation at 18 UTC, the model precipitation
accumulation between the +6 and +18 hour forecast was used, and the verification results are shown
in Figure 14.

Figure 14. First row: A Wilson diagram for the 12-hour precipitation for June 2017 for the NMC
experiment (red) and for the ENSLBC experiment (blue). On the y-axis, the hit rate is shown. On the
x-axis, the false alarm ratio is shown. The orange contours denote the threat score and the black lines
denote the frequency bias. The ideal score is in the upper left corner. The verification was performed for
different thresholds of the 12-hour accumulated precipitation, and they are indicated on the graphs with
different symbols. Second row: The symmetric extremal dependence index for the 12-hour precipitation
for June 2017 and for the NMC experiment (red) and for the ENSLBC experiment (blue). The thresholds
used are indicated in the plot with arrows and were the same as for the Wilson diagram [mm/12 h]: 0.1,
0.3, 1, 3, 10, and 30.

The Wilson diagram (one variant of the performance diagram [37]) aggregates several verification
measures with the ideal score in the upper left corner of the diagram. The scores suggested that for
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the two highest precipitation thresholds, better results were obtained for the ENSLBC experiment.
Additionally, the symmetric extremal dependence index (SEDI) [38], which is base-rate-independent
and thus suited for the verification of rare events, was calculated and plotted on the bottom row of
Figure 14. Again, the ENSLBC experiment outperformed the NMC experiment to a certain extent.
This is especially the case for higher precipitation thresholds. The threat score already shows the
ENSLBC predominance for high precipitation event thresholds, but this result is important because
the SEDI, unlike the threat score, is not base-rate-dependent score. Therefore, it confirms the ENSLBC
high precipitation event forecasting predominance independently on the underlying climatology.

4. Summary and Conclusions

Climatological B matrices for the ALADIN-HR4 model were estimated using three error
simulation techniques. The characteristics of these B matrices, along with their influence on the
analysis and quality of the forecast, were investigated using spectral and moment-based evaluation
in diagnostic comparison, single-observation experiments and full observation forecast experiments.
The first technique used was the standard NMC method. The second and third approaches obtained
samples of forecast differences by using the EDA system with a cycling frequency of 6 hours and with
2 members. To test the influence of LBC perturbations, one EDA system had the same LBCs for all
members (from the deterministic IFS run), while the other had perturbed LBCs from the global IFS
ensemble. For all experiments, the sampling was consistently performed over the same period of
almost 3 months.

The examination of the forecast differences using the geographical distribution of the normalized
standard deviation showed that neglecting LBC perturbations led to unrealistically small standard
deviations near the domain boundaries. It also showed that for the specific humidity, the smallest
differences were between the ENS and ENSLBC experiments, which suggest that the humidity field is
more sensitive to the method used to sample the forecast error than to LBCs. For the other variables,
especially for the surface pressure and temperature, a notable influence on the standard deviation
amplitude came from the LBC perturbations. More importantly, this influence spread over a significant
portion of the relatively small ALADIN-HR4 domain. Considering that the B matrix was estimated
from temporal and the domain averages, the influence of the LBC perturbations could dominate
other sources of background errors. The influence of LBC perturbations was confirmed by diagnostic
comparison, where it was shown that the contribution of the large scales to the shape of the correlation
function for the ENSLBC experiment was enhanced and had amplitudes closer to those of the NMC
experiment. Nevertheless, the shape of the correlation functions from the ENSLBC experiment was
shifted to smaller scales compared to the NMC experiment. The ensemble B matrices were further
characterized by smaller standard deviations, shorter horizontal length scales and sharper vertical
correlations compared to the B matrix derived using the NMC method, which agrees with previous
research results. The influence of the ENSLBC and NMC B matrix on the analysis was tested by
performing a single-observation experiment, calculating the mean analysis increments, calculating the
fit of the analysis to the observations and by assessing the influence of the B matrix on the internal
model balances in the analysis.

The single-observation experiment showed that the ENSLBC analysis increments had a smaller
spatial extent with a shape that was more or less similar for all control variables compared to the
NMC experiment. The most pronounced differences were found for the specific humidity. This agreed
well with the mean analysis increments, which differed between the NMC and ENSLBC experiments,
mostly for the specific humidity, showing apparently excessive (from the fit of the analysis to the
observations) moistening of one part of the atmosphere. A clear benefit of using the ENSLBC B matrix
was demonstrated by the model spin-up, where it was shown that less imbalance was present in the
analysis using the ENSLBC method. For both experiments, approximately 3 hours were needed for
the model to adjust to the internal balance, and the degree of imbalance was relatively smaller for the
ENSLBC experiment.
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The quality of the forecast initialized from the local DA system that used different B matrices was
assessed by comparing the forecast with in situ data from surface and radiosonde observations during
June 2017. The verification results showed that the choice of the B matrix had a small influence on the
forecast of the surface parameters. Nevertheless, a statistically significant improvement of the ENSLBC
experiment compared to the NMC experiment was found for the mean sea level pressure and for the
cloud cover in the first 6–12 hours of the forecast. The upper-air verification scores were generally
not significant, although some slightly better statistics were obtained for the ENSLBC experiment. A
comparison of the 12-hour “accumulation” precipitation forecasts (accumulation between +06 and
+18-hour forecast started at 00UTC) was performed against rain gauge measurements (that measure
precipitation at 18UTC), and better results for the precipitation thresholds of 10 and 30 mm/12 h were
obtained for the ENSLBC experiment.

The comparison of the NMC and ENSLBC B matrices in a diagnostic sense and based on the
influence on the analysis and quality of the forecast showed that using the ENSLBC B matrix
in the variational DA system would be preferred. For all performed comparisons, the most
marked differences were noticed for the specific humidity or variables related to it (e.g., cloudiness,
precipitation). Smaller, if any, improvement was found for the other variables. With the increased
availability of humidity and precipitation information, sensitivity found in humidity fields needs to be
further explored, as future plans involve assimilation of humidity observations derived from radar
data delivered by OPERA radar project [39].
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