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Abstract: Closely related to the model plant Arabidopsis thaliana, the genus Boechera is known to
contain both sexual and apomictic species or accessions. Boechera retrofracta is a diploid sexually
reproducing species and is thought to be an ancestral parent species of apomictic species. Here we
report the de novo assembly of the B. retrofracta genome using short Illumina and Roche reads
from 1 paired-end and 3 mate pair libraries. The distribution of 23-mers from the paired end
library has indicated a low level of heterozygosity and the presence of detectable duplications and
triplications. The genome size was estimated to be equal 227 Mb. N50 of the assembled scaffolds
was 2.3 Mb. Using a hybrid approach that combines homology-based and de novo methods 27,048
protein-coding genes were predicted. Also repeats, transfer RNA (tRNA) and ribosomal RNA (rRNA)
genes were annotated. Finally, genes of B. retrofracta and 6 other Brassicaceae species were used
for phylogenetic tree reconstruction. In addition, we explored the histidine exonuclease APOLLO
locus, related to apomixis in Boechera, and proposed model of its evolution through the series of
duplications. An assembled genome of B. retrofracta will help in the challenging assembly of the
highly heterozygous genomes of hybrid apomictic species.
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1. Introduction

Among over the 370 genera belonging to the family Brassicaceae (Cruciferae), only the genus
Boechera shows asexual reproduction by seeds [1–4]. Apomixis is defined as asexual reproduction
through seeds that results in progeny identical to the maternal plant. The harnessing of apomixis is
widely considered as a key enabling technology for crop improvement because it allows the fixation
of any heterozygous genotype, leading to simpler and faster breeding schemes [5–7]. The Boechera
genus includes 110 sexual and apomictic species, widely distributed in North America. Plants from
the Boechera genus are represented by biannual and perennial herbs with a chromosome base number
of n = 7 [8,9].

Apomixis in the Boechera genus is of special interest because it can occur at the diploid level,
which is very rare [1–8]. Furthermore, the phylogenetic proximity of Boechera to the model plant
Arabidopsis thaliana is attractive for potential functional studies. Although the genus Boechera includes
both sexual and apomictic species and accessions that are of variable ploidy and geographical
origin, search for homologous sequences are feasible across the genus [10]. The sexual accessions
of Boechera are self-compatible and largely self-pollinating [11], unlike the sexual ancestors of most
other apomicts, which are typically self-incompatible and cross-pollinating [12]. This inbreeding
causes low heterozygosity in sexual Boechera species. Apomictic Boechera accessions have likely
arisen through independent hybridization events [13]. Their hybridogenic origin is supported by the
aberrant structure of their chromosomes, as they are often observed as a consequence of hybridization,
leading to alloploidy, aneuploidy, the replacement of homeologous chromosomes, and aberrant
chromosomes [13,14].

Certain apomictic Boechera accessions are hypothesized to have arisen through hybridization
between sexual Boechera stricta and Boechera retrofracta (Figure 1). Boechera retrofracta was previously
included within Boechera holboellii (sensu lato) [15]. Up to now only the genome sequence of B. stricta
was available [16], while the genome of B. retrofracta has not been assembled yet.

In this paper, we present the assembly and annotation of the B. retrofracta genome. The availability
of the B. retrofracta genome sequence together with the previously assembled B. stricta genome will
greatly help in the assembly and annotation of related apomictic hybrid species and provide the
basis to investigate the peculiarities of hybridization events, chromosomal organization, the stability
of apomictic genomes, and the genetic factors underlying apomixis. The performed assembly and
annotation allowed us to analyze of the APOLLO (APOmixis-Linked LOcus) genes, that are associated
with apomixis in Boechera.

Figure 1. Plant (a) and flower (b) of Boechera retrofracta.
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2. Materials and Methods

2.1. Sample Information

The reference B. retrofracta genotype was collected in Panther Creek, Lemhi County, Idaho,
at 45◦18′11.9” N 114◦22′35.9” W, 1610 m elevation (Figure 1). Plant growth, DNA extraction, and
library construction were the same as with B. stricta [16]. Briefly, seedlings were germinated in aseptic
culture in half-strength Murashige and Skoog (MS) liquid medium. Cell nuclei were used for isolation
of clean high-molecular-size nuclear DNA in Tris-EDTA (TE) buffer.

