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Abstract: Understanding the phenotypic and molecular mechanisms that contribute to genetic 

diversity between and within species is fundamental in studying the evolution of species. In 

particular, identifying the interspecific differences that lead to the reduction or even cessation of 

gene flow between nascent species is one of the main goals of speciation genetic research. 

Transposable elements (TEs) are DNA sequences with the ability to move within genomes. TEs are 

ubiquitous throughout eukaryotic genomes and have been shown to alter regulatory networks, gene 

expression, and to rearrange genomes as a result of their transposition. However, no systematic 

effort has evaluated the role of TEs in speciation. We compiled the evidence for TEs as potential 

causes of reproductive isolation across a diversity of taxa. We find that TEs are often associated with 

hybrid defects that might preclude the fusion between species, but that the involvement of TEs in 

other barriers to gene flow different from postzygotic isolation is still relatively unknown. Finally, 

we list a series of guides and research avenues to disentangle the effects of TEs on the origin of new 

species. 
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1. Introduction 

Speciation is the evolutionary process by which one lineage splits into two reproductively 

isolated groups of organisms [1]. One of the central goals of speciation research is to understand the 

processes that drive the evolution of reproductive isolation (RI) between species [2–6]. Significant 

strides have been made towards identifying barriers that generate RI between species [1,7], the 

processes underlying their evolution [2,3,8–11], and the rate at which they evolve during speciation 

[4,5,12–15]. Even though some progress has been made in identifying genes and loci associated with 

RI, few studies have explored the evolutionary processes that produced these barriers. Because of 

this, there is not yet a consensus as to what types of mutations or which mechanisms are typically 

involved in speciation or RI. 

There are two broad approaches to identify the genetic underpinnings of RI. First, if crosses can 

be made, one can genetically map the loci underlying RI between organisms. Such studies can 

establish the genetic changes that maintain species identity and, if divergence is recent, potentially 

reveal the molecular changes that were initially involved in speciation. This approach is particularly 

informative when coupled with closely related organisms at different stages of reduced gene 

exchange [1,16,17]. An alternative approach is to assess whether a particular type of molecular change 

is commonly associated with isolation between genotypes. If a barrier to gene flow is commonly 

caused by a certain type of molecular change, then one can argue that that molecular change is 

important in either the origin of new species or the persistence of them when they face the possibility 

of collapse through gene flow. This approach has, for example, revealed that chromosomal inversions 

are commonly associated with the suppression of recombination and frequently harbor gene 

combinations involved in isolation between species [18,19] (reviewed in [20]). However, this 
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approach has rarely been used to understand the impact of other molecular changes on RI. Here we 

highlight transposable elements as recurring agents that underlie a variety of manifestations of RI, 

which suggests they should be explored across various taxa in order to better understand their 

mechanistic and evolutionary contributions. 

Transposable elements (TEs) are DNA sequences able to copy and insert themselves throughout 

the genome. TEs represent up to 80% of nuclear DNA in plants, 3–20% in fungi, and 3–52% in 

metazoans [21–23]. TEs are classified according to the mechanism they use to transpose. Class I 

elements require an RNA intermediate in order to integrate/duplicate themselves within a genome, 

while Class II elements act without an intermediate through a cut-and-paste mechanism that 

replicates its DNA directly to DNA as it mobilizes (Figure 1). A full classification of TEs is shown in 

Table 1. Interestingly, the predominant class of TEs can vary greatly between taxa [24–28] and species, 

and their genomic frequency, location, and activity levels can vary greatly even at the population 

level. TEs were described for the first time in maize by Barbara McClintock in 1950 [29] where they 

lead to somatic mutations affecting various phenotypes/genes depending on their chromosomal 

location and transposition time. The insertion of a TE can disrupt the coding or regulatory sequences 

of genes, which can cause deleterious effects by the modifying or eliminating a gene’s expression [30–

34]. TEs are ubiquitous throughout nature [35–37] and their effect on their hosts’ fitness is generally 

considered to be deleterious; TEs are commonly considered selfish elements. However, gene 

disruptions are not the only consequence of TEs as they transpose throughout the genome. TEs can 

also cause regulatory changes, genomic expansions, and generate new chromosomal variants 

through the generation of inversions. Moreover, TEs can produce all of these changes rapidly [38–40] 

and in response to abiotic stressors—a hypothesis first advanced by McClintock [29]. These changes 

can provide genetic and phenotypic novelties upon which selection can act [41,42]. Due to their 

potential to generate novelty when it is needed, some have hypothesized that TEs are maintained in 

genomes through multilevel selection [43–45]. 

 

Figure 1. A graphical classification of transposable elements (TEs). The left panel shows Class 1 

retrotransposons, and the right panel shows Class 2 DNA transposons. The upper panels show three 

examples of the genetic structure of each of these two classes of elements. The lower panels show the 

mode of movement (transposition mechanism) of each class. LTR: Long Terminal Repeats; LINE: Long 

interspersed nuclear elements; SINE: Short interspersed elements. 
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Table 1. A classification of the different types of transposable elements. 

Type Name Activity 
Taxonomic 

Distribution 
Insertion Preference Function/Pathway Influenced Citations 

Retrotransposons 

(class 1) 
    

Replicate through reverse transcription of an 

mRNA intermediate, the resulting cDNA 

product integrates 

 

Long-tandem 

repeats 
      

 BEL/Pao-like elements 
non-

autonomous 
Metazoans Undescribed 

Second most abundant retrotransposon but 

very little is known. 
[46,47] 

 
DIRS1-like 

retrotransposons 
autonomous 

Common in 

decapods, sparse 

among other 

Eukaryotes 

Preferentially integrates into other 

DIRS-1 sequences and GTT 

sequences 

Undescribed [48,49] 

 Ty1/copia autonomous Eukaryotes 
Preference towards upstream region 

of RNA Pol III, near tRNA genes 

Mutational agent and can mediate genome 

rearrangement through recombination. 
[50,51] 

 Ty3/gypsy autonomous Eukaryotes 
Upstream of RNA polymerase III 

transcription, near tRNA genes 

Mutational agent and can mediate genome 

rearrangement through recombination. 
[50] 

 Ty5 
non-

autonomous 
Fungi 

Integrates near areas of silent 

chromatin at the telomeres and 

mating loci 

An increase in recombination at insertion 

points  
[52] 

       

Non-LTR       

 Alu 
non-

autonomous 
Primate specific 

Fixed at C-terminus of Human 

HPK1 and throughout genome 

Cause insertion mutations, increase 

recombination, change gene expression 

through gene conversion 

[53] 

 

LINE (long interspersed 

nuclear elements: Jockey, 

L1, L2, R2) 

autonomous Eukaryotes 

R2 inserts into 28S ribosomal DNA 

genes but has a strong bias against 

previous R2 insertions. 

