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Abstract: Epilepsy is a neuronal disease that affects up to 70 million people worldwide.
The development of effective therapies to combat childhood epilepsy requires early biomarkers.
Here, we performed a whole-genome microarray analysis in blood cells to identify genes differentially
expressed between epileptic and epileptic valproic acid (VPA)-treated children versus normal children
to obtain information about the gene expression to help us to understand genetic aspects of this
disease. We found that the most significant differentially expressed genes were related to the
transcriptional factor cAMP-response element binding protein (CREB) that is overexpressed in
children with epilepsy compared with normal children, and 6 and 12 months of VPA treatment
reversed several of these changes. Interestingly, leukocyte-associated immunoglobulin-like receptor
1 (LAIR1), a type I transmembrane glycoprotein that binds collagen proteins and contains CREB
binding sites, was one of the more up-regulated genes in epileptic patients, and treatment with VPA
strongly reversed its up-regulation. CREB up-regulates genes related to epilepsy; here, we suggest
that LAIR1 could activate CREB, and together, they trigger epilepsy. After VPA treatment, LAIR1
repressed genes by disrupting the functional LAIR1–CREB complex, resulting in successful treatment.
A functional microarray analysis offers new information that could open novel avenues of research in
biomarker discovery, which may be useful for the early identification of children with a predisposition
to epilepsy.
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1. Introduction

According to the International League Against Epilepsy (ILAE), epilepsy is defined as a disease
of the brain characterized by the occurrence of two unprovoked seizures more than 24 h apart,
one unprovoked seizure and a probability of further seizures similar to the general recurrence risk
(at least 60%) after two unprovoked seizures occurring over the next 10 years, or the diagnosis of
an epilepsy syndrome [1]. This condition affects many people; in a recent study, it was reported
that 70 million people have epilepsy worldwide, and approximately 90% of them are in developing
regions, with a major prevalence in rural zones [2]. In addition, an estimated incidence has been
reported of just over 100 patients per 1,000,000 inhabitants, with a prevalence of 3.7% in the population
group aged 18–64 years, 1.6% in urban areas and 2.1–4.1% in rural children [3,4]. This condition has
many risk factors, including family history, congenital, infections, trauma, neuronal diseases and
malformations [2]. Epilepsy is characterized by many molecular mechanisms related to the immune
system, such as deregulation of synaptic transmission, brain plasticity, apoptosis, neuroinflammation,
oxidative stress and other functional alterations in the neuronal and neurovascular unit [5–9],
resulting in gene expression alterations [10]. Antiepileptic drugs (AEDs) are used for epilepsy
control, and valproic acid (VPA) is one of the more commonly used AEDs [11]. Several studies
have demonstrated that AEDs (included VPA) may induce injury or show a neuroprotective effect in
experimental models and humans [8,9,12].

Valproic acid is a branched short-chain fatty acid and is a widely used drug for the treatment
of epilepsy, migraines and bipolar disorders [13]. In the treatment of epilepsy, VPA has several
biochemical and molecular mechanisms: (a) it enhances inhibitory GABAergic activity and inhibits
glutamatergic transmission [14,15]; (b) it modulates sodium and potassium channels [16,17]; (c) it
modulates antioxidant defense and the production of oxidant metabolites [8]; (d) it modulates the
activity and expression of protein kinases [18]; (e) it modulates neurogenesis, neuronal differentiation
and neuronal survival [19,20]; and (f) it exerts effects on gene expression regulation by acting on
transcription factors (mainly by regulating phosphorylation) and by acting as a histone deacetylase
inhibitor [21,22].

We hypothesized that administration of VPA as an AED might alter the expression of some
relevant genes related to neuroprotection and neurotoxicity pathways in patients with epilepsy.
Here, we analyzed, for the first time, the gene expression profile of epileptic children as well as the
molecular mechanism of VPA after different periods of administration in these patients by performing
genome-wide array analysis to obtain novel transcript-based biomarkers that are predictive of epilepsy.