2.2. Sequencing Strategy

The B. retrofracta genome was sequenced within the JGI Community Sequencing Project to produce
sequence data for the Boechera genus [17]. Six libraries were constructed and sequenced using three
platforms including Illumina, Roche, and Sanger: one paired-end (PE) library, four mate pairs (MP)
libraries and one Sanger bacterial artificial chromosome (BAC) end library. Read length and actual
insert sizes for each library are given in Appendix A (Table A1). This sequencing scheme was specially
developed for the initial contig assembly by the DISCOVAR assembler [18], followed by scaffolding.
Construction of genomic libraries and sequencing were performed following Lee et al [16].

2.3. Raw Data Filtration and Pre-Processing

Filtration of the PE library LIB400 was performed in two stages. First, reads containing long
adapter fragments were removed using Cookiecutter [19]. Then Trimmomatic [20] was used to filter
out reads with short adapter fragments. However, according to the DISCOVAR requirements no
trimming or quality filtration was performed at those two stages. Only whole reads contaminated by
adapters were discarded.

To process Illumina MP libraries LIB5000 and LIB7000 the NextClip [21] tool was modified to
handle Cre-Lox libraries. It is important to note that original NextClip uses a very simple algorithm to
align linker sequences to reads. It takes into account only the number of matching bases. As the CreLox
linker is significantly longer than the Nextera linker, the number of false hits may significantly increase.
To mitigate this effect, a requirement for the presence of a continuous 9-bp core alignment was added.
The modified tool was named CreClip and can be found in [22].

Reads from Roche MP Libraries LIB4000R and LIB24000R were split into “forward” and “reverse”
segments separated by linker. Then, low quality ends were trimmed from “reverse” segments
by Trimmomatic. Finally, reverse segments were reverse complemented to mimic to Illumina
MP libraries.

2.4. Genome Size Estimation

Estimation of the genome size based on the 23-mer distribution (as well as other k-mer based
statistics) was performed using the KrATER software [23] on the LIB400 library and further compared
with the previous estimations of Boechera genus [24].

2.5. Genome Assembly and Quality Evaluation

At the assembly stage initial contigs were constructed from the filtered LIB400 reads by
DISCOVAR. Then, the obtained contigs were extended using a BAC end sequencing (BES) library and
the SSPACE scaffolder [25].

Before scaffolding the assessment of the actual (mean) insert size was performed. Filtered reads
from all libraries were aligned to initial contigs by Burrows–Wheeler Aligner (BWA) [26]. For each
library, only alignments to contigs with 3× length of the target insert size were used in the estimation
(Table 1) to minimize alignment artifacts. Next, the extended contigs were scaffolded by SSPACE
in two stages: at the first stage, all four MP libraries (LIB4000R, LIB5000, LIB7000, LIB24000R) were
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used to produce raw scaffolds, at the second stage, raw scaffolds were linked to the intermediate
scaffolds using the BES library only. Scaffolding was carried out in several stages because different
options were required to utilize the BES data. Gap closing in the intermediate scaffolds was performed
using GapCloser (a module for SOAPdenovo2) [27] on the LIB400 library only. Finally, all scaffolds
with a length of less than 250 bp (i.e., less than read length of LIB400, the library used for initial
contig construction) were filtered out, as the corresponding short fragments most likely are the
assembly artifacts. Integrity of the assembly was verified by Core Eukaryotic Genes Mapping Approach
(CEGMA) [28] and Benchmarking Universal Single-Copy Orthologs (BUSCO) [29]. A schematic
diagram of the assembly pipeline is shown in Figure A1 in Appendix A.

2.6. Repeats Analysis

A de novo repeat identification in the B. retrofracta genome was performed using
RepeatModeler [30] with default parameters. The obtained repeat library was combined with
Arabidopsis thaliana repeats from RepBase [31], and the merged library was used to annotate repeats by
RepeatMasker [32]. Then repeats in the B. retrofracta genome were softmasked by Bedtools [33] for
the prediction of protein coding genes. Also, masking of tandem and interspersed repeats by tandem
repeats finder (TRF) [34] and WindowMasker [35], respectively, were performed.