Encodes proteins responsible for packing of 

RNA transcript and a polymerase that 

enables reverse transcription, with an 

endonuclease subsequently integrating it 

into the genome. 

[54] 

 Penelope autonomous 
Metazoans, rare in 

Plants 

Insertions of element have been 

linked to breakpoints in inversions 

within D. virilis 

Element that underlies hybrid dysgenesis in 

D. virillis. 
[55,56] 

 
RTE (RNA transport 

element) 

non-

autonomous 
Metazoans 

Do not appear to be sequence 

specific 

Upon insertion has been shown to result in 

target site duplications 
[57–59] 

 

SINE (short 

interspersed nuclear 

element) 

non-

autonomous 

Plants, metazoans, 

fungi 

Bias against insertion in intronic 

splice sites and preferentially inserts 

into the 3′ region of introns 

Shown to control mRNA production and 

repress transcription of protein coding genes 
[60,61] 
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 VIPER/Ngaro autonomous Metazoans, fungi Undescribed Undescribed [62] 

Transposons 

(class 2) 
    Replicate through a DNA intermediate  

 CACTA autonomous Plants Located near centromere 

Results in increased methylation and 

structural changes between genetic 

orthologs 

[63] 

 Crypton autonomous Fungi, arthropods Unknown 
Crypton-derived genes function as 

transcriptional regulators 
[64] 

 Helitron autonomous 
Plants, metazoans, 

fungi 

Preferentially inserts in gene-rich 

regions 

Ability to capture gene sequences, including 

introns. 
[65] 

 hobo autonomous Arthropods 
Biased towards areas with high 

recombination rate 
Can mediate recombination and inversions [66–69] 

 I-element autonomous Plants, metazoans 
Located near centromere 

heterochromatin 

Transpose in germline at a high rate and are 

repressed maternally 
[70,71] 

 Mariner/Tc1  autonomous All groups Associated with heterochromatin 
Provide a hotspot of recombination in 

Drosophila females [72,62–74] 

 Mavericks/Polinton autonomous 
Eukaryotes, some 

prokaryotes 
Unknown 

Retrovirus-like and codes its own DNA 

polymerase 
[75,76] 

 Mutator autonomous Plants 

Insertions concentrate in 

epigenetically marked open 

chromatin 

Insertion sites are correlated with 

recombination rates 
[77] 

 P-element autonomous Plants, metazoans 
Insert at random with a preference 

for 5′ untranslated regions 

Underlies hybrid dysgenesis and greatly 

increases mutation rate [78–80] 

 PIF-Harbinger autonomous Plants Target site preference for TAA 
Insertion into regulatory genes resulted in 

pigmentation changes in maize 
[81] 

 piggyBac autonomous Metazoans Throughout the genome Acts as an insertional mutagen. [82,83] 

 pogo autonomous Metazoans 
Likely to insert in regions with low 

denaturation temperature 
Often leads to deletions [84,85] 

 Rag-like autonomous Metazoans Undescribed 
Linked to recombination and affects 

immune system response 
[86,87] 

 Transib autonomous Eukaryotes Undescribed May underlie the development of new genes [88,89] 
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Thus, TEs are diverse and pervasive components of eukaryotic genomes that have the potential 

to impact rates of diversification and adaptation. TEs have also long been known to cause RI between 

genotypes (e.g., [78]). However, the role of TEs as a molecular mechanism capable of directly 

mediating the origin of new species remains underexplored experimentally. 

The idea of selfish genetic elements and their involvement in the formation of new species has 

been latent in speciation genetics for years [90,91]. RI due to intragenomic conflict (i.e., conflictual 

speciation, reviewed in [92]) seems to be common but until recently was thought to be rare. Meiotic 

drive, endosymbionts, and maternal effects have all been implicated as potential sources of RI [1], 

and theoretical models have examined what role they may play in speciation [93,94]. Yet, the role of 

TEs in the initiation of the speciation process and in maintaining species has only rarely been 

experimentally studied. In this review, we highlight research that emphasizes TEs as important 

agents involved in the origin and persistence of species, with a focus the evidence for how TEs 

contribute to contemporary RI. We also propose future directions and questions that need to be 

addressed in order to understand whether transposable elements are involved in speciation, in the 

maintenance of species by generating reproductive isolation, and whether they cause distinct 

macroevolutionary dynamics. 

2. Transposable Elements and Reproductive Isolation 

Traits involved in keeping species apart can be classified depending on when they occur in the 

reproductive cycle. Premating barriers include ecological and behavioral traits that reduce the 

likelihood that two individuals will mate and include habitat isolation and mating choice. Post-

mating-prezygotic barriers involve interactions between gametes and include sperm/pollen-egg 

incompatibility. Finally, postzygotic barriers arise after fertilization has occurred, and include various 

forms of fitness reductions in hybrids [1,3,95]. The genetic basis of prezygotic and postzygotic 

reproductive isolating mechanisms has been studied in varying degrees (reviewed in [1,95]), and a 

few studies have examined their connection to TE transposition (Table 2). In the following sections, 

we compile the cases for which TEs have been found to affect a trait potentially involved in RI, in an 

effort to emphasize their potential role as agents involved in various forms of reproductive isolation. 

2.1. Premating Isolation I: Transposable Elements and Ecological Isolation 

TEs have been hypothesized to promote local adaptation and enable the invasion of new habitats 

[96]. The initial colonization of a new environment is often accompanied by a reduction in genetic 

diversity as a result of genomic bottlenecks or founder effects. This hypothesis posits that by rapidly 

creating new genetic diversity, the transposition of TEs might help populations adapt to their new 

environment. Encountering a new environment is frequently stressful, and since TEs can be induced 

by stress TEs could facilitate an increase in genetic diversity exactly when it is needed [97–99]. The 

genomic shock model proposed by McClintock [29] that TEs mobilize in response to environmental 

challenges has been supported by many studies across multiple taxonomic groups [94,100,101]. New 

environments can select for different traits, and if these traits are associated with assortative mating 

(i.e., dual traits due to pleiotropy; [102,103]), then RI can evolve through divergent selection [104]. 