2. Material and Methods

2.1. Patients

All samples were collected from the Emergency Services, Military Hospital of Specialties of
Women and Neonatology, Secretary; of National Defense (Secretaría de la Defensa Nacional, SEDENA)
in Mexico City, Mexico. Two different groups of patients with available electronic health records were
included in these experiments: (a) a group of 13 children (5 healthy children and 8 epileptic patients)
were used for the microarray experiments, and (b) a confirmation group of 49 children (17 healthy
children and 32 epileptic patients that followed 12 months of uninterrupted VPA monotherapy,
including the patients in the microarray experiment) were used for the validation of some specific
genes identified in the microarray analysis via real time-PCR (RT-PCR).

This study was approved by the Bioethics in Research Committee of the Military Hospital of
Specialties of Women and Neonatology, SEDENA (Registration number 35, approval date 18 December
2015). The committee’s human experimentation guidelines were followed, and written informed
consent was obtained from each patient.

The sample collection was conducted from December 2015 to March 2018 and each sample
was considered according to the inclusion, exclusion and elimination criteria. The inclusion criteria
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were as follows: peripheral blood samples from newly admitted pediatric patients at the Military
Hospital of Specialties of Women and Neonatology and the Central Military Hospital, SEDENA
from 2016 to 2018; pediatric patients diagnosed with epilepsy or an epileptic syndrome; untreated
pediatric patients for the first sampling and then 12 months of uninterrupted VPA treatment as the only
AED (monotherapy). The exclusion criteria were as follows: pediatric patients with chronic diseases
such as hematological, cardiac, hepatic, renal or thyroid disorders; pediatric patients with obesity;
pediatric patients presenting infectious diseases or who had performed excessive physical exercise
before sampling; pediatric patients taking drugs that interfere or alter the antioxidant or inflammatory
state; pediatric patients taking an AED prior to the start of the study; and pediatric patients with
a convulsive crisis with refractoriness of AED treatment. The elimination criteria were as follows:
those cases of pediatric patients whose initial diagnosis of epilepsy was modified to another disease;
pediatric patients who did not follow the therapeutic regimen during the study; and samples with
low quality RNA. All recruited epileptic patients followed the inclusion, exclusion and elimination
criteria, and none of the healthy children developed diseases or had a family history of epilepsy during
the sampling.

2.2. Blood Sampling and RNA Extraction

For the study with epileptic children, a 5 mL sample of peripheral venous blood was taken at the
time of initial diagnosis (drug-free stage) and after VPA monotherapy (samples after 6 and 12 months
of AED administration). A single blood sample was taken from the healthy children. The samples
were collected in Vacutainer tubes containing EDTA (Becton, Dickinson and Company, Franklin Lakes,
NJ, USA), and leucocytes were isolated. The isolation of RNA from the leucocytes was performed using
Trizol reagent (TRI Reagent® Solution, RNA/DNA/Protein Isolation Reagent, Invitrogen-Ambion,
ThermoFisher Scientific, Waltham, MA, USA). Total cellular RNA was extracted according to the
manufacturer’s protocol. RNA integrity, quality and quantification were assessed using QIAxcel
and QIAxpert equipment (Qiagen, Germantown, MD, USA). All extracted RNA was preserved with
nuclease inhibitor solution and stored at −80 ◦C.

2.3. Microarrays

Total RNA samples from five control children and eight epileptic children were analyzed using a
microarray according to the manufacturer’s protocol (Two-Color Microarray-Based Gene Expression
Analysis/Low Input Quick Amp Labeling; Agilent Technologies, Santa Clara, CA, USA). Briefly,
75 ng of total RNA was converted to cDNA, followed by in vitro transcription and incorporation
of Cyanine 3-CTP into the nascent complementary RNA (cRNA), followed by fragmentation and
hybridization to Agilent SurePrint Human GE 8 × 60 K Microarrays (Agilent Technologies) for 17 h at
65 ◦C. The quality control parameters used for cRNA labeling and hybridization were specified by
the manufacturers. The microarrays were scanned using a NimbleGen microarray scanner (Roche,
Basel, Switzerland), and the signal intensities in the TIFF images were calculated using Feature
Extraction software (FE, version 12.0; Agilent Technologies). The microarray data were analyzed,
and the associated biological pathways were determined using GeneSpring GX 13.0 software (Agilent
Technologies). Differentially expressed genes were selected with a fold change >2.0 and p < 0.05.
The Benjamini–Hochberg algorithm was used to compute false discovery rates [23]. The classification
of the identified pathways was based on the Kyoto Encyclopedia of Genes and Genomes pathway
database (KEGG Pathway Maps). The gene ontology analysis for down- and up-regulated genes
was submitted to the bioinformatics and functional annotation tool of the Database for Annotation,
Visualization and Integrated Discovery (DAVID Bioinformatics Resources) v. 6.8 of the NIAID (National
Institute of Allergy and Infectious Disease), NIH (National Institutes of Health).
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2.4. Gene Expression Validation