2.7. Variants Calling and Genotyping

For variant calling and genotyping filtered reads were aligned to the assembled genome using
BWA mem with default options. Next, the Genome Analysis Toolkit (GATK) pipeline [36] for variant
calling was applied in the following way: duplicates were marked using Picard MarkDuplicates
(Broad Institute, Cambridge, MA, USA), realigned reads at indels, and, finally, HaplotypeCaller
(Broad Institute) was used to call variants. Only single nucleotide polymorphisms (SNPs) and
indels were kept passing the following filtering criteria: QualByDepth (QD) > 2.0, FisherStrand
(FS) < 20.0, RMSMappingQuality (MQ) > 40.0, MappingQualityRankSumTest (MQRankSum) > −12.5,
ReadPosRankSumTest (ReadPosRankSum) >−8.0 for SNPs, and QualByDepth (QD) > 2.0, FisherStrand
(FS) < 20.0, ReadPosRankSumTest (ReadPosRankSum) > −20.0 for indels, respectively. Finally,
the variants falling into the repeats masked by RepeatMasker were excluded.

2.8. Prediction of Protein-Coding Genes and Non-Coding RNA

The prediction of protein-coding genes was performed using a combined approach that
synthesizes both homology-based and de novo predictions, where de novo predictions are used
only to fill gaps and to extend the homology-based predictions. Pure de novo predictions were
filtered out.

As homology-based evidence for gene presence, we have used proteins and transcripts of five
closely-related species. Proteins of the four reference species—Arabidopsis thaliana (assembly TAIR10),
Brassica rapa (Brapa_1.0), Capsella rubella (Caprub1_0), and Eutrema salsugineum (Eutsalg1_0)—were
aligned to the B. retrofracta assembly by Exonerate [37], using the Protein2Genome model with a
maximum of three hits per protein. The obtained alignments were classified into the top (primary)
and secondary hits; the coding sequence (CDS) fragments were cut from each side by 3 bp for the top
hits and by 9 bp for the secondary hits. Transcripts of B. stricta (assembly v1.2, [16]) with marked CDS
regions were also aligned to the B. retrofracta genome by Exonerate using the cDNA2Genome model
leaving the other options unchanged. Alignments of CDS segments were not cut for top hits, but cut
by 3 bp for secondary hits.

These truncated fragments were clustered and supplied as hints to the AUGUSTUS software
package [38], and the CDS segments of genes were predicted in the soft-masked B. retrofracta assembly
using A. thaliana gene models. Proteins were translated from the predicted genes and aligned
by HMMER 3.1 [39] and BLAST [40] to the Pfam [41] and Swiss-Prot [42] databases, respectively.
Only genes supported by the both hints and hits to one of the protein databases were retained; the
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rest were discarded. Transfer RNA (tRNA) and ribosomal RNA (rRNA) genes were predicted by
tRNAscan-SE v1.3.1 [43] and Barrnap v0.6 [44], respectively.

2.9. Phylogenetic Analysis

The longest proteins corresponding to each predicted gene of B. retrofracta and six other
Brassicaceae species—B. stricta (assembly v1.2), A. thaliana (TAIR10), Arabidopsis lyrata (v.1.0),
Capsella rubella (Caprub1_0), Cardamine hirsuta (v1.0), and Eutrema salsugineum (Eutsalg1_0)—were
aligned to profile Hidden Markov Models (HMM) of the braNOG subset from the eggNOG
database [45] using HMMER. The top hits from the alignments were extracted and used for assignment
of the corresponding proteins to orthologous groups, followed by extraction of single-copy orthologs.