Therefore, we hypothesize that TEs could frequently underlie ecological adaptation and perhaps 

ultimately, speciation. A roadmap to assess whether local adaptation is commonly caused by TEs has 

been proposed elsewhere [96]. Notably, methods to detect TEs have evolved over the last five years 

and a fine scale dissection of the identity of the TEs in a genome and their copy-number throughout 

the genome is now feasible (Table 3), facilitating population level analysis. To examine evidence for 

our hypothesis, we focus on phenotypes that might lead to premating isolation and for which TEs 

have been shown to cause phenotypic differences. 

Flowering time: Differences in flowering time are a common barrier to gene flow in angiosperms 

[105]. The mode of action is simple: differences in flowering time lead to RI between genotypes as the 

gametes of the two genotypes show a reduced probability of encountering each other. Additionally, 

changes in flowering time have several downstream effects that can further reduce the possibility of 

gene flow [106]. Besides the lack of contact of gametes due to the temporal differences, differing 
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flowering time might also lead to differences in pollinators and thus fosters even stronger isolation 

than that caused by temporal differences alone. 

Table 2. A summary of reproductive isolating barriers for which TEs have been invoked as a potential 

cause. A full description of the involvement of TEs is presented in the text. Stars represent cases that 

remain suggestive but for which more evidence is required (see text). 

Type of Reproductive 

Isolation 
TE-Mediated Phenotype Examples and References 

Premating isolation 

Adaptation to new habitats. 
Flowering time [63,107]  

Host specificity [108,109]  

Insertions at loci that control self-

compatibility. 

Shift of reproductive strategies lead to reproductive 

isolation [110,111]  

TE movement can lead to gene movement and 

aneuploidy in hybrids [112]  

Changes in traits involved in 

recognition of conspecifics. 
Mating song frequency between sibling species [113] 

Changes in genome structure. TE-induced chromosomal inversions [114,115]  

Postzygotic isolation 

Hybrid sterility as a result of 

reactivated transposition. 
Hybrid dysgenesis [55,69,116,117] 

Misregulation of TEs leading to 

hybrid inviability 

Overgrown endosperm; abnormal embryo 

development [118–120] 

Table 3. Computational methods to detect transposable elements using genomic data. 

TE Detection Tool Year Language Reference 

MELT 2017 Java [121] 

IT IS 2015 Perl [122] 

Jitterbug 2015 Python [123] 

DD_DETECTION 2015 C++ [124] 

TIDAL 2015 Perl, R [125] 

Mobster 2014 Perl [126] 

Tangram 2014 Java [127] 

T-lex2 2014 Perl [128] 

TIF 2014 Perl [129] 

TranspoSeq 2014 Java, R [130] 

TraFiC 2014 Perl [131] 

TIGRA 2014 C++ [132] 

TE-Tracker 2014 Perl [133] 

GRIPper 2013 Python [134] 

RelocaTE 2013 Perl [135] 

Tea 2012 R [136] 

ngs_te_mapper 2012 R [137] 

TE-Locate 2012 Java, Perl [138] 

REPET 2011 Python [40] 

VariationHunter 2010 C++, Python [139] 

HYDRA-SV 2010 C++, Python [140] 

MITE-Hunter 2010 Perl [141] 

SeqGrapheR 2010 R [142] 

RISCI 2010 Perl [143] 

MoDIL 2009 Python [144] 

LTRharvest 2008 C [145] 

HelitronFinder 2008 Perl [146] 

TransposonPSI 2008 Perl [147] 
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In at least two cases, genetic mapping has revealed TEs underlying the disruption of genes 

involved in the pathways involved in flowering time and photoperiod. 

The vegetative to generative transition 1 (Vgt, ZmRap2.7.1) locus in maize is an upstream (70 kb) 

noncoding regulatory element of a repressor of flowering. At Vgt1, a miniature inverted repeat 

transposable element (MITE) insertion into a conserved noncoding sequence was previously found 

to be highly associated with early flowering in independent studies [148]. The insertion of a CACTA-

like transposon into the promoter of a second locus, ZmCCT, can suppress its expression through 

methylation and reduces maize sensitivity to photoperiod [149]. 

Similarly, in Arabidopsis, a recessive allele at the locus flowering locus C (FLC), is a result of 

disruptions of the gene by non-autonomous Mutator-like transposons, which ultimately leads to a 

delay in flower time. This transposon renders FLC subject to repressive chromatin modifications 

mediated by short interfering RNAs generated from homologous transposable elements in the 

genome [150]. 

TEs might play a role in floral induction and development in the rice shoot apex as a portion of 

them are silenced during floral induction [107]. The exact role these TEs play in floral induction is 

unknown, but the recurring activation and silencing of particular TEs, in particular Gypsy elements, 

at specific developmental stages suggests a regulatory overlap in reproductive development and TE 

produced small interfering RNA (siRNA). The downregulation of some retrotransposons stops them 

from repressing genes related to their transition into the reproductive phase, essentially activating 

genes required for flowering. 

These examples show that TEs can modify the mean flowering time through a variety of 

mechanisms (e.g., differential methylation in maize, repression of an intron via siRNA in Arabidopsis). 

However, to our knowledge, all flowering time mapping cases have been done within species, thus 

far no case of between species difference in flowering time has been ascribed to TEs. It is worth noting 

that different molecular mechanisms resulting from TE insertion can produce the same phenotypic 

outcome. In maize, a TE insertion results in differential methylation in the regulatory region while in 

Arabidopsis there is repression at an intron through siRNAs. Interspecific differences in flowering time 

caused by TEs remain unidentified but it seems like a possible cause of isolation.  

Habitat isolation: Abiotic factors such as light and water availability can greatly influence the 

range over which a plant is able to spread, as well as influence the conspecific mates it will encounter. 

In the extreme, adaptation to a new environment can completely prevent contact with other members 

of a species, initiating the process of allopatric speciation. 

The CACTA-like TE insertion (in the promoter for ZmCCT; [149]) implicated in photoperiod 

sensitivity in maize, has also facilitated local adaptation to temperate long-day environments. 

Additionally, variation in drought tolerance has been linked to a TE inserted in the promoter region 

of ZmNAC111 [149]. This MITE insertion results in histone hypermethylation, which represses the 

expression of NAC resulting in a higher drought tolerance. 