To confirm the microarray analysis results, RT-PCR validation was performed for the most
representative dysregulated genes from the total sample population (which included 17 healthy
control children and 32 children with epilepsy). Reverse transcription was performed using a One-Step
qRT-PCR KAPA SYBR FAST® Kit (Kapa Biosystems, Sigma-Aldrich, St. Louis, MO, USA) according
to the manufacturer´s protocol, with a Rotor-Gene Q (Qiagen) and specific gene primers (provided
upon request). To determine the relative gene expression levels, the the number of cycles in which the
fluorescence intensity increases above the baseline fluorescence of the sample (CPs) of endogenous
candidates genes (glyceraldehyde-3-phosphate dehydrogenase (GAPDH), β-2-microglobulin (B2M)
and actin-β (BACT)) and each of the analyzed genes were exported from Rotor-Gene Q v.2.3.1 software
(Qiagen) to calculate the efficiencies using the REST© statistical model [24,25], and the data were
plotted by constructing a linear regression comparing the logarithmic concentration (total RNA)
against the CP. To correlate the candidate endogenous genes and determine the more stably expressed
genes, BestKeeper software was used by exporting the CP values from the Rotor-Gene Q software
using the Excel tool to show the melting temperature (Tm) characteristics of each amplified product.
The expression levels of the housekeeping genes were analyzed using the BestKeeper statistical model,
which analyzed the CP values via Pearson correlation [26].

2.5. Statistical Analysis

All statistical analyses were performed using GraphPad Prism version 6.0 software (La Jolla, CA,
USA) and XLSTAT for Excel 2018 (Addinsoft, NY, USA). The data are expressed as the mean ± standard
deviation (SD). The Kolmogorov–Smirnov normality test was performed based on the null hypothesis
that the data was normally distributed. Data from the absolute quantification of all the samples
were normalized with housekeeping genes and were analyzed using the Student’s t-test. Differences
between groups were tested using analysis of variance (ANOVA) with Bonferroni post hoc analysis.

3. Results

3.1. Characteristics of the Patients Included in the Microarray Study

The random sample for the microarray study consisted of 13 children, distributed with respect to
weight and sex. Overall, 13 patients participated, with five children in the healthy group and eight
epileptic children in the drug-free and VPA monotherapy group, with a range of ages (months of age,
mean ± SD) between 36.6 ± 13, and 58.3 ± 55.2 for healthy and epileptic children, respectively. Of the
healthy children, 40% were female and 60% were male, and of the epileptic children, 25% were female
and 75% were male. The characteristics of the patients with epilepsy used in the microarray study
are presented in Table 1. In terms of family history of epilepsy, 3 (37.5%) had relatives with epilepsy,
3 (37.5%) had a perinatal history, 2 (25%) presented with other diseases, 6 (75%) showed generalized
epilepsy with idiopathic etiology, 6 (75%) presented abnormal findings in the image studies, and 6
(75%) had completely controlled epilepsy.