To verify topology concordance and get a basis for future studies of positive selection, a species
tree reconstruction was performed. Single-copy orthologous proteins of the seven species included in
the analysis were aligned by multiple alignment using fast Fourier transform (MAFFT) [46]. Based on
the obtained protein alignments, a maximum likelihood tree was reconstructed by RAxML v8.2 [47]
with the PROTGAMMAAUTO option, and the JTT fitting model was tested with 1000 bootstrap
replications. The tree was rooted with E. salsugineum as an outgroup. The resulting tree was drawn
with FigTree software [48].

2.10. APOLLO Evolution Analysis

The evolutionary history of APOLLO gene was inferred by using the Maximum
Likelihood method. Initial alignment of corresponding CDS was performed using prank v.140110 [49]
in codon-aware mode. The alignment result was further used for building phylogenetic tree basing
on the Tamura-Nei model [50,51]. The tree with the highest log likelihood (−12,153.79) was selected
(see Section 3.7, Figure 4). Initial tree(s) for the heuristic search were obtained automatically by
applying Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using the
maximum composite likelihood (MCL) approach, and then selecting the topology with superior log
likelihood value. All positions containing gaps and missing data were eliminated. There were a total
of 1158 positions in the final dataset. Evolutionary analyses were conducted in MEGA7 [52].

2.11. Whole-Genome Comparison

As a preliminary step for the future whole-genome comparison of different Boechera species
a whole genome alignment was performed via Cactus multiple genome aligner [53] and further
visualized with web-tool ClicO FS [54] based on Circos [55].

For further information about the initial data and results, see Appendix B.

3. Results

3.1. k-mer Based Statistics

k-mer spectrum built by KrATER [23] is shown in Figure 2. The 23-mer distribution has a
peak of erroneous 23-mers at 1× coverage corresponding to sequencing errors and one major peak
at 371× coverage corresponding to diploid 23-mers (shared between homologous chromosomes),
but no significant peak related to heterozygous genome positions was detected (Figure 2). However,
we detected several small additional peaks at double (737×) and triple (1120×) depth, which are
probably related to duplications and triplications, respectively.

The genome size of B. retrofracta was estimated to be close to 227 Mbp, which is close to the
previous estimations of a minimal genome size of 200 Mbp in the Boechera genus [24].
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Figure 2. Distribution of 23-mers for PE LIB400 library. Only one major peak at 371× coverage is
present, however there are detectable duplications and triplications at 737× and 1120× coverage
(upper plot, Y axis is on a logarithmic scale).

3.2. Genome Assembly and Evaluation

We have achieved N50 of 2,297,899 bp, L50 of 25, and a total assembly length of 222.25 Mbp for
the final scaffolds, which is very close to our 23-mer based estimation. Detailed statistics including
N50 and total assembly values for every stage of the assembly pipeline are listed in Tables 1 and 2. It is
important to note that the final assembly (Table 1, column final scaffolds) has smaller size than previous
intermediate assemblies due to the last filtration step. All scaffolds shorter than 250 bp (a read length
of LIB400) were treated as artifacts of assembly and were removed. However, size of final assembly
(222.25 Mbp) is closer to estimated genome size (226.87 Mbp) than the size of intermediate assemblies.
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Table 1. General statistics for all stages of the assembly pipeline.

Parameter Contigs Extended
Contigs

Raw
Scaffolds

Intermediate
Scaffolfs

Gap Closed
Scaffolds

Final
Scaffolds

Longest contig 791,985 792,340 8,101,256 9,045,706 9,049,080 9,049,080
Ns 28,100 28,100 11,890,519 16,366,994 12,409,189 12,409,189

Total length 225,649 216 226,402,628 236,469,041 240,945,496 241,014,839 222,253,471

Table 2. N50 values for all stages of the assembly pipeline and several different cutoffs for minimal
scaffold length.