Selection acting across a continuous distribution of habitat preference can lead to RI as a 

byproduct of local adaptation to changing environmental factors. TEs may have generated the alleles 

selected during adaptation to temperate climates in Drosophila melanogaster. A study comparing 

temperature/latitudinal clines along Australia and North America found 10 TEs that show signs of 

positive selection at their insertion points, resulting in local adaptation [96,101,151]. By causing 

mutations in genes associated with a suite of traits, including circadian rhythm regulation and 

starvation resistance, several types of TEs (Long terminal repeats (LTRs), Long interspersed nuclear 

elements-like (LINE-like), and Terminal inverted repeats (TIR)) are thought to underlie the 

phenotypic differences along the cline. Suggestively, the TEs were more likely to be adaptive in 

temperate populations compared to tropical populations where they were likely to be neutral [151]. 

Taken together, these results strongly suggest that alleles generated by TEs were favored during local 

adaptation. 

Host specificity in oomycetes: One of the main mechanisms of RI in plant pathogens is host 

specificity, which is regulated by the repertoire of effector genes within each pathogen. Effector 

proteins alter host physiology and allow colonization by individual pathogens [152]. In oomycetes, 
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genomic distribution of TEs is frequently predictive of host specificity [153–155]. For example, the 

genome of Phytophthora, a major pest of commercial crops, harbors multiple families of 

retrotransposons (copia, Gypsy/Ty) [108,155–158]. In Phytophthora infestans—the potato blight 

pathogen—host specificity is regulated in part by RXLR class effectors that enable P. infestans to 

utilize a host [109]. As in other systems, TE insertion in P. infestans causes epigenetic silencing of both 

the transposon and nearby genes, resulting in regulatory differences. Notably, synthetic chimeras of 

a short interspersed element (SINE) to an effector gene in P. infestans leads to the silencing of both the 

introduced fusion and endogenous homologous sequences [109]. This silencing is also likely to occur 

naturally in the genome of P. infestans, as transcriptional inactivation of effectors is known to occur 

and over half of RXLR effectors are located within 2 kb of transposon sequences in the P. infestans 

genome. Thus, it is possible that host range in P. infestans was shaped by TEs inserted near these 

genes. Since mating in oomycetes occurs on host plants, it is plausible that TE insertions that modify 

host specificity have led to reproductive isolation in P. infestans. However, a systematic exploration 

of effector genes and their interactions with TEs would be needed to test this hypothesis. 

2.2. Premating Isolation II: Transposable Elements and Sexual Isolation 

Self-incompatibility: Fungi engage in diverse reproductive strategies, which often vary between 

closely related species [159]. Fungi often employ a mating system whereby the mating type—which 

is analogous to the sex—of the individual is determined by alternative alleles at one or several loci. 

In homothallic strains, which can mate with themselves (i.e., are self-compatible (SC)), additional loci 

generate allelic diversity at the mating type loci by a copy-paste mechanism (e.g., the homothallic 

switching (HO) endonuclease in Saccharomyces cerevisiae) [160,161]. Since single loci can effectively 

determine whether two individuals can interbreed or not, TEs can mediate transitions from 

homothallism (SC) to heterothallism (self-incompatible (SI)) in fungi by disrupting these loci. 

Transitions from self-incompatibility to self-compatibility are associated with speciation events (e.g., 

[162–164]) because selfing species are effectively isolated from other individuals and species (with the 

possible exception of somatic fusion; [112,165]). 

Retroelements have contributed to the shifts from heterothallic ancestors to homothallic species 

in the Neurospora genus through mediating translocations at the mating-type (MAT) loci [166]. 

Retrotransposon insertions in the MAT locus also occur in Blastomyces and might be involved in 

decreasing the likelihood of recombination between mating types [167]. In other fungi, transposons 

have been found within or flanking MAT loci (e.g., Neosartorya fischeri [168], Cryptococcus neoformans 

[110], Paracoccidioides brasiliensis [167,169]), thus potentially providing an avenue for mating type to 

evolve independently through a rapid TE-induced mechanism. Specifically, in Neurospora, the 

transposition of nsubGypsy has facilitated the movement of genes neighboring the MAT loci to a 

different chromosome [165]. Transposition of npanLTR facilitates unequal crossovers between 

unrelated intergenic regions of opposite mating types, which in turn facilitates the transition into self-

crossing species. Phylogenetic studies in Neurospora and Kluyveromyces lactis show multiple 

transitions from SI to SC species [166,170]. Taken together, these studies demonstrate that TEs may 

frequently be inserted at MAT loci, but it remains to be seen whether these patterns can be extended 

to other species. 

Besides these effects on mating compatibility, genomic rearrangements mediated by 

transposition can also lead to viability issues in hybrids [171,172]. Barley rusts, Ustilago hordei, show 

a large increase in TE activity not observed in other closely related species (Ustilago maydis or 

Sporisorium reilianum), which has also led to both the reorganization of the MAT loci in the former 

species as well as large chromosomal rearrangements [173]. Few reports have explored a potential 

causal connection between TE activity and genome reorganization. A systematic assessment of how 

often TEs are involved in gene movement across chromosomes is sorely needed. 

Transposons may also play an important role in transitions to self-compatibility in plants. 

Solanum, a flowering plant genus that contains tomatoes, consists of SC and (SI) taxa, with multiple 

transitions from self-incompatibility to self-compatibility [174]. SC taxa are characterized by low 

levels or no expression of stylar RNase (S-RNAse). The seven SC and the three SI taxa differ in the 5′ 
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coding region of S-RNAse by several point mutations. Additionally, in one of the SI taxa, the source 

of low S-RNAse levels stems from an insertion of a transposon-like repetitive element. These results 

show how single-base mutations and the insertion of TEs can result in similar evolutionary outcomes 

[174]. 

These results suggest that transitions to self-fertility mediated by TEs might be common in fungi 

and plants. We hypothesize that since transitions to self-incompatibility have been associated with 

lower speciation rates and higher extinction rates in plants [175–177], TEs might be associated with 

differential diversification rates (i.e., species selection [178–180] in fungi. A formal test of this 

hypothesis remains to be performed. 