The general characteristics of all the 32 patients treated with VPA monotherapy is as follows:
the mean actual age was 6.4 ± 4.1 years (range of 2–15 years), and the age at the beginning of VPA
treatment was 4.2 ± 4.1 years (range of 0–12 years) and the mean body mass index (kg/m2) was
16.9 ± 2.7. Among the patients, 9 were female and 23 were male. In terms of family history of epilepsy;
6 patients had relatives with epilepsy and 17 patients had generalized epilepsy and idiopathic etiology
and 4 patients had comorbidities; 12 patients had abnormal brain findings on imaging studies; the mean
serum level of VPA (µg/mL) was 28.9 ± 16.9 and the mean weight-based divided dose of VPA (mg/kg)
was 24.04 ± 9.34.
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Table 1. Clinicopathological characterization of the patients included in the microarray study. VPA: Valproic Acid.

Patient

Age at the
Beginning of

Treatment
(Months)

Family History of
Epilepsy

Perinatal
History Other Diseases Type of

Convulsion
Etiology of

Epilepsy
Findings in the
Image Studies

Mean Daily
Convulsions

before
Treatment

Mean Daily
Convulsions

after
Treatment

VPA Dose
(mg/kg of

Body
Weight)

1 12 None Prematurity None Generalized Idiopathic Left cortical
atrophy 4 0 30

2 144 Mother diagnosed
with epilepsy

Threatened
abortion None Generalized Idiopathic None 1 0 48

3 84 Aunt diagnosed
with epilepsy None None Generalized Idiopathic Abnormal

paroxysm 6 0 25

4 132 No None Asthma Generalized Idiopathic Irritative cortical
activity 1 0 10

5 48 Brother diagnosed
with epilepsy None None Generalized Idiopathic Ventricular

asymmetry 18 0 20

6 12 None Prematurity Bronchopulmonary
dysplasia Generalized Symptomatic

Epileptiform
activity in the left

parietal region
1 1 20

7 10 None None None Generalized Idiopathic

Ventricular
asymmetry with
increase in left

occipital volume

5 0 25

8 24 None None None Generalized Symptomatic None 3 1 38.9
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3.2. Gene Expression Profiling in Peripheral Blood Cells

Of the 50,378 probes tested in our microarray analysis, 21,056 probes remained after background
correction and were used for further analysis. In total, 978 unique genes were found to be significantly
differentially expressed between normal and epileptic children before treatment. There were 341
unidentified genes in a microarray data set and these were not considered in our analysis. From the
remaining 637 known coding genes, 451 were down-regulated, and 186 were up-regulated in epileptic
children compared to normal children (Table S1, Supplementary Materials). The results from the array
concerning the 637 genes differentially expressed between both conditions are depicted in a heat map
(see Figure 1).

3.3. Functional Analysis

To study the functions of the differentially expressed genes, DAVID Bioinformatics Resources
were applied to known gene ontology pathways. The 637 known genes with significantly different
expression levels between epileptic patients before treatment and normal children were classified
into several biological processes according to their function. The biological processes showing the
highest number of differentially expressed genes were related to transcription/translation machinery
(n = 28), Poly(A) RNA binding (n = 51), a cytokine-mediated signaling pathway (n = 11), the immune
system (n = 19), cytokine-cytokine receptor interactions (n = 14), DNA binding (n = 67), protein binding
(n = 254), and positive regulation of smooth muscle cell proliferation (n = 5), among other functions.
The functional annotation clustering of genes differentially expressed are shown in Table 2. Notably,
most of the genes involved in these pathways were up-regulated, and they had not previously been
associated with epileptic children.

Table 2. Functional annotation clustering of genes differentially expressed in epileptic children.

Pathway n p-Value Fold Enrichment Benjamini False Discovery Rate

Translation 28 6.12 × 10−10 4.2236 2.18 × 10−7

Poly(A) RNA binding 51 3.12 × 10−4 1.6834 0.0866
Coiled-coil 104 0.0016 1.3327 0.1019

Cytokine-mediated signaling pathway 11 0.0023 3.2046 0.2925
Alternative splicing 304 0.0032 1.1171 0.1449

Receptor binding 20 0.0032 2.1113 0.3725
Cytokine-cytokine receptor interaction 14 0.0075 2.2984 0.1655