Scaffold Length
Cutoff Contigs Extended

Contigs
Raw

Scaffolds
Intermediate

Scaffolfs
Gap Closed

Scaffolds
Final

Scaffolds

all 85,286 84,648 1,256,534 1,898,006 1,898,985 2,297,899
≥100 85,286 84,648 1,256,534 1,898,006 1,898,985 2,297,899
≥250 101,388 100,393 1,442,421 2,296,484 2,297,899 2,297,899
≥500 115,732 115,486 1,538,795 2,678,857 2,680,941 2,680,941
≥1000 122,300 121,678 1,704,064 2,678,857 2,680,941 2,680,941

Evaluation of the assembly completeness was performed using CEGMA [28] and BUSCO [29].
In the assembled genome 242 (97.58%) complete core eukaryotic genes (CEGs) were identified. Out of
1440 BUSCO genes from the Embryophyta, set only 12 (0.8%) genes were not found, 6 were fragmented,
36 (2.5%) were duplicated and 1422 (98.8%) were complete. This high fraction of complete BUSCO
genes suggests high completeness of the assembly and its integrity at least in gene-coding regions.

3.3. Repeats Annotation

In total approximately 85 Mbp (38.13%) of the assembly were masked. The detailed description of
the annotated repeat types is listed in Table 3. It is important to note that a large number (10.96% of
the assembly size) of interspersed repeats was not classified. The results are shown in Table 4.

Table 3. Repeats found by RepeatMasker.

Class Number of Elements Total Length (bp) Fraction of Assembly (%)

SINEs 577 125,298 0.06
LINEs 7075 4,351,241 1.96

LTR elements 51,040 40,608,195 18.27
DNA elements 31,638 12,868,684 5.79

Unclassified 82,693 24,363,135 10.96
Total interspersed repeats - 82,316,553 37.04

Small RNA 5461 1,599,354 0.72
Satellites 1541 573,026 0.26

Simple repeats 2044 363,642 0.16
Low complexity 56 7456 0

Table 4. Results of repeat masking performed by three different tools: RepeatMasker [32], TRF [34],
WindowMasker [35].

Tool Number of Repeats Total Length (Mbp)

RepeatMasker 173,023 82.31
TRF 100,593 17.41

Windowmasker 1,104,650 64.20

3.4. Variant Calling and Genotyping

In the genome 3341 SNPs and 1317 indels were detected. Among these, 103 (3.08%) SNPs and
97 (7.37%) indels were homozygous and, therefore, most likely artifacts of alignment or assembly or
SNP calling. Mean heterozygous SNP and indel densities in non-masked regions (138 Mbp in total)
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are 0.0235 SNP and 0.0089 indel per Kbp, respectively, suggesting a very low heterozygosity of the
B. retrofracta genome.

3.5. Prediction of Protein-Coding Genes and Non-Coding RNAs

In total 27,048 genes with 28,269 transcripts were predicted. tRNA and rRNA genes predicted by
tRNAscan-SE and Barrnap are given in Tables 5 and 6 respectively.

Table 5. Annotated transfer RNAs (tRNAs).

tRNA Type Number

tRNAs decoding standard 20 AA 1126
Selenocysteine tRNAs (TCA) 0

Possible suppressor tRNAs (CTA,TTA) 3
tRNAs with undetermined isotypes 5

Resolution of Brassicaceae Phylogeny Using Nuclear Genes
Uncovers Nested Radiations and Supports Convergent

Morphological Evolution Predicted pseudogenes
32

Total tRNAs 1166

Table 6. Annotated ribosomal RNAs (rRNAs).

rRNA Complete (≥80% of Expected Length) Partial (<80% of Expected Length)

5.8S 178 53
5S 601 104

28S 0 1782
18S 1 1458
12S 0 173
16S 0 607

3.6. Species Tree Reconstruction

In course of the assignment of proteins to orthologous groups 8959 single-copy orthologs were
identified among the seven species (B. retrofracta, B. stricta, A. thaliana, A. lyrata, C. rubella, C. hirsuta,
and E. salsugineum).

The corresponding phylogenetic tree was rooted with E. salsugineum as an outgroup (Figure 3).
All nodes have a high support and no topology discordance was found with the tree reconstructed
previously by Huang et al [52].