Mating behavior in Drosophila: Behavioral isolation in Drosophila is mediated through a 

multimodal signaling system that involves cuticular hydrocarbons (CHCs), visual cues, and auditory 

signals [181–183]. CHCs are waxy compounds that are involved in desiccation protection (e.g., the 

species pair D. serrata/D. birchii; [184,185]) in the abdominal cuticle and are often necessary for mate 

discrimination and in some cases species discrimination [186–189]. Marcillac et al. [190] studied the 

effects of an insertion of a TE in the desat1 locus and measured two different traits: the expression of 

CHCs and the ability of males to discriminate between the sexes. Even though no naturally occurring 

TEs have been found in the desat1 locus, over 30 TEs have been found ~20–50 kb upstream of the gene 

[84,191]. desat1 mutants (i.e., with a TE insertion) had lower CHC abundance (reducing the natural 

sex dimorphism) than lines without the TE. Moreover, mutant males showed poorer discrimination 

between control males and females suggesting that the TE insertion changed not only the emitted 

sexual signal but also how that signal is recognized. It remains to be seen if there are naturally 

occurring transposon-induced mutants in desat1 or any other allele involved in the production of 

CHCs. 

TEs have been conclusively shown to lead to interspecific differences in mating song in some 

Drosophila. Male flies in the D. melanogaster species subgroup produce a courtship song with two 

components: trains of continuous sinusoidal sound, called sine song, and pulses separated by an 

interval, called pulse song [27,192]. In the case of the sister species Drosophila simulans and Drosophila 

mauritiana, two species that diverged within the last 240,000 years [193–195], D. mauritiana males have 

a higher song frequency than D. simulans males, which in turn affects mating behavior and is a trait 

used by females to distinguish between conspecific and heterospecific males [196,197]. A 

retrotransposon, Shellder, has caused the disruption of the slowpoke (slo) locus in D. simulans [113]. 

The slo gene is expressed broadly in the fly nervous system and influences many locomotor behaviors 

and the insertion of Shellder leads to alternate splicing of the gene. Shellder insertions are polymorphic 

in their insertion sites in wild type strains of D. simulans and D. mauritiana, which strongly suggests 

that Shellder is probably propagating actively in Drosophila populations. The retrotransposon 

insertion seems to be polymorphic within D. simulans, which then leads to the question of whether 

this has led to isolation between different genotypes of D. simulans. 

2.3. Transposable Elements and Postzygotic Isolation 

TEs and chromosomal rearrangements: Chromosomal rearrangements are one of the genome 

features known to affect the likelihood of gene flow between species (extensively reviewed in [19,198–

200]). In general terms, theoretical models indicate that chromosomal inversions can preclude gene 

flow at certain regions of the genome. Multiple empirical examples have shown that chromosome 

rearrangements can indeed contribute to postzygotic isolating mechanisms [201] and assortative 

mating [199], particularly when the rearranged regions contain alleles involved in reproduction. An 

active research program is trying to assess whether TEs can indeed lead to the origination of new 

chromosomal rearrangements (illustrated in [202] and reviewed in [66,67]). In Drosophila buzzati, the 

breakpoints of the 2j inversion contain TEs. It has been hypothesized that 2j might have originated 

by ectopic recombination of the TE at its breakpoints [114]. Even though this inversion has not been 

formally associated with RI, 2j is involved with differences in life history traits among D. buzzatii 

populations [203,204]. The phenotypic effects of 2j are contingent on genetic background, which 

suggests epistatic interactions with the rest of the D. buzzatii genome [115,205]. If TEs commonly 
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induced inversions and other chromosomal aberrations, then TEs might play a role in maintaining 

species boundaries. 

TE reactivation: In animals, fungi and plants, TEs are often targeted and silenced by siRNAs 

[206]. In plants, siRNAs involved in heterochromatin formation often target TEs and silence them 

[207]. Unlike animals, where the germ cells are formed early in development, plant germ cells 

differentiate from somatic cells in the adult and the chromatin remodeling ATPase decrease in DNA 

methylation 1 (DDM1) is crucial for this process. In Arabidopsis, DDM1 is necessary to silence TE 

activity [206–209]. Even though TE reactivation and accumulation is restricted to the vegetative 

nucleus and not the sperm cells, TE accumulation in the vegetative nucleus can affect the sperm cells 

of the pollen and result in heritable changes [206]. In tobacco, just as in Arabidopsis, cytoplasmic 

connections between sperm cells and the pollen vegetative nucleus have previously been observed 

[206,210] and might provide a channel for siRNA and facilitate TE silencing. As a result, TE 

misregulation, which in essence is a hybrid specific defect of the TE-repressor system, might be a 

potential source of hybrid defects in pollen. 

DDM1 is also required to produce hybrid vigor (heterosis; [211]). Arabidopsis F1s between 

divergent accessions regularly show hybrid vigor in vegetative biomass throughout their lifecycle 

[212]. However, crosses involving DDM1 loss-of-function mutants do not show heterosis; TEs are 

extensively expressed, which in turn causes abnormal and expression of genes related to salicylic 

acid metabolism [213]. Since fitness is so drastically affected by TEs, through either heterosis or 

hybrid incompatibility, these results might indicate that expression of TEs in hybrids changes 

their epistatic landscape (in a way that does not occur in pure species) with potentially deleterious 

effects. The role that DDM1 plays in establishing RI could be tested by mutating ddm1 across 

multiple plant lineages. The results from such mutagenesis approach will reveal whether this 

epigenetic regulator of TEs is involved in reproductive isolation in multiple species pairs. 

Hybrid breakdown through deregulation of TEs is another postzygotic barrier between species. 

Lake whitefish lineages have repeatedly colonized postglacial lakes across North America. During 

these colonizations, a dwarf limnetic species has evolved from a benthic species multiple times. This 

repeated evolution has led to incomplete RI between the limnetic and benthic lineages [214,215]. 

Although the two lineages can produce viable hybrids, there is significant mortality in all hybrid 

types and backcrosses regularly show a malformed phenotype. Analysis of the transcriptome of 

hybrids reveals a 232-fold increase in TE activity in malformed embryos compared to pure crosses. 

This transcriptome wide deregulation of TEs results in shutdown of vital metabolic pathways 

drastically reducing the fitness of hybrids [216]. 

The reactivation of retroelements in hybrids can also lead to changes in chromatin profiles. 

Interspecific crosses of two Wallaby species, Wallabia bicolor and Macropus eugenii, produce hybrids 

with autosomes from Macropus eugenii that have a larger centromere [217,218]. The extended 

centromeres differ from those found in either parental species as hybrid centromeres consist 

primarily of un-methylated retrotransposons. TEs, then, can also affect chromatin structure and 

chromosomal composition in hybrids. Transpositions resulting from TEs being released from siRNA, 

epistatic, or epigenetic suppression mechanisms are pervasive across various eukaryotic groups and 

drastically change the fitness of hybrids. 