Immune response 19 0.0288 1.7223 0.9340
DNA-binding 67 0.0317 1.2715 0.6044

Jak-STAT signaling pathway 9 0.0372 2.3437 0.4948
Regulation of immune response 10 0.0446 2.1440 0.9505

Protein binding 254 0.0494 1.0774 0.8959
Phosphoprotein 230 0.0640 1.0852 0.7827

Positive regulation of smooth muscle cell proliferation 5 0.0716 3.1803 0.9818
Non-syndromic deafness 6 0.0730 2.6831 0.806

Metal-binding 107 0.0844 1.1437 0.799
Zinc ion binding 40 0.0919 1.2751 0.9389

Adaptive immune response 8 0.0938 2.0629 0.9861

Additionally, we applied bioinformatics analyses to detect any enrichment of transcriptional
factors. We found a cluster of 349 of the 637 genes with significant expression (54.8%) with CRE motifs
(TGACGTCA), whose transcription is controlled by the cAMP-response element binding protein
(CREB) transcription factor in the transcriptome of epileptic children before treatment (in comparison
with healthy children). Of these 349 CREB genes, 106 were up-regulated (30.4%), and 243 were
down-regulated (69.6%) (Table S2, Supplementary Materials). The results for the ten genes related to
CREB that displayed the greatest changes are shown in Table 3.
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Table 3. Most representative deregulated cAMP-response element-genes (CRE-genes) in pediatric 
patients with epilepsy in comparison with healthy children. 

Up-Regulated CRE-Genes 
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RCHY1 Ring finger and CHY zinc finger domain containing 1 193.7847 
CCL13 C-C motif chemokine ligand 13 133.6095 
LAIR1 Leukocyte associated immunoglobulin-like receptor 1 80.0391 

RPSAP58 Ribosomal protein SA pseudogene 58 62.9540 
IL6R Interleukin 6 receptor 60.4950 

CCDC14 Coiled-coil domain containing 14 49.6876 

Figure 1. Gene expression changes triggered by epileptic disease. Microarray heat map shown genes
that were differentially expressed and unchanged during epileptic episodes without treatment. A color
code scale was used to show gene expression differences in logarithmic fold change units between the
groups (red represents lower expression; green represents higher expression).

Table 3. Most representative deregulated cAMP-response element-genes (CRE-genes) in pediatric
patients with epilepsy in comparison with healthy children.

Up-Regulated CRE-Genes

Official Symbol Official Full Name Fold Change

RCHY1 Ring finger and CHY zinc finger domain containing 1 193.7847
CCL13 C-C motif chemokine ligand 13 133.6095
LAIR1 Leukocyte associated immunoglobulin-like receptor 1 80.0391

RPSAP58 Ribosomal protein SA pseudogene 58 62.9540
IL6R Interleukin 6 receptor 60.4950

CCDC14 Coiled-coil domain containing 14 49.6876
C21orf131 Long intergenic non-protein coding RNA 320 42.6516
AFAP1L2 Actin filament associated protein 1-like 2 36.8321
TRIM24 Tripartite motif containing 24 14.5041
CSMD1 CUB and Sushi multiple domains 1 13.5815
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Table 3. Cont.

Down-Regulated CRE-Genes

Official Symbol Official Full Name Fold Change

CCR2 C-C motif chemokine receptor 2 −190.5848
ZSWIM7 Zinc finger SWIM-type containing 7 −167.3231

MYO6 Myosin VI −148.6852
SNAPC2 Small nuclear RNA activating complex polypeptide 2 −118.0506

BMS1 Ribosome biogenesis factor −108.2960
TBX22 T-box 22 −78.6303

MKLN1-AS MKLN1 antisense RNA −69.2440
EFTUD2 Elongation factor Tu GTP binding domain containing 2 −64.2970
IDH3B Isocitrate dehydrogenase 3 (NAD(+)) beta −61.9831