Figure 3. Phylogenetic tree of seven Brassicaceae species used for analysis. Maximum likelihood
tree was reconstructed by RAxML using 8959 single copy orthologs and was tested with
1000 bootstrap replicates. Numbers near nodes represent corresponding bootstrap support.
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3.7. Analysis of Evolution of the APOLLO Locus

Results from Corral et al. [56] suggest that APOLLO (aspartate glutamate aspartate aspartate
histidine exonuclease) is one of the important apomixis-related genes in Boechera. It was shown that
the APOLLO locus has several alleles with apomixis-associated polymorphisms. All studied apomictic
plants carry at least one of the “apoalleles”, while both copies in sexual genotypes were “sexalleles”.

In this study we decided to take a closer look to this locus in our assembly and other Brassicaceae
species in this study. Along with an exact copy of the APOLLO locus, we also found two other, more
distant copies, which may indicate past duplication events. We searched for these orthologs in other
species, and reconstructed phylogenetic tree (Figure 4). All Brassicaceae genomes in the study also
carried these three copies, related to the clusters of orthologous genes ENOG410BURN (APOLLO
locus), ENOG410BUTR, and ENOG410C333 in the EggNOG database.

We observed that branches in the tree were grouped by genes rather than by species, suggesting
that the triplication event took place before the separation of the Brassicaceae species in this study. It is
worth noting that in Populus trichocarpa genome there is only one copy of these locus, which gives an
upper-bound time estimate of the series of duplication events.

We also examined APOLLO alleles (both apo- and sex-alleles) described in Boechera ssp. by
Corral et al. [56]. We can see that these alleles arise after the separation of the Boechera genus, and
compose two separate clades. Given the fact that B.retrofracta and B.stricta are the sexual species, it was
not surprising that in both cases all corresponding polymorphic sites were in the “sexallele”-state, and
clustered with sex-alleles.

Figure 4. Phylogenetic tree of the isoforms of APOLLO locus (exonuclease NEN) in seven species
of interest and alleles of APOLLO locus of apomictic Boechera species from Corral et al (2013) [56].
Sequences of Populus trichocarpa, Vitus vinifera and Glycine max were used as outgroup. The clade
related to the APOLLO locus is shown in green, with apo-alleles shown in red. Numbers near nodes
represent corresponding bootstrap support.
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We calculated the Ka/Ks ratio for the internal branches in this tree and found that branch leading
to apo-alleles is under positive selection (Ka/Ks 1.4646, the branch is shown in red in Figure 4), which
is typical for paralogues that are required to serve a novel function.

The APOLLO gene was initially described in A. thaliana as an exonuclease, protein NEN3, Q9CA74
in Uniprot database [42], probably involved in enucleation of sieve elements, whereas two other copies
were described as NEN1 (Q9FLR0) and NEN2 (Q0V842). Given that, we may suggest an evolutionary
scenario where, after the series of duplications, one of the NEN protein copies in the common ancestor
of Boechera spp. might have acquired alter regulation, and might induce development of the apomictic
reproduction from the ancestral “sexual” state, following by separation of the apomictic lineages.

That could explain the phenomena of the diploid apomictic Boechera, emerged as a result of
duplication events rather than polyploidy.

3.8. Whole-Genome Comparison

As an example of whole-genome comparison a Circos plot was built for B. retrofracta and B. stricta
(Appendix C). Since both assemblies are performed on a scaffold level, it is difficult to highlight any
large genome rearrangements. However, this plot is a visual way to represent the scatteredness of
both assemblies.

4. Discussion

In this study we present a de novo assembly and annotation of the genome of Boechera retrofracta, a
perennial flowering plant belonging to Brassicaceae family that is native to North America. The genome
of B. retrofracta demonstrated a very low level of heterozygosity compare to the genomes of apomictic
accessions [2,8–16]. Notably, repeats in the genome of B. retrofracta occupied almost 40% of the
genome space. Nearly half of them were long terminal repeats (LTRs) (18.27%). The genome size
was found to be 227 Mb, nearly two-fold larger than the Arabidopsis thaliana genome (Table 7). At the
same time the amount of protein-coding genes in the genome of B. retrofracta is slightly less then in the
B. stricta and A. thaliana genomes and much less than that in the A. lyrata genome (Table 1). Despite the
largest genome size, the number of predicted transcripts in B. retrofracta is the smallest among the four
Brassicaceae species compared (Table 1). The presence of a slightly greater number of genes in B. stricta
compared with B. retrofracta, despite a smaller genome size, may be associated with aneuploidy of the
chromosomal fragments, or genome rearrangements occurred as a result of interhybridization, which
is characteristic of many Boechera species and accessions.