Hybrid inviability: An extensively studied case of reproductive isolation is the genetic 

interaction between Hmr, Lhr, and gfzf in F1 hybrids between D. melanogaster females and D. simulans 

males. Alleles from these genes genetically interact to cause hybrid lethality between D. melanogaster 

and D. simulans [219–222]. RNA-seq analyses revealed that Hmr and Lhr are required to repress 

transcription from satellite DNAs and many families of TEs in their native hosts [222]. One possible 

cause of aberrant TE expression in hybrids is altered expression of Piwi-interacting small RNAs 

(piRNAs), a class of small RNAs that interacts with the Piwi family of Argonaute proteins to control 

the expression of TEs in the germline [223]. This is because the piRNA population in a host rapidly 

adapts, within ~6 generations [224], to the TE content through generation of new piRNA clusters, 

allowing de novo production of piRNA and other types of small RNAs for silencing of the invading 

TE [225,226]. Overexpression of TEs is frequently found in F1 hybrids, and is often associated with 
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male sterility [227,228]. Overall these results suggest that the regulation of TEs might be of 

importance in maintaining contemporary species boundaries. 

Hybrid dysgenesis: Drosophila is arguably one of the premier systems to understand the spread 

of TEs in animals. At least three families (hobo, P-elements, I-elements) have been found in D. 

melanogaster [68,229,230]. Of these families, P-elements (PEs) have received the most attention, as a 

result of a suite of defects in F1 hybrids (i.e., hybrid dysgenesis). Hybrid dysgenesis occurs in F1 

hybrids from crosses between an uninfected female and an infected male [116,117], whereas 

individuals from the reciprocal cross are fertile. In dysgenic individuals, TEs proliferate and lead to 

a suite of defects such as chromosomal breakage, germ line cell apoptosis, and an increase in point 

mutations [78,231–233]. Despite drastic consequences PEs have spread throughout D. melanogaster 

[84,230,234] and D. simulans worldwide [235]. PEs are thought to have originated in the neotropical 

D. willistoni species group [79,236,237]. Although mites have been proposed to serve as a vector for 

PEs, potentially as a byproduct of their syringe-like feeding method [238], the precise mechanisms of 

this horizontal transfer remain unknown and untested. 

The unidirectional development of hybrid dysgenesis between crosses stems from the way that 

genomes protect themselves the deleterious effects of PE activation. In F1 hybrid females, hybrid 

dysgenesis is only present in daughters from mothers with no PE and fathers with PEs. Usually the 

infertility that characterizes hybrid dysgenesis is silenced through piwi-interacting RNA silencing  

[239–242], which are exclusively maternally inherited. piRNAs seem to be present in all arthropods 

[243], and in the case of Drosophila piRNAs are cytoplasmatically deposited in embryos from females 

that contain PEs. Recent work shows that piRNAs are not alone in mitigating PE’s effects. PEs in D. 

melanogaster lead to hybrid sterility when the germoplasm does not carry the molecular machinery to 

regulate the expansion of PEs through minimizing cell apoptosis by co-opting the use of genomic 

maintenance genes such as p53 [69]. 

A similar phenomenon, yet much less studied, occurs in Drosophila virilis [55]. The elements 

Penelope, Ulysses, Paris and Helena and Telemac have rapidly increased in frequency in natural 

populations. Experimental injection of Penelope causes germ line mutations as well as the activation 

of other TEs [55]. Similar to the hybrid dysgenesis phenomenon observed in D. melanogaster, when 

uninfected females are crossed to infected males, the resulting progeny show a high level of gonadal 

sterility, chromosomal nondisjunction and rearrangements, male recombination, and the occurrence 

of multiple visible mutations. There are however, notable differences between these two systems. 

While in D. melanogaster only one family of TEs are activated at once, in the D. virilis dysgenesis, all 

families are activated simultaneously [55,244]. The Penelope family seems to be primarily responsible 

for the hybrid dysgenesis syndrome of D. virilis [55]. 

If hybrid dysgenesis is a mechanism that can generate RI in populations of the same species, 

then the molecular machinery that regulates TEs might be important to not only maintain species 

boundaries at present but also facilitate speciation. This includes an assessment of whether TEs and 

TE-repressor system act as traditional genetic incompatibilities in hybrids [245]. A valuable research 

avenue will be to evaluate the effects of PEs in interspecific crosses and whether hybrid dysgenesis 

is a source of selection for speciation via reinforcement.  

Genomic imprinting in endosperm: Maturation of the embryo in angiosperms is contingent on 

normal development of the endosperm, a tissue that feeds the embryo during seed development 

[118,119]. Allocation of nutrients in the endosperm is consistent with parental conflict theory and 

excess dosage of paternal alleles promotes larger seeds while an excess of maternal alleles produces 

small seeds. This tissue is usually triploid and its normal development depends on the proper balance 

of gene imprinting [119]. Imbalances between paternally and maternally imprinted genes can lead to 

changes in gene expression through regulatory changes, a phenotype that is commonly aberrant in 

heterospecific hybrids (e.g., [246,247]). 

Arabidopsis arenosa and Arabidopsis thaliana hybrid seeds show an overgrown endosperm and 

arrested or abnormal embryo development. A. thaliana harbors LTR retrotransposons of the 

Ty3/Gypsy family, known as Athila. These elements are large, with an internal region up to 10.5 kb 

long, flanked by an average of 1.8 kb LTRs on either side. This internal region produces two proteins: 



Genes 2018, 9, 254 12 of 28 

 

the gag capsid structural protein and pol, which carries the protease, reverse transcriptase and 

integrase domains essential for element duplication [248,249]. Seed inviability is positively correlated 

with the relative paternal genome dose, suggesting that maternal genomic excess suppresses 

incompatibilities in hybrids [246]. Moreover, the maternal genomic contribution (and thus seed 

viability) is inversely correlated with expression of Athila retrotransposons, expressed mostly from 

the pericentromeric regions. The normally silenced Athila (but not other TEs) is extensively expressed 

in hybrids. Only the paternal, and not the maternal, copies are expressed in these interspecific 

hybrids. 