DSP Desmoplakin −54.6393

Real time-PCR was used to validate the expression of selected genes related to the CREB
transcription factor: RCHY1, CCL13, LAIR1 (leukocyte-associated immunoglobulin-like receptor
1), TRIM24, CCR2, MYO6, BMS1 and DSP. The results showed that RCHY1, CCL13, LAIR1 and
TRIM24 were significantly up-regulated genes and CCR2, MYO6, BMS1 and DSP were significantly
down-regulated genes in pediatric patients with epilepsy (see Figures 2 and 3).
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Figure 2. Levels of normalized mRNA of the up-regulated genes RCHY1, CCL13, LAIR1 and TRIM24
in pediatric patients with epilepsy. The gene levels were normalized to the level of the housekeeping
gene B2M and are expressed per 20 ng of total RNA. The values represent the means with standard
deviations (SD) of the expression levels of each gene. We found significant differences between all
genes. * p < 0.05 vs. the gene expression of CCL13, LAIR1, and TRIM24; ** p < 0.05 vs. the gene
expression of LAIR1 and TRIM24; and *** p < 0.05 vs. the gene expression of TRIM24.
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pediatric patients with epilepsy. The gene levels were normalized to the level of the housekeeping
gene B2M and are expressed per 20 ng of total RNA. The values represent the means with standard
deviations (SD) of the expression levels of each gene. We found significant differences between all
genes. * p < 0.05 vs. the gene expression of MYO6, BMS1, and DSP; ** p < 0.05 vs. the gene expression
of BMS1 and DSP; and *** p < 0.05 vs. the gene expression of DSP.

3.4. Association Studies of Gene Expression in Epileptic Patients Undergoing Valproic Acid Monotherapy

To investigate the effect of VPA monotherapy on the change in the expression of several mRNAs
in epileptic patients, we selected the CREB genes to measure again after 6 and 12 months of VPA
monotherapy. As shown in Figure 4, 106 genes of the 637 genes with significant expression (16.6%)
were up-regulated by epilepsy in epileptic children before treatment. The expression of 14 of them
returned to healthy levels after six months of VPA treatment, whereas the expression level of 40 genes
began to decrease after six months and continued decreasing after 12 months of treatment with VPA.
Consistent with the progression of the VPA treatment time and the improvement in epileptic episodes
at 12 months, the gene expression levels of 92 of the 106 transcripts (86.8%) were changed. Interestingly,
we found that six months of monotherapy were unable to change the expression of 40 genes, while
after 12 months of monotherapy, only 14 remained unchanged. Among the genes that were highly
expressed in the epileptic group, we found RCHY1, CCL13, LAIR-1, RPSAP58, IL6R, CCDC14, AFAP1L2,
TRIM24, CSMD1, ZNF704, CDK5RAP3, FRAS1, SKA1, CYS1, IL5, LHFP and CPB1. Interestingly,
VPA treatment reduced their expression, suggesting that these genes promote epilepsy, since this
condition was also diminished as the treatment period progressed. Specifically, RCHY1, CCL13, LAIR-1,
RPSAP58 and TRIM24 were down-regulated after six months of VPA treatment. In the validation
experiment, we observed that the expression levels of TRIM24 and LAIR1 were significantly decreased
after six months of VPA treatment, whereas the expression levels of CCR2 and DSP were significantly
increased after six months of VPA treatment compared with the drug-free stage (see Figure 5). TRIM24
gene expression decreased by 90.5% and 96% during 6 and 12 months of monotherapy, respectively,
and LAIR1 gene expression decreased by 66.1% and 95% during 6 and 12 months of monotherapy,
respectively, compared with the drug-free stage. Between 6 and 12 months of VPA treatment, the gene
expression of TRIM24 and LAIR1 decreased by 57.8% and 85.4%, respectively. CCR2 gene expression
increased by more than 1000% between 6 and 12 months of monotherapy, and DSP gene expression
increased by more than 100% during the same time period compared with the drug-free stage. Between
6 and 12 months of VPA treatment, the gene expression of both CCR2 and DSP increased by more
than 100%.
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Figure 5. Normalized mRNA levels of the genes TRIM24, LAIR1, CCR2 and DSP in the drug-free
stage and after 6 and 12 months of VPA treatment in pediatric patients with epilepsy. The gene levels
were normalized to the level of the housekeeping gene B2M and are expressed per 20 ng of total RNA.
The values represent the means with standard deviations (SD) of the expression levels of each gene.
* p < 0.05 vs. the level of gene expression after 6 and 12 months of VPA treatment, and ** p < 0.05 vs.
the levels of gene expression after 12 months of VPA treatment.