Table 7. Comparison of genome characteristics of Boechera retrofracta with previously sequenced
Boechera stricta and Arabidopsis thaliana genomes. Source for B.retrofracta—this paper, B.stricta,
Arabidopsis lyrata and A.thaliana—Phytozome v12.1 database [57].

Boechera
retrofracta

Boechera stricta
v.1.2

Arabidopsis lyrata
v2.1

Arabidopsis
thaliana TAIR10

Total length 227 M 184 M 207 Mb 135 Mb
Chromosomes n = 7 n = 7 n = 8 n = 5

Protein-coding loci 27,048 27,416 31,073 27,416
Transcripts 28,269 29,812 33,132 35,386

As an example of how the genome of the sexual species B. retrofracta could be used to study
evolution and origin of apomixis, we performed an evolutionary analysis of the three alleles of
the APOLLO (APOmixis-Linked LOcus) gene (apo- and sex-alleles) described by Corral et al [56].
We examined this gene in more detail in our assembly and in other Brassicaseae species. Along
with the described copy of APOLLO, we also found two other, more distant copies, which evidently
arose by two sequential gene duplications (triplication). The APOLLO phylogenetic tree may indicate
that triplication event occurred before the separation of Brassicaceae species under study (Figure 4).
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We also analyzed the APOLLO alleles described in Boechera ssp. It was clear that these alleles arose after
separation of the Boechera genus. In sexual B. retrofracta and B. stricta polymorphic sites corresponded
to the “sexallele”-state and clustered with sex-alleles of the other species.

These results are compatible with an evolutionary scenario where, after the series of duplications,
one of the NEN exonuclease protein (ancestor of APOLLO) copies in the common ancestor of
Boechera spp. experiencing relaxed selection might be deregulated, promoting development of the
apomictic reproduction from the ancestral “sexual” state, following by separation of the apomictic
lineages. This model of evolution of APOLLO alleles might explain the phenomenon of apomictic
development in Boechera in the diploid condition, emerged as a result of duplication events rather
than polyploidy.

In conclusion, increasing number of sequenced genomes from the economically important
Brassicaceae family will facilitate future genetic, genomic, evolutionary, and domestication studies in
this family. B. retrofracta is thought to be an ancestor of certain hybrids including apomictic species,
for example Boechera divaricarpa. Consequently, the genome assembly presented in this report may
help with the challenging genome assembly of highly heterozygous hybrid Boechera species that
are apomictic. Thus, the B. retrofracta genome reported here will provide a basis to decipher the
hybridogenesis events that led to the formation of apomictic Boechera accessions.
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Appendix A

Table A1. Sequencing scheme of Boechera retrofracta genome.

ID Library Type Platform Read Length Mean Insert Size (bp) Number of Reads Pairs

LIB400 paired ends Illumina 250 402 189788627
LIB4000R mate pairs Roche - 4014 3259085
LIB5000 mate pairs Illumina 150 4877 19083787
LIB7000 mate pairs Illumina 150 6882 34066282

LIB24000R mate pairs Roche - 24,332 672098
BES BAC end sequencing Sanger - 147,708 17775

Abbreviations: BAC, bacterial artificial chromosome; BES, BAC end sequencing.
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Figure A1. Pipeline used to assembly genome of Boechera retrofracta.

Appendix B

The original data could be found at: http://public.dobzhanskycenter.ru/ad89dedc8b4674276c9
b0760f29b07af/ or at NCBI, BioProject ID: PRJNA418376.

http://public.dobzhanskycenter.ru/ad89dedc8b4674276c9b0760f29b07af/
http://public.dobzhanskycenter.ru/ad89dedc8b4674276c9b0760f29b07af/
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Appendix C

Figure A2. Comparison of Boechera stricta and Boechera retrofracta genomes on a scaffold level.
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