The precise reason why TEs are misregulated in hybrids relative to parentals remains unclear 

and likely varies across species. The interactions between paternally and maternally imprinted genes 

might lead to changes in silenced regions, which in turn is a common cause of postzygotic isolation 

in heterospecific crosses. Imprinting in plants is intimately associated with changes to methylation of 

TEs [120,250], and TE activity is known to alter DNA methylation patterns and gene imprinting in 

plant genomes [251–253]. Alternative molecular mechanisms—that might act in concert with 

perturbed imprinting—have also been proposed to account for seed failure, such as poor regulation 

of TEs by siRNAs in hybrids [254]. 

A systematic exploration of how often TEs promote post-zygotic isolation remains a promising 

research avenue to understand the link between TEs and speciation. 

3. Introgression and Transposable Elements 

Introgression, which is defined as the transfer of genetic material between species through the 

production of fertile interspecific hybrids, has recently been shown to be common across all domains 

of life [255,256]. Understanding what factors allow for gene exchange is crucial to understanding how 

species—especially nascent ones—persist in cases where they have the chance to interbreed and fuse 

into a single lineage. The relationship between transposable elements and introgression is 

multifaceted and includes (i) TE-aided introgression of non TE-DNA and (ii) interspecific 

transmission TEs alone. 

First, TEs might facilitate or hamper introgression of surrounding DNA. Surprisingly, this 

hypothesis remains untested even though its prediction is straight forward: if TEs increase the 

likelihood of introgression, then in hybridizing species regions that are TE-rich should show a larger 

amount of introgression compared to the rest of the genome. If, on the contrary, TEs hamper 

introgression through selection against regions containing TEs, then TE-rich regions should be 

refractory to introgression. These two scenarios are illustrated in Figure 2. Even though no systematic 

study has addressed whether TEs facilitate introgression, there are some indications TEs might be 

involved in horizontal gene transfer (HGT) [257,258]. The coffee berry borer beetle, Hypothenemus 

hampei [259], and the mustard leaf beetle, Phaedon cochleariae, appear to have acquired the genes 

necessary for their specialized diet through a HGT from bacteria [260], allowing them to degrade 

plant cell walls. Interestingly in both cases, the genes acquired by the beetles are flanked by two 

transposons. The potential role TEs might have played in this transfer remains suggestive but 

inconclusive. 

Introgression might also lead to the transfer of TEs across species boundaries [261,262]. HGT 

have been linked to speciation events (or at least specialization events) in bacteria, providing novel 

gene sets that expand host specificity. Horizontal gene transfer regularly acts as a genetic bridge 

between vastly diverged species [257,258]. Horizontal transfers of TEs between angiosperm genomes 

have been documented in nature [263–265] and experimentally [266]. In Drosophila, HGT seems to 

have occurred from the willistoni species group to D. melanogaster. The two groups diverged over 50 

million years ago and there is no possibility of hybridization [267]. Many other cases of HGT between 

species (with a rapidly growing list) have also been reported but the precise mechanisms of gene 

exchange remain largely unknown and might differ between taxa and reproductive strategies 

[118,268,269]. By serving as a pathway to TE acquisition, HGT can result in RI when coupled with the 

effects of new TEs entering a genome. 
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Figure 2. Two possible scenarios that illustrate potential connections between TEs and the likelihood 

of introgression. Two species are illustrated (blue and red). Stripped bars show chromosomes that 

contain TEs, while solid bars are chromosomes with no TEs. The left panel (Scenario 1) shows a 

potential scenario in which TEs facilitate the transfer of a full chromosome. The right panel (Scenario 

2) shows a potential scenario in which TEs cannot cross the species boundary and thus chromosomes 

that harbor them are less likely to be introgressed. For simplicity only one direction of introgression 

is shown. 

The most likely mechanism of transfer of genetic material between closely related species is 

arguably the production of fertile hybrids with subsequent introgression. Even though it is clear that 

TEs can be mobilized by HGT, it remains unclear to what extent TE activation can occur through 

introgression. This question remains largely unexplored both in natural and experimental 

populations. This scarcity is puzzling because the proposal that introgression mediated by 

hybridization could lead to transposon introduction and mobilization within the genome of rice is 

not new (i.e., a genome shock, [270]). Two examples of TE mobilization following introgression stand 

out. First, recombinant inbred lines produced by hybridizing rice species (cultivar Matsumae and 

wild rice Zizania latifolia) have shown that the miniature-Ping (mPing) TE together with its putative 

transposase-encoding partner, Pong, can be mobilized between species [271,272]. Likely, the 

mobilization of mPing and Pong is a result of introgression-induced malfunction of the established 

cellular control systems in the rice genome, as their transposition is transitory and rapidly repressed. 

The second example comes from experimental hybrid swarms between two divergent species of 

Drosophila: D. melanogaster and D. simulans. Both species harbor the Bari-I element, a Class II TE with 

an open reading frame able to encode a polypeptide with 339 amino acids. (The sequence of the 

putative protein in Bari-I is similar to the transposase of the Tc-1 element of Caernorhabditis elegans, 

which might in turn suggest HGT across animal orders [273].) In synthetic hybrid swarms using D. 

simulans C167.4, an unusual line that produces fertile hybrid offspring with D. melanogaster, Bari-I 

elements, originally from the D. melanogaster parent, are maintained in hybrid strains, suggesting that 

introgression can indeed be a mechanism of transfer of TEs. The element is present across the 

geographic range of both species and shows such similar sequence that it seems to be transmitted 

horizontally and not vertically [274]. 

Introgression of TEs has been hypothesized for Drosophila bifasciata and Drosophila imaii [80], 

species of the simulans complex [275], species of the groups willistoni (reviewed by [276]), saltans 

([277,278]), and the species pair Drosophila serido and D. buzzatii [279]. The main lines of evidence in 

these studies have been the ability of these species to produce fertile hybrids and the sequence 

similarity of TEs across species [72,80,280,281]. A full and detailed characterization of the rates and 

nature of introgression awaits for most of these groups and should be coming in the near future as 

TEs will continue to be a focus of research due to their diverse effects across organisms. 
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4. Future Directions 

The relationship between TEs and RI is an open field of research that will likely increase in 

prominence over the next few years. Given the broad range of roles TEs have played in affecting gene 

exchange between various species, further study is required in order to better understand the extent 

to which TEs influence evolution and speciation. Box 1 lists focal questions that remained 

unanswered. These questions fall into three broad categories. 