In addition to the genes that increased during epilepsy and without treatment, we found that
the expression of 243 genes of the 637 genes with significant expression in epileptic children before of
treatment (38.1%) was decreased. Of these 243 genes, after treatment with VPA for 6 months, 13 genes
were unchanged, 92 were expressed at healthy levels, the expression of 102 decreased more than
expected, and 36 had increased expression levels. After 12 months of VPA treatment, only 10 of the
243 (4%) genes did not have changed expression levels (see Figure 4 and Table S3, Supplementary
Materials). These results suggest that many of the benefits of VPA treatment of epilepsy may be
attributed to the effect on the transcription of several genes.
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4. Discussion

In the present study, we explored the transcriptome of leucocytes during epilepsy in pediatric
patients before and after different lengths of treatment with VPA monotherapy. Microarray studies
in pediatric patients with epilepsy indicated that short and long-term (6 and 12 months) exposure to
the well-established therapeutic drug VPA induces altered mRNA levels of a large number of genes,
and importantly, reverting most of the genes altered by the disease to a healthy level.

Potential mediators for the positive regulation of epileptic gene transcription include CREB [27],
which is a well-known master regulator of metabolic pathways. CREB is an attractive candidate
because it was recently identified as a key regulator of a pathway that involves LAIR-1 [28] (Figure 6).
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The LAIR-1 gene encodes a transmembrane protein that inhibits the receptor C1q, the first
complement component, and therefore, LAIR-1 prohibits the signal transduction associated with
the production of pro-inflammatory cytokines [29,30]. Other studies have shown that in the
brain, C1q promotes synaptic pruning, preventing enhanced excitatory synaptic connectivity and
epileptiform activity [31]. In fact, mice deficient in C1q have a spontaneous epileptogenic condition
due to the failure of synaptic pruning, suggesting that the failure of the key factor C1q may lead
to epileptogenesis [32]. Based on these findings, it is plausible to hypothesize that overexpressed
LAIR-1 could inhibit the activity of C1q, consequently leading to the generation of seizures in epilepsy.
Furthermore, it has recently been demonstrated that LAIR-1 triggers a CREB-dependent signaling
pathway that leads to myeloid leukemia development [28]. Since the LAIR-1 promoter contains
a CRE sequence, it is possible that CREB may increase the transcription of LAIR-1, generating a
transcriptional regulatory loop to establish a CREB-driven transcriptional program that conceivably
may trigger epilepsy. Strikingly, the increased expression of LAIR-1 in patients with epilepsy was
strongly diminished after 6 and 12 months of VPA treatment, and this observation could be correlated
with decreased brain seizure activity.

Another gene overexpressed in children with epilepsy was IL6R, whose promoter region contains
a CRE sequence. It has been reported that IL6R and its ligand, IL6, have both detrimental and beneficial
effects on the nervous system. Specifically, IL-6 and IL6R are closely associated with neurological
excitability [33]; thus, it has been proposed that this pathway may be involved in epilepsy. The TRIM24
gene encodes an E3 ubiquitin ligase [34], and defects in the ubiquitin proteasome system have long
been implicated in the pathogenesis of neurodegenerative disorders. Specifically, TRIM2, which has
been shown to be highly expressed in the nervous system, binds to the neurofilament light subunit
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(NF-L), regulating its ubiquitination. If it is deregulated, it triggers neurodegeneration [35]. Given its
related function, TRIM24 might play a similar role in the development of epilepsy. As with LAIR-1,
we demonstrated that VPA treatment also dramatically down-regulates its expression throughout the
entire 12 months of VPA treatment.