4.1. Are Transposable Elements a Common Cause of Reproductive Isolation? 

Mapping the precise genetic basis of interspecific differences will reveal what type of mutations 

and genomic interactions are more likely to cause and maintain interspecific differences and their 

relative contribution to various forms of RI. This will lead to a better assessment of the relative 

importance of TEs as a genetic cause of RI. A second line of research will explore the role of TEs in 

adaptation to the peripheral areas of geographic range of a species. In maize, for example, Mutator 

TEs are reactivated in response to environmental stress [282], which is most likely to occur at the edge 

of the optimal range of the species. TE reactivation might induce to genomic changes that in turn lead 

to RI between peripheral populations in extreme environments and the central populations’ (akin to 

peripatric speciation; [1,283]). Moreover, hybrid zones are usually found at the edges of the range of 

the hybridizing species so the interplay of hybridization and potential activation of TEs due to 

environmental or competition induced stress should be examined (Questions 1–5 in Box 1). 

4.2. Are Transposable Elements Responsible for Differential Rates of Diversification? 

The broad range of genome sizes across eukaryotes is partially explained by the quantity of 

repetitive, non-coding DNA—including TEs—interspersed throughout the genome [22,118,284–288]. 

The consequences of genome expansions are significant and have been linked to the duration of 

meiosis, ecological distribution, speciation rate, and extinction risk (e.g., [289,290] reviewed in [291]). 

Genome rearrangements and, in particular, genome duplications have been associated with higher 

rates of diversification in teleosts [292–294] and angiosperms [295,296]. The reasoning behind why 

genome duplications lead to an increase in diversification rates remains unclear but generally there 

are two explanations. First, genome duplication allows for gene subfunctionalization and 

neofunctionalization that would not be possible in a non-duplicated genome [297–300]. Second, large 

genomes might simply have the chance to accumulate more hybrid incompatibilities. Only one 

systematic evaluation of the relationship of genome size and cladogenesis has been performed (for 

angiosperms) and it found evidence of a positive correlation between overall genome size and rates 

of speciation [301,302]. Since TEs commonly lead to an increase in genome size, this is consistent with 

the hypothesis that invasion by TEs can increase the rate of speciation. 

An evaluation of this hypothesis has been carried out in haplochromine cichlids. A comparative 

analysis to determine what traits were correlated with successful adaptive radiations in Lakes Malawi 

and Victoria found that traits like decoupled pharyngeal jaw and maternal mouth brooding—which 

have been hypothesized to be key innovations enabling diversification in cichlids—could not account 

for differences in the rate of diversification in this group. In contrast, increased numbers of SINE 

insertions preceded the extensive radiations within each lake [303]. These results are consistent with 

TEs mediating adaptation through either gene disruption or altered methylation patterns near 

insertion sites. However, determining whether TEs generally lead to increased speciation rates will 

require a formal macroevolutionary test in which the sample size (i.e., potential radiations caused by 

TEs) is larger than one [304]. 

Conversely, TEs could result in increased extinction rates and therefore lead to decreased 

diversification rates. This is related to an intriguing hypothesis that posits that asexual groups form 

reciprocally monophyletic clusters (akin to asexual species) rapidly but also disappear rapidly due 

to the proliferation of deleterious transposons inherited from their sexual progenitors that cannot be 

purged by recombination, leading to extinction [42,305]. (Questions 6–9 in Box 1) Additional studies 

are required to move conclusively test a possible connection between TEs and diversification rates. 
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4.3. Are Transposable Elements and Hybrid Dysgenesis a Source of Selection for Reinforcement? 

Hybrid dysgenesis is a phenomenon that occurs in animals and might also exist in plants. Even 

though its natural frequency remains currently unknown, it is possible that it might be rather 

common [243,244]. Similarly, reinforcement, the evolutionary process in which prezygotic isolation 

is strengthened as a byproduct of the production of unfit hybrids, seems to be pervasive in nature 

[306]. If F1 interspecific hybrids consistently suffer fitness defects due to hybrid dysgenesis, then 

natural selection might indirectly penalize individuals that mate with heterospecifics, thus fostering 

the completion of speciation (i.e., increasing RI until there is cessation of gene flow). This question 

also remains unanswered and will require the identification of sister species that hybridize in nature 

and for which hybrid dysgenesis represents a major cost to heterospecific mating (Questions 10–11 

in Box 1). 

Box 1. Unanswered questions about the connection between TEs and speciation. 

1. Are interspecific differences in flowering time disproportionately caused by TEs? 

2. Do transposons play a significant role in pathogen adaptation to new hosts? 

3. How commonly are TEs involved in antibiotic resistance? 

4. How is the likelihood of chromosomal inversions caused by recombination affected by TEs? 

5. What is the role of TEs in causing hybrid breakdown? 

6. Do TEs regularly mediate the transition from outcrossing to self-crossing in fungi? 

7. What is the taxonomical distribution of TEs? 

8. Do TEs cause changes in the net rates of diversification across the tree of life? 

9. Can TEs be deleterious enough to cause extinction? 

10. Is introgression facilitated or hampered by TEs? 

11. Does hybrid dysgenesis facilitate speciation by reinforcement? 

12. Can TE-repressor systems generate hybrid incompatibilities during speciation? 

5. Conclusions 

Transposable elements are hypothesized to promote bursts of diversification or biological and 

genomic differentiation between species (e.g., [94,99]). Yet there is little direct evidence that TEs can 

indeed facilitate RI and ultimately speciation. That does not mean TEs are not related to the 

generation of new genetic elements, genetic circuits, and ultimately of phenotypes. On the contrary, 

TEs are commonly associated with the origin of new genetic and phenotypic diversity through gene 

regulatory element innovation, genic disruptions, siRNA/epigenetic suppressor mismatches, and 

chromosomal remodeling. In vertebrates, TEs have regularly contributed to the evolution of 

regulatory and coding sequences, leading to new lineage-specific gene regulations and functions. 

Their role has been pivotal to generate new phenotypic diversity. In primates for example, TEs are 

the main source of new variants in regulatory sequences [307]. In angiosperms a significant portion 

of adaptive novelty is due to the activity of TEs (active TE-Thrust), resulting in an extraordinary array 

of genetic changes, including gene modifications, duplications, altered expression patterns, and 

exaptation to create novel genes, with occasional gene disruption [118]. Even though it is clear that 

TEs are involved in generating the genetic material for new traits (some of them involved in 

adaptations), the question of whether TEs are involved in RI has remained largely understudied. The 

combination of natural history, genetics and genomics will reveal the prevalence of TEs in nature and 

to what extent they have played a role in generating and sustaining new organismal diversity. 
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