The CUB structural domaine (for complement C1r/C1s, Uegf and Bmp1) and sushi multiple
domains 1 gene, CSMD1, which is highly expressed in epithelial tissues and the central nervous
system, plays a role as an important regulator of complement initiation and inflammation. Patients
who carry a deletion of this gene show language delay, learning difficulties and epilepsy [36]. Spindle
and kinetochore associated complex subunit 1 (SKA1), has been suggested as being involved in human
brain development [37]; however, its participation in epilepsy has not been studied.

Our data showed that changes in the expression of the above mentioned genes were diminished
after VPA treatment. The gene C21orf131 is known to be highly expressed in the human brain, but its
specific functions are not clear, nor is it known whether it has lower expression in patients with
epilepsy. This study is the first report showing neurodevelopment problems related to the C21orf131
gene. We suggest that it is necessary to investigate the role of this gene to understand the development
of human epilepsy.

In addition to the increased transcription of CRE-regulated promoters during epilepsy in pediatric
patients and the decrease in their transcription through VPA monotherapy treatment, we also observed
a set of genes containing CRE motifs with decreased expression in epileptic patients. After VPA
treatment, this group of genes showed a tendency to increase their expression levels.

Regarding mRNA with decreased expression levels during epileptic episodes in children,
most had reverted levels of expression after 6 or 12 months of treatment with VPA; those genes
were CCR2, ZSWIM7, MYO6, SNAPC2, BMS1, TBX22, MKLN1-AS, EFTUD2, IDH3B, and DSP.

Elevated levels of the chemokine C-C motif ligand 2 receptor CCR2 have been reported in
experimental seizures, and the neuronal localization of CCR2 has been mapped [38,39]. However,
its participation in relieving episodes of seizures due to VPA treatment has not been widely evaluated,
and we demonstrated that after 6 months of monotherapy with VPA, the large reduction in CCR2
transcript levels was ameliorated as the treatment progressed, thus possibly contributing to the
reduction in seizures. MYO6, an unconventional myosin, has been previously associated with
deafness [40]. BMS1 is a ribosome biogenesis factor already reported to be involved in epilepsy.
Its reversion to control levels due to VPA and its participation in the development of convulsive
episodes has not been studied.

The decrease of the ZSWIM7, MYO6, SNAPC2, BMS1, TBX22, MKLN1-AS, EFTUD2, IDH3B, and
DSP transcripts had not been previously associated with epileptic episodes in pediatric patients, and
even less is known about their re-establishment by monotherapeutic treatment with VPA. We confirmed
that the gene expression of DSP, similar to CCR2, increased dramatically throughout the 12 months of
VPA monotherapy. This generates new horizons in the study of signaling pathways for the treatment
and prevention of epileptogenesis. Diminished expression of this group of genes could be mediated
by ICER, an inducible cAMP early repressor, which is part of the CRE binding protein family that
shares the ability to also bind to the highly conserved DNA 8-mer (TGACGTCA) sequence, a CRE
motif [41,42]. In laboratory models, following kainic acid-induced or electroconvulsive seizures, there
is an increase in the level of ICER [42], which could explain the blocking of the expression of a specific
group of genes that contain the CRE motif and could consequently explain why treatment with VPA
eliminates this blockage and re-establishes the expression of most genes. It is relevant to mention that
these alterations in the expression of genes are from patients with generalized epilepsy with principally
idiopathic etiology. Other studies will be focused on determining the effects of VPA in other kinds of
seizures with other originating causes in epileptic children.
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5. Conclusions

Functional microarray analysis suggests a possible therapeutic gene bank that may be a useful
approach for early identification of children with predispositions to epilepsy. Moreover, our results
showed that VPA differentially regulates the gene expression profile in epileptic children during
the 6 and 12 months of treatment, principally in one group of genes related with the CREB
transcription factor, suggesting the LAIR1-CREB axis as a possible action mechanism of this AED in
generalized epilepsy.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/9/7/328/s1,
Table S1: Complete list of differentially expressed genes between normal and epileptic children, identified by
microarray analysis, Table S2: List of differentially expressed genes between normal and epileptic children with
significantly enriched CRE motif, Table S3: List of differentially expressed genes with CRE motif in epileptic
children and the effect of VPA administration. Orange: up-regulated, Purple: down-regulated.
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